
Steen Andreasen

MORPHX IT

An introduction to Axapta X++
and the MorphX Development Suite

MORPHX IT
An introduction to Axapta X++
and the MorphX Development Suite

Copyright © 2006 Steen Andreasen, www.steenandreasen.com

Editor: Steen Andreasen
Layout: Steen Andreasen
Cover: Poul Cappelen and Ulla Bjulver
Photographer: Ulla Bjulver

Denmark 2006
ISBN: 87-991161-1-1
1. Edition

All rights reserved. The author has created reusable code in
this publication expressly for reuse by readers. You are
granted limited permission to reuse the code in this
publication so long as the author is attributed in any
application containing the reusable code and the code itself
is never distributed, posted online, sold or commercial
exploited as a stand-alone product. Aside from this specific
exception concerning reusable code, no part of this
publication may be used or reproduced in any manner
whatsoever without the prior written permission of the
copyright holder except in the case of brief quotations
embodied in articles or reviews. Any other use without
written consent is prohibited according to the Danish
copyright law.

If you encounter any inaccuracies, please
report them to the author at the following
email address:

axaptabook@steenandreasen.com

Trademarks
All terms mentioned in this book that are known to be
trademarks have been appropriately capitalized.
steenandreasen.com cannot attest to the accuracy of this
information. Use of a term in this book should not be
regarded as affecting the validity of any trademark.

Warning and Disclaimer
You should never try out any of the examples in this book
in a live environment. The information in this book is
provided as is. The author or steenandreasen.com cannot
be responsible of any loss or damages arisen from the
information containing in this book.

“Thanks to my dear wife Ulla, and my son Oliver, who stood up with me and
supported me while writing this book.”

S. A.

Acknowledgements

Thanks to all of you who directly or indirectly have
contributed to the content of this book, providing
inspiring comments and suggestions.

Special thanks to Lars Holm for his contribution to
the Appendix Properties. Poul Cappelen and Ulla Bjulver
www.photo-art.dk for cover design. Jens Thrane,
Christian Beck, Erik Pedersen, Lars Kjærsgaard, Jim
Long, Hanne Paarup, Eric Fisher www.unitederp.com,
Craig Brown www.edenbrook.co.uk, Daryl Spires
www.avionsystems.co.uk, who read, proofread, edited the
manuscript, and most of all, encouraged me to persevere.

Acclaim for the book

"Steen Andreasen is an excellent Axapta Programmer and
Technical Manager - and he is a patient teacher. In this book Steen
Andreasen has worked extremely hard at taking you, the reader, for
an enchanting trip into the world of Axapta development.

I would highly recommend this book as a must have for any
developer whether experienced or novice who wants to make a
career in Axapta Programming.

Thank you very much Steen Andreasen for all your efforts and
generosity of offering such well-structured valuable information
open to the public."

Warm regards,

Harish Mohanbabu
Microsoft Dynamics Ax - MVP
http://www.harishm.com/

MORPHX IT

 © 2006 Steen Andreasen

7

Contents

PREFACE ..15

INTRODUCTION ..17
Why Is This Book Important ..18
Structure of the Book ...18

1 INTRO TO MORPHX ...19

1.1 AOT ...19
Layers ..20
Properties ..23
Add-ins...24
Editor ...25
Debugger ...27
Compiler Window...30
Import and Export ..31
Compare Objects...33
Code Upgrade ...34
Search ...35
Infolog ..36
Recycle Bin..37
User Settings ...38

1.2 Project...41
Modifying a Project ..41
Project Types...42

1.3 Summary ..42

2 INTRO TO X++ ..43

2.1 Variables...43

2.2 Operators..47
Assignment operators..47
Relational operators...48
Bitwise operators ...49

2.3 Control Flow Statements ..50
Loops ...50
Conditional Statements ...52
Exceptions ...55
Miscellaneous ..56

2.4 Select Statements..57

2.5 Functions..64

MORPHX IT

 © 2006 Steen Andreasen

8

2.6 Summary ..64

3 DATA DICTIONARY..65

3.1 Tables ...65
Company ...65
Application tables...67
System tables ..71
Fields ...73
Field Groups ..75
Indexes ..76
Relations..77
Delete Actions..79
Methods ...80

3.2 Maps..86

3.3 Views...88

3.4 Extended Data Types ..89
Extended data type array ..91

3.5 Base Enums ...93

3.6 Feature Keys ..94

3.7 Licenses Codes ...94

3.8 Configuration Keys..95

3.9 Security Keys ...96

3.10 Table Collections ...97

3.11 Special Table Use ..98
Using System Classes...98
External databases ..100

3.12 Summary ..101

4 MACROS...103

4.1 Macro commands ..103

4.2 Defining constants ..105

4.3 Creating macros ..106

4.4 Summary ..107

5 CLASSES..109

MORPHX IT

 © 2006 Steen Andreasen

9

5.1 Classes Basics...109
Methods ...109
Class Components ..111
Modifiers ..114
Passing Values ..120

5.2 AOS ...124
Setting Tier ..124
Objects to Optimize ...125

5.3 Runbase Framework ...125
Using Runbase Framework ...126
Dialog...130

5.4 Fundamental Classes..134
ClassFactory..135
Global ..135
Info...136

5.5 System classes ..136
Object ..136
Runtime changes...136
Args..137
Foundation Classes ...138
Optimized Record Operations ...138
File Handling..139

5.6 Special Use of Classes ...139
Using COM ..140
X++ Compiler...141

5.7 Summary ..142

6 FORMS..143

6.1 Creating Forms ..143

6.2 Form Query ..146
Joining Data Sources...146
Setting Access ...149

6.3 Design...151
Creating Design ...151
Controls in Design ...153
Display and Edit Modifiers ...159

6.4 Methods on a Form..162
Form Methods..163
Form Data Source Method ..167
Form Data Source Fields Methods..171
Form Controls Methods ...173
Common Form Methods..173
Overriding a Form Query...176
Modifying Data Sources from X++...178

MORPHX IT

 © 2006 Steen Andreasen

10

Building Lookups ...180
Form Dialog ...182

6.5 Special Forms ..184
Calling User Defined Method...184
Overload Methods ...185
General Form Changes ...188
Colors ..189

6.6 Summary ..191

7 REPORTS..193

7.1 Report Wizard ..193

7.2 Creating Reports..193

7.3 Report Query..196

7.4 Templates ...199
Report template ...199
Section template ..202

7.5 Designs...202
Creating design..203
Auto design..205
Generated design ..209
Controls in design ..209

7.6 Methods on a Report ...211
Report Runbase Framework ...214
Dynamic Reports ...219
Common Report Methods ...222

7.7 Special Reports..226
Execute report from X++ ...226
Using temporary tables..227
Coloring rows...230
Print using Microsoft Word ..232

7.8 Summary ..235

8 QUERIES...237

8.1 Building Queries ..238
AOT Query...238
X++ Query ...244

8.2 Queries in Forms and Reports ...246

8.3 Summary ..246

9 JOBS ...247

MORPHX IT

 © 2006 Steen Andreasen

11

9.1 Creating jobs..247

9.2 Summary ..248

10 MENU ITEMS AND MENUS..249

10.1 Menu Items...249

10.2 Menus ...250
Locate AOT object from menu...251

10.3 Summary ..252

11 RESOURCES ..253

11.1 Using Resources ...253

11.2 Summary ..256

12 APPENDIX PROPERTIES...257

12.1 Data Dictionary Properties ...257
Tables, Table Maps and Table Views ...257
Table Field, Map Field ...258
View Fields ..259
Table Field Group, Map field group, View field group260
Table index ..260
Table Relation..261
Table Relation Field...261
Table DeleteAction ..261
Map Mapping ...261
Map Field Mapping ..261
Extended Data Type..262
Base Enum ..264
Base Enum Entry...264
License Codes ...265
Configuration Key, Security Key..265

12.2 Form properties ...266
Form data source...266
Form Data Source Fields...267
Form Design Group Controls...267
Form design...271
Type controls ...273

12.3 Report Properties ..288
Report ..288
Report design ..288
Auto design..289
Sections controls ...290
Section Template...292
Section Group..292
Type controls ...293

MORPHX IT

 © 2006 Steen Andreasen

12

Field Group ..301

12.4 Query properties..301
Query ...301
Data sources..302
Fields ...302
Sorting fields ..303
Ranges ..303

12.5 Menus Properties...303

12.6 Menu Items Properties ..304

13 APPENDIX MORPHX DEVELOPMENT TOOLS307

13.1 Cross-reference ...307

13.2 Application Objects ...308
Application objects forms...308
Application management ...308
Usage data ..309
Count of application objects ..309
Locked application objects ..309
Refresh tools..309
Re-index ..309

13.3 System Monitoring ..310
Database tracing..310
AOS tracing ...310

13.4 Code Profiler ..310

13.5 Application Hierarchy Tree...312

13.6 Visual MorphXplorer..312

13.7 Code Explorer ..314

13.8 Table Definitions..314

13.9 Number of Records ...314

13.10 Help Texts ..315

13.11 Version Update ..315
Renamed application objects ..315
Create upgrade project ..316
Compare layers ...316

13.12 Wizards ...316
Report Wizard..316
Wizard Wizard ...316
Label File Wizard ...317
Class Wizard..317

MORPHX IT

 © 2006 Steen Andreasen

13

COM Class Wrapper Wizard ...317

13.13 Label ...317
Find label ...318
Label log ..319
Label file wizard ...319
Label intervals..319

14 APPENDIX REPORT WIZARD ...321

MORPHX IT Preface

 © 2006 Steen Andreasen

15

Preface

To successfully program is primarily a matter of understanding the needs of the user
and translate this need into a technically functioning solution, a system. It is furthermore
essential that the programmer clearly understands how this system is adapted so
adjustments are user-friendly and easy to upgrade.

This book gives an introduction to the development phase of Axapta. The book is not
only an exercise in the functionality of Axapta but because it is based on my more than
eight years of experience with Axapta it is as much a practical accessible book giving
lots of coded examples of product development as well as developments of client
solutions.

The publishing of this book has been a longstanding desire of mine. I have learned
through my many years of working with Axapta that a practical and instructional
programming book in this field is not available. This book, MORPHX IT, fully
illustrate my professional interest in ERP systems and Axapta in particular.

My journey through the authoring process has been exiting and it has been a great
inspiration for me to receive mail from hundreds of people from all over the world.
People, who wrote to me with comments and suggestions after I released a chapter of
the book for download. This has shown to me a strong interest and need for the book.

Hopefully the book will provide inspiration to the novices of this subject, to the
participants of advanced further education, where the teaching of ERP systems is
breaking through, as well as to more experienced Axapta professionals in the business
environment. Many programmers have had to tediously collect the information
individually, which I have published in this book, and my goal is to make the process of
working in and with Axapta easier and inspire to a continued development in the
profession.

Steen Andreasen

MORPHX IT Introduction

 © 2006 Steen Andreasen

17

Introduction

This book is an introduction to the development environment in Axapta, also just called
MorphX.

MORPHX IT is written as a practical book. By practical I mean that you should use the
book while working with Axapta. This also makes the book valuable on a daily basis as
the book contains a lot of examples. I have used this approach as I believe that the
easiest and quickest way to learn a new development language is to start using the
system right away.

You should have an Axapta application installed and have a basic knowledge of how
the user interface of Axapta looks. This information can be found in the manuals in the
standard package.

Focus in the book is from a developer’s point of view. You will be able to use the book
without having any knowledge about Axapta. However it will be easier for you to
understand the contents, if you have tried using the application.

You will get most benefit from the contents by trying out the examples while reading
the book. Examples used in the book are included in the zip file
MORPHXIT_1ED_EXAMPLES.ZIP which came with the book. Axapta 3.0 Service
Pack 4 has been used while writing the book. If running another Service Pack of Axapta
3.0 you might encounter slightly differences.

The book is intended to be read by people without any prior knowledge of programming
in Axapta. You must not necessarily have a background as a programmer. The book can
also be read by technical skilled persons or Axapta application consultants who want to
use the development environment.

If you are a beginner I recommend you to read the chapters from the beginning of the
book as more details are added throughout the chapters. There might be terms you do
not understand when reading. Not all terms introduced in a chapter are explained right
away. I have taken this approach on purpose to simplify the contents. Introducing all
terms at once would have made the book too theoretical to be used on a daily basis.
Often there will be references to other sections in the same chapter or to other chapters,
where you can get more information on a certain term. As a more experienced Axapta
user, you can with advantage read single chapters of the book to catch up on a specific
area.

MORPHX IT Introduction

 © 2006 Steen Andreasen

18

Why Is This Book Important
During my years of working with Axapta I have been aware of the lack of
documentation on the Axapta development environment. See this book as the notes you
wished to have when starting out programming Axapta.

MORPHX IT is the first Axapta programming book, and should be considered an
alternative to attending courses to learn programming in Axapta.

With this book you will have a tool to get to know the development environment in
Axapta quickly. A guide which will teach you to customize your application in such a
way that your code will be easier to maintain and more user-friendly for the application
users.

Structure of the Book
While writing the book I have had to choose what I found most important for am
introductory book. The web framework is not part of this book. For several reasons the
web framework has been left out. Focus has been to introduce what a new comer to
programming in Axapta needs. Often it will be people experienced with programming
Axapta who start using the web framework. Also for most customer cases you will not
be using the web parts.

When explaining a topic in the book such as a tool used in the development
environment not all fields, buttons or features of the tool are necessary described.
Topics are often explained as you would have them told by a person sitting right next to
your. This goes especially for the Appendix MorphX Tools.

When reading the book you will see a lot of best practice hints and recommendations. I
do not distinguish between these two terms. Together these are my own set of rules
when programming or managing a development project in Axapta.

The chapters in the book follow the main tree nodes in the Axapta development
environment, starting with intro chapters to the development environment and the
development language, followed by chapters on how to use the development
environment.
In the back of the book you will find the appendix chapters which contain further
information on some of the topics in the book.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

19

1 Intro to MorphX
The development environment in Axapta is called The MorphX Development Suite or
just MorphX. MorphX is an integrated development environment which consists of the
Application Object Tree, the X++ programming language and several tools which
provide an overview of the application.

MorphX was used to build Axapta’s application modules. Assuming you have licensed
Axapta’s source code from Microsoft, you can edit any of the objects used in the
standard package. This environment, which includes the same tools used by Microsoft
to develop the software, allows you to extend the existing functionality to fit your
organization’s requirements. As a result, Axapta is far easier to customize than other
ERP packages. It accelerates the development process as you can draw upon existing
functionality, rather than having to start out creating your own code from scratch. Both
Microsoft SQL Server and Oracle databases are supported, though once you have
installed the database and application, you will not have to worry about the type of
database. From a developer’s perspective, the Axapta kernel masks all database specific
issues.

Developing a modern user interface can be a time consuming process. In MorphX, the
user interface, including both forms and reports, are by default almost entirely generated
by the system. This means that you will not have to spend time positioning and
arranging controls in designs. All this will be explained further in the chapters covering
Forms and Reports.

1.1 AOT
The Application Object Tree (AOT) is
the development menu in Axapta. All
objects used in the application are stored
in the AOT and presented to the
developer in a tree organized by object
type. Axapta uses a layer technology to
store objects. This layers help
differentiate the objects in Axapta as a
typical Axapta installation is built up
using not just the standard objects from
Microsoft, but also objects provided by
Solution Providers, partners and as
those developed by customers
themselves.

When expanding a node in the AOT, the
sub nodes at the next level will be
cached. This may take a few seconds the

Figure 1: Application Object Tree

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

20

first time a node is expanded. You only cache the nodes used. When a cached node is
later expanded you will find that it responds far more quickly.

The AOT is accessed by pressing ctrl+d or clicking the icon in the top menu. Notice
that if you are running a demo installation of Axapta, you will not have access to the
AOT. You must have the license codes for MorphX and X++ installed.

To create a new object, right-click a node in the AOT and choose new. A red vertical
bar next to the object node indicates that the node has not been saved. The red mark is
also set when a node is modified. All nodes modified or recently created can be saved
by clicking the save all icon in top of the AOT window.

Objects, fields and methods may be duplicated within the AOT. Methods and fields may
also be copied. The copy and duplicate functions are accessed by right-clicking on the
node and selecting the desired function. When you duplicate a node, the system will
create a copy of the selected node in the AOT prefixed with copyOf. This is especially
useful when you want to test a possible modification and would like to preserve the
prior state of the object as a fallback should the change not function as desired.

The AOT also supports drag and drop. When adding controls to forms and reports, it is
often much faster to drag the fields used for the controls to the form or the report
directly from a data source, rather than create them from scratch. MorphX will handle
creating the control with the appropriate properties.

Regardless of which node you select in the AOT, you will always have access to a
context menu by right-clicking the current node. The menu is named SysContextMenu
in the AOT and can be found under the Menu node. When browsing the menu from the
AOT all menu items available in the Context menu will be listed. Depending on the
selected node in the AOT you will have additional menu items available to perform
context specific activities, like creating a new object, opening a new window or
accessing the tools sub menu Add-Ins. Opening a new window provides a root node
based on the current selected node in the AOT. You can open as many windows as
needed. This feature can be used while dragging new objects to a form or a report, or
simply to have cursors positioned in different places in the AOT.

Layers
The layer technology in Axapta is used to organize the objects of the standard package
and customizations made. There are eight standard layers. Each of these standard layers
has a corresponding patch layer for a total of 16 layers. The lower four layers are used
for the standard package and are not accessible by partners or customers. Partners and
customers are each allocated two layers, along with the corresponding patch layers.
When you sign on, you specify the current layer in the clients Axapta Configuration. All
layers except the top layer require an access code. When a customer licenses the
software, they receive access codes for the top two layers and are therefore excluded

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

21

from directly modifying contents of the lower six layers. This prevents a customer from
irrevocably changing the core code provided by Microsoft or their business partner.
This does not prevent you from changing this code. When editing a standard object,
Axapta copies part or the entire object from one of these lower layers into the current
layer. Since an object may be modified at more than one layer, source of the copy is the
highest level, below the current layer, in which the element you are changing exists.
Your changes will be saved in the current layer. The modifications made to the top layer
will always override the lower layer. If you want to start all over, just delete the object
in the current layer and you will be back where you started. The current layer is shown
in the status line in the bottom of the Axapta window. For an overview of the layers, see
figure 2: Layers overview.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

22

Layer Access rights Description
SYS

Read This is the lowest layer. Here all objects created by Microsoft are stored.

SYP

Read Patch layer for the SYS layer. Is used for Service Packs.

GLS

Read Solution Providers are using this layer. Used for global certified modules
created by sub suppliers and licensed by Microsoft, such as the CRM and
HRM modules.

GLP

Read Patch layer for the GLS layer. Is used for Service Packs.

DIS

Read The layer is used for country localizations. Several different layers exist as
the layer is grouped for countries with similar local demands. If one
application is used in countries with different DIS layers, the layers must
be manually merged.

DIP

Read The patch layer for DIS. Used for Service Packs.

LOS

Read This layer is used for local solutions. These are modules which are not
certified globally as in the GLS layer. For example it is used in Denmark
for a Payroll module.

LOP

Read Patch layer for LOS. Used for Service Packs

BUS

All The lowest layer the partners have access to. Partners can use this layer for
their own modules. The layer requires a license code.

BUP

All Patch layer for BUS. Partners can use this layer for updates.

VAR

All Partners use this layer for their customization which is customer specific.
The layer requires a license code.

VAP

All Patch layer for the VAR layer. Can be used for updates.

CUS

All This layer is meant to be used by customization made by the customer
itself.

CUP

All Patch layer for CUS. Can be used for updates.

USR

All This is the highest layer. The layer is used if a user creates their own
customizations like creating a report using the report wizard. Often this
layer is used for test purposes.

USP

All Patch layer for the USR layer. Meant for customer’s own updates.

Figure 2: Layers overview

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

23

When logging on to an Axapta client, the current layer is set. You cannot change a layer
without restarting the client. All modifications made will be saved in the current layer.
Depending on the object modified, different parts of the object will be saved in the
modified layer.

Modifications to objects as forms and reports, require that the complete object be
created in the current layer. If a class or a table is modified, only the modified method
or field will be in created in the current layer.

Each of the layers is stored in physical file with the naming AX<layer>.AOD. The
filename for the sys layer is AXSYS.AOD. The layers are indexed in the file
AXAPD.AOI. If deleted, the index file is built automatically at startup. If a layer file is
deleted or added, the index file will also be rebuilt. You might end up in a situation
where you cannot locate an object in the AOT, or other strange system behavior such as
the AOT crashing when a certain object is accessed. Then it might help to delete the
index file and have it rebuild at startup. To rebuild the index file all users must be
logged out, shut down the Application Object Server (AOS). Start a single two-tier
client to rebuild the index.

Note: When modifying an object, modifications made in higher layers for the same object will
automatically be updated. If a form is modified in the VAR layer, modifications made to the object in the
USR layer will automatically be updated with the modifications from the VAR layer. When importing
objects, the same objects will not be modified in higher layers.

If you have set the development option to show all layers at Tools | Options, all layers
for an object will be shown in parentheses after the object name in the AOT. This gives
a quick overview of which layers contain modifications for a given object. By right-
clicking on a node presented in more than one layer and choosing Layers the node will
be split up and each layer for the object will be shown indented as a separate node in the
AOT. You can then browse the changes made in the single layer. However, you can still
only change the current layer. Click Layers again to re-consolidate the layer split.

Properties
The property sheet is accessed by right-clicking an object in the AOT and choosing
Properties or by pressing alt+enter. You may find it easier to keep the property
windows open, as the property sheet is updated each time a new object is selected in the
AOT. By default the property sheet is docked in the right side. If you prefer to position
the property sheet yourself, you can right-click the window and choose No Docking.
The properties can be presented in two ways. The first tab page lists all properties and
the second page groups the properties. If you are running a high resolution, you can, in
most cases, view all properties for an object without scrolling. To have the properties
sorted alphabetically, go to Tools | Options. For an overview of the properties in the
AOT, see the chapter Appendix Properties.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

24

Note: The property sheet can be used to count numbers of object. All nodes must be cached in the AOT
to be counted. Try marking all objects prefixed with Sales and press alt+enter. This will cache the
selected nodes. If you now mark some of the cached nodes, the number of nodes marked will be shown in
parentheses in top of the property sheet. This will only work if all objects selected are cached.

Each object properties have a set of default values. The default values are generally
those which maximize MorphX’s ability to automate the development process and
maximize program flexibility. This means that objects like forms and reports have a
default set of values for the properties making controls auto positioned and auto
adjusted. When the default value of a property is changed, the property is set to bold
making it easy to spot the changes made to the property sheet. If you are going to
change a property on several objects, you just select all nodes to be changed in the
AOT. You can multi-change any type of object, and only the properties in common for
the selected objects will show up in the property sheet.

When choosing a value for a property, three different types of lookup icons are used in
the property sheet. The arrow down icon is used to select between defined values like
positioning or adjusting controls. The square icon is used to switch between the defined
values and allow the entry of a fixed value.

Figure 3: Lookup icons, arrow down and square

The lookup icon with dots is used where a new form is opened as in entering labels or
choosing a font.

Figure 4: Lookup icon, dots

Two types of properties are colored. The AOT name for the object is colored light red,
indicating the property is mandatory. Properties where a label can be set are colored
yellow when no label has been entered. This does not mean that a label should be
specified, as labels for forms and reports have been specified on the table or the
extended data type. If a label is chosen from the label system, the yellow color is
changed to white.

Add-ins
The sub menu Add-Ins in the Context menu has tools related to the current node. A
standard set of tools like the Cross-reference and Check Best Practices can be called
from here. Add-ins is the only menu item customizable in the Context menu. The
standard items in the Add-Ins menu are created using MorphX. You can create you own
items using MorphX and add them to this sub menu. Most of the Add-Ins menu items
can also be called from the top menu Tools | Development tools.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

25

Editor
The editor in MorphX is used for Axapta’s built in language X++. To open the editor,
choose a method in the AOT and double click or press enter. Select a methods node or a
top node of an object like a class or a form to open a list of methods for the node.

The AOT path to the current node edited are shown in the title bar of the editor window.
In the top of the editor window, icons for the common tasks like save, compile and
setting breakpoints are listed. The left window shows the selected methods. To switch
between the methods, click a method in the left window. A * put after the method name
in the left window indicates that the method has been changed, and not yet saved. Upon
closing the editor, you will be prompted for saving changes. However, if you have set
the auto save option for your user in Tools | Options, your changes will, with intervals,
be saved automatically.

Figure 5: The editor showing the methods for the table CustTable

Code window
In the right window the X++ code for the selected method is edited. Reserved words are
highlighted with blue. Comments are green and text strings are colored red. At runtime,
the code entered is validated, and if an invalid sentence is entered, the error will be
underlined with a red jagged line. Also, the method with the compile error will be
underlined in the left window. For an overview of the most important hotkeys in the
code window, see figure 6: Common editor hotkeys. A full overview of all hotkeys
can be found in the Developers Guide located at Help | Microsoft Axapta Developer’s
Guide.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

26

When right-clicking in the code window, you will have a menu from where you can
view lists for AOT objects, look up information on your code and call editor scripts.
Listing the AOT objects like tables, classes and extended data types eliminates typing as
you do not have to scroll through the AOT to find the name of your objects. You just
pick the object name from the list. An alternative to using the lists can be opening a
second AOT window and dragging the object name from the second AOT window to
the code window. You can in fact, drag any node in the AOT to the code window. The
name of the node will be inserted in the code window. However some nodes will add
lines of code when dragged. Try dragging a query from the AOT to the code window.
You will then have all code written to run your query. The only thing needed is to
declare the variables.

The lookup menu items are used to jump to the code of a method, showing the
parameter profile for a method, or looking up a label in the label system. If your method
has a compilation error you will not be able to use the lookup menu item beyond the
error.

Editor scripts are a collection of scripts made using X++. These are used to carry out
common tasks like adding code comments or formatting the code in a special sense.
You can add your own scripts or modify an existing one. The class EditorScripts has a
method for each of the exiting scripts.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

27

Function Hotkey Description
New

ctrl+n Create a new method.

Save

ctrl+s Save all methods in the left window.

Toggle breakpoint

F9 Set breakpoint.

Enable/disable breakpoint

ctrl+F9 Used to skip breakpoint without removing it.

Remove all breakpoints

ctrl+shift+F9 Remove all breakpoints set by the user.

List breakpoints

Shift+F9 List all breakpoints.

Compile

F7 Compile all methods in the left window.

Lookup
Properties/Methods

ctrl+space Show a yellow tool tip. Depending on the code
clicked, the following will be shown: the base type of
an extended type, parameter profile for a method or
the label text for a label id.

Lookup Label/Text

ctrl+alt+space If a label id is marked, the corresponding label id and
label text is shown in the label system.

Lookup Definitions

ctrl+shift+space Will open the selected method in a new editor
window. No need to mark the method name. If the
method is not overridden, no window will be opened.

Script

Alt+m Opens the script menu.

List Tables

F2 List all tables.

List Classes

F12 List all classes.

List Types

F4 List all extended data types.

List Enums

F11 List all base enums.

List Reserved Words

shift+F2 List all reserved words.

List Built-in Functions

shift+F4 List all functions.

Figure 6: Common editor hotkeys

Debugger
When a breakpoint is set in a code line, the debugger will be loaded if the code line is
entered. If debugging in a three-tier environment, you must assure that debugging is

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

28

activated on the AOS, otherwise you will only be able to debug code running at the
client side. While debugging, your Axapta client will be locked. If you need access to
the client while debugging, you can start another Axapta client. However, the debugger
will be bound to the client from where the debugger was activated. Breakpoints are
stored by user, so you will not have to worry about other users while debugging. To get
a list of the current breakpoints set, you can press Shift+F9 anywhere in the AOT.

Note: If you get an error in the Infolog and want to trace the error using the debugger, you can set a
breakpoint just before the error is inserted in the Infolog. Go to the class method Info.add() and set a
breakpoint in the first code line.

The source code being debugged is shown in the top window. The code is presented as
in the code editor. Breakpoint can be set both in the code editor and in the debugger.
The hotkeys for setting breakpoints are listed in figure 6: Common editor hotkeys.
Breakpoints are shown as a solid red line in the editor. Within the debugger, breakpoints
are indicated by a red circle in the left margin. A yellow arrow in the left margin
indicates the cursor. A toolbar for navigation is placed in the top of the debugger
window. You have 4 different windows which can be enabled for monitoring purposes
in the debugger. The windows can be positioned and resized as required.

Note: Do not leave your Axapta client while debugging. When debugging you will transaction lock tables
in scope of the code debugged. This will not make you popular if an application user is trying to post data
to the locked tables, as the application user will get a database error.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

29

Figure 7: The debugger

Output window
The output window is by default located in the bottom of the debugger. Here you can
monitor the Infolog and print commands sent from the code. Use this window if you
have added lines to the Infolog or are printing comments from code for debugging
purposes.

Variable window
The window is located as the left most window under the debugger window. The
window lists the variables in scope of the code window. All types of variables like table
fields, types and class are listed. Variables changed between two breakpoints will be
highlighted. A neat feature is that you can change the value of any variable while
debugging. The lookup field in the top of the variable window is used to pick a method
from the call stack. When selecting a method, the variable window and the debugger
window will be updated with the selected stack method.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

30

Call Stack window
The call stack window is normally positioned in the middle below the debugger
window. The window gives an overview of the methods processed. You can click any
method in the call stack to jump to the method. This will update the debugger window
and the variable window. Notice that you cannot jump to a non-overridden system
method. A yellow arrow in the left margin indicates the current method being debugged,
and if you jump to another method, a green triangle will mark the currently selected
method.

Watch window
This window is the rightmost in the row under the debugger window. The watch
window is used to manually pick variables which you want to trace during the debug
session. The window has three similar tab pages which helps organize the information if
you are tracing a lot of variables. To add a variable, mark the variable in the debugger
window and drag the variable to the watch window. Use the delete key to remove a
variable. As in the variable window, you can change the value of a variable added in the
watch window. While a variable is in scope, the value of the variable is shown. When
out of scope, an error is shown as the value for the variable. If a variable is changed
between two breakpoints, the value will be highlighted. The variables set in the watch
windows will be stored after completing the debug session. This speeds up debugging
as you will not have to start all over if you are debugging the same code several times.

Compiler Window
When compiling X++ code, whether it is done from the code editor or from a node in
the AOT, the compiler window will be triggered. The compiler window is by default
docked in the bottom of the Axapta window. This takes up space as all windows are
opened within the Axapta Integrated Development Environment (IDE). You can right-
click the compiler window, and select No Docking if you prefer having the compiler
window to act as a standard window. This will free up more of your working area,
especially needed when viewing the property sheet.

You can either use the compiler windows or the simpler message window for the
compiler result. With version 3.0, the compiler window was introduced. The message
window was used in prior versions. Go to the compiler window and click on the Setup
button and choose the Compiler menu item to configure the compiler. The Output
defines whether to use the compiler window or the watch window. The watch window
shows the same information as the compiler window, with a simpler interface. You can
click a line in the watch window to lookup the information. If you have chosen the
watch window for the output, you can re-select the compiler window in the top menu at
Tools | Options by selecting the Compiler button. The level of compilation checks can
be set in the compiler setup window. The field Diagnostic level defines what to include.
If set to level 4, best practice checks will be included. Cross-references will be updated
if marked. Be aware that updating cross-references slows down compiling. For

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

31

information on the cross-reference system see Appendix MorphX Tools. A log for the
compilation can be made during compilation. However you might be better off just
exporting the result of your compilation from the compiler window as you can import
the compilation result and then use the features in the compilation window, such as
lookup errors and warnings.

The compiler window consists of 4 tab pages. The first tab page shows an overview of
the compilation. Depending on the settings, warnings, errors, best practice deviations
and tasks will be calculated. It is recommended practice to compile the entire
application before shipping modifications. During a complete compilation, you might
notice a huge number of errors and warnings. You do not need to worry, as this is
normal. A complete compilation consists of three loops and all objects are not
recognized until the final loop.

Errors and warnings found during compilation are listed on the second tab page. The list
contains errors and warnings found in methods and the property sheets. Errors are
marked with a red symbol, and warnings are with a yellow symbol. The compiler
window is a standard Axapta form, so the standard facilities for sorting and filtering the
output are available. If double clicking an error or warning in the list, the method or
property sheet contain the error or warning will be opened. You can then correct the
error or warning, save the changes and close the window. As errors and warnings are
corrected, they will be removed from the list.

If best practice checks have been enabled, the best practice deviations will be listed at
the third tab page. Click the button Setup and choose Best Practices in the compiler
window to select the best practice checks to be made. Notice that best practice checks
are considered as a guideline. Use common sense while checking the outputs. Missing
labels and the use of base types rather than extended types are easy to spot. With the
more complex best practice checks, you should not act on the suggestions unless you
are familiar with the result of your changes.

The last tab page is used to keep track of your tasks. If you put the text TODO in
capitals in a method, the method will pop up in the task tab page during compilation.
This is a pretty neat feature, as it helps remember places in the code which must be
checked before shipping the modifications.

Note: In the Add-ins menu you will find a menu item called Compile forward. The menu item is
available on classes, and will compile all classes inherited from the selected class. This is a quick way to
compile before trying out your modifications.

Import and Export
You have two options for moving your modification from one system to another. Either
copy the whole layer file, or export a selection of objects to a text file. Which option to
use depends upon your case. Copying whole layer files is often used when you are
updating an installation at the customer site, as this is the only option if the customer

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

32

has not licensed MorphX. To export a node, right-click the node and select Export. You
can export object nodes such as tables, extended data types or forms, or classes,
however methods cannot be exported separately. You can export several objects at once
by marking the objects to be exported and right-click one of the marked objects. A
dialog pops up when selecting export. Here you enter a name for the export file. The
current layer is exported by default. You have the option to export another layer by
selecting a layer in the dialog. This is recommended: selecting a layer, even if you are in
the layer to be exported, as you will then be certain that you have the correct layer
exported. Labels used in your code can be exported. Note that importing the exported
labels requires knowledge about the label system, so this option is not recommended if
the exported file is to be imported by a person without technical skills. However,
exporting labels gives the option to have both code and labels packed in one file. This is
handy as nothing is more frustrating than importing a file and realizing that the labels
are missing.

Objects exported can be locked during the export. The exported objects will be marked
with a keyhole icon. This is all very well, but do not expect too much of this, as locked
objects can still be modified and everyone can right-click an object and lock or unlock
the object. Often it is difficult to determine what has been locked and why.
.
All object nodes, such as tables, extended data types and classes, have a unique id in the
AOT. The id is a sequence number based on the current layer. This id can be included in
the exported file. The option is used later while importing to keep the id’s in sync.

To import an exported file, click the import icon in the AOT tool bar. Valid files are
identified with the extension XPO. Files are imported into the current layer. To check
the current layer, look at the right side of the status line in the bottom of the Axapta
window. To get an overview of the imported objects, click on details in the import
dialog. A tree view similar to the AOT is shown with the objects in the file. Existing
objects in the AOT are marked in bold. By default, all objects in the file will be
imported. You can deselect by clicking the check mark in the tree. For objects that
already exist in the AOT, you can compare the object in the file with the object of same
name in the AOT. This is excellent, as you can verify the objects to be updated. For a
description of the compare tool, see the section Compare objects. When selecting
import of labels, three extra tab pages will be shown in the detail window. Here you can
specify the languages of the labels to be imported. The labels in the import file are
listed. You will be notified if the label id is already used in the application. For each
label you can choose whether to import it or create a new label id. The default label file
used for creating new labels is shown in the upper right corner. The default label file is
set from the labels system. For more information on the labels system, see section
Label system.

Before choosing the option to delete table and class members during import, you must
be sure that you understand this concept. If a table or class is exported, only modified
objects of tables and classes are stored in the modified layer, like indexes and methods,
not the whole layer of the object. When selecting to delete table and class members,

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

33

these objects of a table or a class are deleted in the AOT before importing the table or
class object. This means only the methods of a class which are a part of the import file
will exist after the import. This goes for the layers to which you have access. You can
never delete layers like SYS or GLS.

If the imported file is exported with AOT id's, you can click the option for importing the
object with id. This assures that you are keeping your applications in sync using the
same id’s in the AOT. You will need to do a data recovery if you are importing with id
and you previously have done an import of a new table without importing the id of the
table. You will be notified if changing the id of a table containing data, but you can
mark the data recovery check if you are unsure.

Mark the option Overwrite locked objects if you are unsure if any objects imported can
be locked.

Compare Objects
Comparing objects can be done either when importing a XPO file or by right-clicking
on an object that exists in more than one layer and choosing Compare from the Add-Ins
menu. When you select to compare two layers, the system will display a compare
window. When clicking the lookup button for choosing the layers to compare you might
notice that the same layers are listed twice, with one set marked as old layer. The old
layer is from the layer files stored in the application’s old folder. For information on the
file structure for an Axapta installation see the manuals in the standard package.
Comparing against the old layer is useful if you have done an upgrade to a new service
pack of Axapta, and want to check out what modifications have been done to the old
layer of an object.

The compare window is divided into two panes. In the left side you have the tree view
for the object. The right side shows the comparison results for the node selected in the
left pane. The comparison results have the colors red and blue. The colors are used in
the result to show the differences between the two layers. Only nodes where there are
differences are shown in the tree. The differences in each layer are identified by color.
In the tree a blue or a red checkbox indicates that the node only exist in the layer
represented by that color. A two-colored icon indicates that the node is modified in both
layers. In figure 8: Comparing two layers of an object, two layers of the form
CustTable are compared. In the compare window, lines of code which only exist in one
layer are colored with the color representing that layer. A left or right arrow is displayed
in the end of a colored line or a colored block of code. By clicking the arrows you can
add or remove code to or from the current layer. This speeds up the process of
retrofitting modifications during an update of an application, and is frequently used
when you are applying a service pack update. This tool not only compares code, but
property sheets as well. Like with code, changes in property values between layers may
be migrated using the arrows to update the current layer. Of course there are limitations
with the comparing tool: If a lot of changes have been made between the two layers,

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

34

you might be better off rewriting the object during an upgrade rather than try to resolve
a confusing mix of blue and code lines.

Figure 8: Comparing two layers of an object

Code Upgrade
The Code Upgrade tool is also found in the Add-ins menu. Where the Compare Object
tool can be used to compare any type of object, the code upgrade tool is specialized for
comparing methods. This tool is quite handy for comparing changes from an old to a
new layer of a service pack or version upgrade.

Figure 9: Code upgrade shows a class that has been modified in several layers. You
will see its methods listed in the left side. Methods modified in both the old layer and
the new layer will be highlighted, i.e. if a method existing in the SYS layer of the old
version has been modified in the new SYS layer. When you click on a method modified
in more than one layer, Axapta will update the right window with a tab page
representing each modified layer. The first tab page, Workspace will default to show the
highest layer. From Workspace you can edit the method. It is preferable to open the
code in the editor using the Edit button. In the sub menu Suggestion, the merge buttons
will be active if the method is highlighted. You can use the merge buttons to merge
code from all layers to the workspace. This might not complete your upgrade of a
method, but it helps having all code in one place. One or two layers will be listed in the
sub menu Suggestion. These are the layers the code upgrade tool will suggest to use as
offset for the upgrade. Click the layer name to load the layer into the Workspace tab
page. The Compare button is used to compare two layers of a method. The compared

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

35

layers are shown on a new tab page with the differences colored. For highlighted
methods, the compared tab pages will automatically be created for layers with
differences.

Figure 9: Code upgrade

Search
Searching through AOT objects can be done by selecting a node and pressing ctrl+f. A
dialog will pop up, and by default, the search will be done on methods in the current sub
tree. Methods matching the search are listed in the grid with the AOT path to the search
item. By double clicking you can open the method. You can change the search to also
search on properties. Change the search to select All Nodes, and a property tab page will
be visible. The property tab page lists all properties used in the AOT sorted by name. If
you want to find forms using a specific property setting, select the property and enter
the property value you want to search for. For example, to search for all forms that have
the property AlwaysOnTop set, mark the property and enter Yes in the range for the
property. Forms where the property is set will be listed. Notice that you cannot jump to
the property sheet by right-clicking. Instead, you right-click the search item and select
Properties from the Add-ins menu.

You can search within a method by pressing ctrl+f. The search function used in methods
has a find and replace function similar to that in Microsoft Word. However, if you are
going to find and replace code, like changing a variable, you will be better off using the
cross-reference tool as it will inform you where an object is used. For information on
the cross-reference tool, see Appendix MorphX Tools.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

36

Infolog
The Infolog is used to communicate with the application users. You use the Infolog to
inform the user of validations, if an error occurs, or to display information to the user
while processing a job. The Infolog is opened in a separate window, and opens
automatically when called by a program. Information in the Infolog is removed when
the Infolog window is closed, so if you need the information for later use, you can print
the contents of the Infolog window by using the print menu item in the top menu.
Information in the Infolog can be triggered both from code and by the kernel. Kernel
information typically involves system integrity issues, such as information about
mandatory database fields. From X++ you can control the information in the Infolog.
There are three types of information in the Infolog. The types, which may be identified
by the associated icon include: info , warning and error . Info text is generally
displayed to inform the user about actions being performed by the system. Warnings
and errors typically represent issues that may require action from the user, and may
indicate that a process is unable to proceed. If a help page or an action is attached to the
information put in the Infolog, the icons will have a mark indicating the extra
information.

static void Intro_Infolog(Args _args)
{
 int i;
;
 info("This is an info.");
 warning("This is a warning.");
 error("This is an error.");

 setprefix("prefix text");

 for (i=1; i<=3; i++)
 {
 setprefix("1. for loop");
 info("loop 1");
 }

 for (i=1; i<=3; i++)
 {
 setprefix("2. for loop");
 info("loop 2");
 }

 info("Check customer parameters.", "",
 SysInfoAction_Formrun::newFormname(formStr(CustParameters),
 identifierStr(Customer_defaultCust), ""));
 info("Check the sales form help page.", "ApplDoc://Forms/SalesTable");

 throw error("This error stop execution.", "");
}

This is an example on how to use the Infolog from X++. The first three lines show how
to add a simple info, warning and error information. When using warning() and error()

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

37

information you will normally use the throw command as shown in the last line of the
example, as the throw will stop any further action like updating a record.

If you are adding a lot of information to the Infolog, you can use the setprefix() function
to organize the information and make the presentation more user friendly. The above
example shows how you can structure a pair of nested loops so as to separately group
the content in the Infolog. The prefix for the first Infolog entry represents the outer with
separate indented prefixes created for each of the two loops that display info messages.

An entry in the Infolog takes three parameters. The last two parameters are options used
for linking to a field in a form, or linking to a help page in the online help. The two last
info() lines show how to use the optional parameters. The first links the Infolog entry to
the customer parameter form. The system will display this form if the user double clicks
on the message in the Infolog. The last info() entry links the Infolog entry to the sales
form’s help page. Notice the optional parameters are always used one at the time as you
cannot link to both a form and the help system. Using links in the Infolog is a user-
friendly way of communicating with the user; when an error occurs. You can provide
the user with information on where exactly to go to fix the problem or provide the user
with additional help on how to resolve the error. Unfortunately, changes to these links
do not propagate, so if a referenced form field name or help page is changed, you will
have to manually maintain any associated links.

The Infolog has a size limit of 10,000 entries. The Infolog should not be used for
reporting detailed status messages representing the normal activity of batch programs.
You can programmatically change the infolog’s maximum size, but keep in mind that
the Infolog is not meant to handle large amounts of data. Building an Infolog with
several thousand entries takes time and processing resources. You are generally better
off using a report.

One of the fundamental classes in Axapta is the Info class. The Info class is the handle
to the Infolog. For more information on fundamental classes, see the chapter Classes.

Recycle Bin
The AOT Recycle bin is located in the top menu under File | Open | AOT Recycle Bin.
The recycle bin can be used to recover objects like tables, extended data types or forms.
Parts of an object, like fields of a table or methods of a form, cannot be recovered. You
can only recover deleted objects for the current session, as the recycle bin is emptied
when the Axapta client is closed. The deleted objects are shown in a list sorted after the
objects are deleted, with the last deleted object listed as the first. If an object with the
same name has been deleted twice, the objects will appear two times in the list. Notice
that if a table is deleted, the recovered table will not contain any data.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

38

User Settings
The Options form located in the top menu under Tools | Options is used to configure
settings for your user login. These include both general settings and settings that control
the development environment. To restore the default settings, use the button Default.
For information on the Compiler button, see section Compiler Window.

General
The General tab page is used to define basic settings like name and password and is
where you can setup single sign-ons, so your network account login can be used to
automatically login to Axapta.

Status bar
The Status bar tab page defines the information to be shown in the status bar located at
the bottom line in the Axapta window. The Show util layer field is especially important:
When this field is checked the current layer will constantly be displayed. The Warn
company accounts change checkbox is also important and is selected by default. When
this is marked, Axapta will display a warning message whenever the current company is
changed.

Fonts
You can set the default font and size to be used at the Font tab page. Normally the
standard settings are sufficient. However you can use the font settings if you want
another font size for your reports. This is a global setting. If you need a particular font
within an individual form or report, you should just change that particular object.

Development
It should be no surprise that the Development tab page is of particular interest to
developers. It is used to customize the behavior of the development environment. In the
General field group you can select a project to be loaded at startup. This is useful when
you are working on the same project over an extended period of time, as you do not
have to find and open the project manually each time you start your client. For more
information on projects, see the section Projects. The Application object layer field is
used to set which layer of information to show in parentheses after the objects in the
AOT. The Show all layers option will give you information on all layers an object is
modified in, and can help you understand which objects are stored in each layer.

If you want to use the message window to display information regarding tracing or
compiling, you might want to adjust the message limit. When the field Development
warnings is checked the system will generate a large number of messages, many of
which are of dubious value such as information on selects without an index.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

39

The Editor field group has options for how to insert and add text. If IntelliSense is
marked, methods of a current object in the editor will be looked up when a dot is typed
after the object name. This is a useful feature and generally should be left on. It will
save time when typing code. For example, when you type in a class name followed by a
dot, the methods for the class will be looked up automatically. IntelliSence will also
show yellow tooltips with information about base types and parameters when the cursor
is position over variables and methods in the editor.

The debug mode field is normally set to its default breakpoint. This means if you have
set a breakpoint in a method, the debugger will automatically be loaded when a
breakpoint is entered.

The auto options are used to auto save modified objects. If auto save is set, objects will
be saved at a defined interval. If Auto-refresh is marked, objects created and changed by
other developers will automatically be updated. This is useful when several
programmers are working on the same application and one of the programmers is
creating a new table or class. The new object will then automatically be available within
a defined internal. When not using auto refresh, you will have to restart your Axapta
client to see the changes made by other programmers in the AOT. The garbage
collection size should be set, as the number indicates the maximum number of out of
scope objects that will be kept in memory. Setting this number to a larger number will
tend to consume more memory but consume somewhat less CPU, as the system will run
the garbage collection routine less frequently.

You can set trace options for database, methods, client/server and activeX calls. The
message window is used for printing the trace options. Note, enabling method call will
generate a huge number of lines in the message window, as every single method will be
listed.

If you want the property sheet sorted alphabetically, you can set this field Sort
alphabetically. For more information on properties, see section Properties.

SQL
Database tracing options are set on the SQL tab page. Mark the SQL trace field to
enable tracing. You can define whether you want the tracing result to appear in the
message window, the Infolog, the database or written to a file. You should only use the
trace options to optimize your code. Printing the trace information to the screen using
the message window or the Infolog gives you a quick way to drill down to the code. By
double clicking a trace line, a form will be opened showing information about the traced
line; this form allows you to directly edit the code that generated the trace line.

Confirmation
Confirmation options are important for application users. The different fields indicate
the different table groups. For more information on the table groups, see chapter Data

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

40

Dictionary. The default settings only require the user to confirm record deletions.
When testing the look and feel of an application, it is beneficial to use the same settings
as the users.

Preload
This is a list of tables where all records of the table are cached. For table caching
settings, see section Data Dictionary. Tables with few frequently referenced records
are often setup to be preloaded. If you have an Axapta installation with a lot of records
in one of the preloaded tables, you should consider disabling the preload of this table.
The list is only a default setup and should always be verified for each Axapta
installation.

Usage data
The button Usage data shows stored settings for objects such as forms, reports and
runable classes. When a user changes the layout of a form, changes the query of a form
or enters values in a report dialog, the settings will the saved. The usage data is stored in
the system table SysLastValue. Only one record exists per object per user, as only the
value of the last execution is stored. If you want to see the usage data for all users, you
can call the usage data form from Tools | Development Tools | Application Objects |
Usage data.

The Usage Data form shows the content of the system table SysLastValue for the
current user, divided into tab pages for each type of object. The general tab page has a
button to delete all content of SysLastValue for the current user. This is quite handy if
you are going to test your modifications, as you then can start out testing with the same
settings as the application user will have the first time a form or report is executed.
Testing modification with usage data stored for the objects is in fact a common source
of errors, as an object might act differently with usage data, such as when a range is
added to a query. The tab page All usage data lists the objects from all the usage data
tab pages. Notice this tab page will also list usage data for classes.

Best Practice
This button presents a form which allows the user to set the best practice validation
options. By default, all validations will be enabled but you can use the form to disable
specific validation checks. Changing the best practice options can also be used if you
want to run a single best practice check on all your modifications such as checking for
missing labels. For more information on best practice, see the section Compiler
Window.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

41

1.2 Project
The AOT project window is opened by clicking the Project icon in the top menu.
Notice, that AOT Project has nothing to do with the Project application module. For
differentiation, it is referred to as AOT Project.

A project is also used to group a subset of the AOT. Objects in a project act the same as
they do in the AOT, meaning that you have access to the same property sheet, and
identical menus when right-clicking an object. An object may exist concurrently in any
number of projects; the objects will still only reside in the AOT. You should think of
project objects as links to AOT object. If an object added to a project is deleted or
renamed in the AOT, the link to the AOT object will still exist in the project, and the
icon for the object in the project will change. Projects do not provide version control,
but grouping your modifications in projects will give you a better overview of which
objects have been modified for a new feature. By segregating a customized application
projects you can also facilitate the application upgrade process.

Note: If you have imported the examples in this book, you will see a list of projects prefixed with
MORPHXIT in the project list.

Modifying a Project
The project window shows the stored projects in a list. To open a project, double click a
project node. The selected project will be opened in a new window. When adding an
object to a project you can drag a node from the AOT or right-click, choose New and
select an AOT node type. The list of available node types includes a special node type,
Group, which is used to group objects by type as in the AOT. When you create a group
node you need to specify the type of object that will be contained in that group in the
group’s properties. You can set the type of group like Tables of Forms. Setting the type
of the group will change the icon for the group to match the icon used for the same
group in the AOT. When the group type is set, only objects of the specified type can be
added. You might have noticed that the group node has a property called GroupMask.
Group masks are used for filtering using wildcards, or which object will be shown for
the group. This is generally only done when initially setting up a project, as using the
group mask will cause the system to replace the group’s contents with those objects in
the AOT that match the specified criteria.

The icon bar in top of the project window for a selected project is similar to the icon bar
in the AOT. With this feature you can export the content of a project. You have an extra
filter icon not available on the AOT icon bar. The filter icon is used to build a project
based on the filter options chosen. The project objects can be grouped as in the AOT by
choosing AOT grouping. By clicking the Select button in the filter dialog you can select
which AOT objects to include. The filter option will search the system table
UtilElements, which contains information of every object in the AOT. For example, if
you want to build a project with all object modified in a specific layer, this can be done
by setting a range for the field UtilElements.utilLevel.

MORPHX IT Intro to MorphX

 © 2006 Steen Andreasen

42

Project Types
There are two groups of AOT projects: private and shared. Private projects are only
visible to the user who created the project. Shared projects are visible to all users. You
should only use private projects for testing purposes or similar tasks. Using shared
projects means that more than one developer can work on the project at the same time.
To create a project, right-click the private or shared project node and choose New.

Beyond private and shared, there are three types of projects. The first project type just
called project is the default project type. This is the project created if you press ctrl+n
on the project node. The other two project types, Web project and Help Book are
created using X++. By extending the system class ProjectNode, you can create your
own project types. The icon in the project list indicates the type of the project.
Additional options can be added to a project type by adding a menu item to the Context
menu

1.3 Summary
At this point you should know how to access the development environment and how to
navigate around the AOT. You should have a basic knowledge of how an Axapta
application is structured using a layer technology and how these layers are used by the
AOT.
The next chapter will go a step further, introducing the built in language in MorphX
called X++.

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

43

2 Intro to X++
The programming language in the MorphX Development Suite is called X++. This is an
object oriented language created to write the logic for the Axapta application.

You might wonder why they created yet another programming language just for Axapta.
This is in fact the key to Axapta’s flexibility as X++, is optimized for the creation and
modification of business objects. The language is simple, with integrated SQL syntax,
so there is no need to set up and manage data source connections. Just create your select
statement as you would have done using a SQL database query. X++ is also tightly
integrated with the MorphX tools like the form generator and the report generator.
When adding logic to your forms and reports there are several default methods where
you can hook up your logic.

X++ was created with C++. The C++ kernel source code is not available. You only have
a set of system objects where the parameter profiles are visible. All of the X++ source
code is open source. You cannot hide your X++ code, and none of the X++ code used
for the standard package is hidden. This is a great advantage, as you will quickly learn
to check the standard package before creating your own modifications from scratch.
Often you might find useful code to get you on right track. The language has a syntax
that is similar to Java, combined with the ability to write SQL-like data manipulation
statements. Though X++ is an object oriented language, you do not have the ability to
inherit all type of objects like in C#. Classes in X++ can be inherited just as in any other
object oriented language. Besides that, you can inherit extended data types, and a set of
fundamental classes give the option to make general overloads of the user interface such
as changing the behavior of all forms. For a description of the fundamental classes, see
the chapter Classes.

If you want to try out to basics of the X++ language, you can create X++ scripts using
the AOT node Jobs. For more information about jobs, see the chapter Jobs.

2.1 Variables
In X++, variables are declared in the top of the editor, before the code lines. The
variables are often separated from the code lines with a line only containing a
semicolon. This is due to the way the compiler interpreters the code. If you do not add
the semicolon you might get an error when compiling. The semicolon is not needed in
all cases, but it is now an accepted Axapta standard to use a semicolon within a method
at the end of the data declaration.

For declaring variables in X++, it is best practice to use extended data types, rather than
using the base types. The reason for this is that the extended data types contain
information like string length and whether a string is left- or right- aligned. As variables
may be used throughout an application, changing an extended data type, rather than

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

44

changing variable declarations, really speeds up development. For more information on
extended data types, see chapter Data Dictionary.

When naming variables it is considered best practice to use variables names which
make sense in the context. For a variable counting customers, name the variable
noOfCustomers rather than just a single letter variable like i. If you used a reserved
word for your variable, the compilation will fail. Reserved words are colored blue
within the X++ editor. You can find a complete overview of reserved words in the AOT
under System Documentation.

The syntax for declaring a variable is as the following:

CustAccount MyCustAccount;

Here, a variable of the extended data type CustAccount is declared. CustAccount is of
the base type string. First the name of the type is entered, and second a variable name.
Note that the line is completed with a semicolon. A semicolon is required at the end of
each statement in X++. You can declare more than one variable of the same type in the
same statement by separating the variable names with a comma. All the base types are
described in figure 10: Base types in X++.
You can declare more than one variable at the same line like:

CustAccount MyCustAccount1, MyCustAccount2, MyCustAccount3;

This will work just fine, but you should uses such declaration with caution. The
compiler will recognize the type of the first variable without any problems. If one of the
following variables, MyCustAccount2 or MyCustAccount3, have the same name as a
table or a class, the code will be compiled with errors.

Note: X++ does not have the option of declaring variables as constant. If you need to define a constant
you must use macros. For information on macros, see the chapter Macros.

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

45

Base type Description
Str

Contains alphanumeric characters. For string operations take a look at the
functions prefixed with str.

Int

Numeric values. The functions minInt() and maxInt() can be used for returning
the lowest and the highest integer values.

Real

Decimal values.

Date

Date is counted from the start of year 1901. If converted to an integer, the
value will be the number of days since start 1901. The highest date is end year
2155.
The Global class has several methods prefixed with date used for date
operations. To calculate next and previous date for week, month, quarter and
year, check the functions.

Timeofday Count the number of seconds from midnight. This is in fact a system type,
rather than a base type, but timeofday can be chosen as one of the base types
for an extended data type in the AOT.

Enum

An enum represents a fixed list of values. To declare enums, one of the enums
created in the AOT must be used. One of the most common enums is Boolean,
which have the values true and false. Enums have a max of 255 entries.

Container

A container is like an array, except a container can hold different base types.
Containers are typically used for storing the values of a query. X++ provides
different functions for maintaining containers. The functions are prefixed with
con.

Anytype

Anytype is often used in parameter profile, as anytype can be initialized with
any of the base types. Anytype is set to one of the base types when initialized.
A common example of anytype is the global method Global::queryValue().

Figure 10: Base types in X++

Variables can be initialized in the same line of the declaration. This is done by entering
= <InitValue> after the variable name. Some of the base types allow automatic
conversion such as setting an integer to a real value. The compiler will notify you when
doing type conversions which loose information. The compiler will also catch an error
if you attempt an invalid initialization, like setting an integer to a string value.

static void Intro_BaseTypes(Args _args)
{
 Description myString = "A X++ string";
 Counter myInteger = 100;
 Qty myReal = 12.25;
 TransDate myDate = str2Date('12-31-2005', 213);
 TimeHour24 myTime = str2Time('14:05');
 NoYesId myEnum = NoYes::Yes;
 PackedQueryRun myContainer = ['12', 'test', 'tada'];

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

46

 AnyType myAnyType = systemdateget();
;

 print myString;
 print myInteger;
 print myReal;
 print myDate;
 print myTime;
 print myEnum;
 print conPeek(myContainer, 1);
 print myAnyType;

 pause;
}

This is an example of how to declare the single base types. Here, all variables are
initialized at the same time, and printed to screen. If you want to check the type of a
variable, this can be done by pressing ctrl+space on the variable name. The base type of
the variable will be shown as a yellow tooltip.

Two different string functions are used for initializing the date and time variables. How
to use functions in X++ is described later in this section. Notice the notation for
initializing an enum. First the enum name is specified, followed by two colons then the
entry for the enum.

The container variable is initialized with a length of 3. A container can store any of the
base types, even another container. Containers must be accessed using the container
functions. Here the first entry in the container is printed. In this example, the variable
anytype will be of the type date, as it is initialized with a function returning the current
date.

Notice that text is put in quotation marks. You can use both single and double quote
marks to define a text-string in X++. It does not matter to the compiler which notation is
used. Best practice says that double quotes should be used for text printed to the
application users, and single quotes should be used for text only used in the code.

Base types can also be declared as arrays. To declare a variable as a dynamic array, add
brackets [] after the variable name. You can specify two parameters in the brackets for
the array. The first parameter is used to set the array to a fixed length, and the second
parameter is used if you have a large array, and only want to hold a part of the array in
memory. Note, that X++ can only handle one dimensional arrays.

static void Intro_Array(Args _args)
{
 CustAccount myCustAccount[];
;

 MyCustAccount[1] = "4000";
 MyCustAccount[3] = "4001";
}

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

47

The example is creating an array of the extended data type CustAccount. Entry number
one and three of the array are initialized. When using arrays, the entries do not have to
be initialized.

You might have noticed the system class Array. If you need an array of the complex
types, for example an array of objects, you will need to use the system class Array. The
Array class is one of the foundations classes and is described in the chapter Classes.

The variable container and declaring a variable as an array are both examples of the
complex data types in X++. Which can be confusing since the container variable is
listed as one of the base types, and a container in MorphX is treated as a base type.
Tables and classes are the other two complex data types in X++.

Note: in X++ you will not have to worry about memory allocation. When an object is no longer used, the
garbage collector will automatic flush the object and free the memory. The garbage collector can be tuned
for special needs for the single login from the top menu Tools | Options.

2.2 Operators
X++ supports both unary and binary operators. Unary operators require only one
operand; binary operators require two operands. A single ternary operator exits in X++,
it is a short form of an if-else statement. The ternary operator, an operator with three
operands, is described in the section Control Flow Statements.

Operators have a predefined precedence which determines in what order the operators
are executed. If an expression uses more than one operator, the predefined precedence is
used to determine which order to process the operators.

x + y * z

Multiplication has a higher precedence than addition, so y * z will be processed before x
+ y. You may use parentheses to overrule the precedence of the operators.

(x + y) * z

Adding the parentheses will cause x + y to be processed first. Even though you are
aware of the precedence of the operators, you should consider always using parentheses
as it makes the code must easier to read.

Assignment operators
Assignment operators are used to change a value. This could be a variable assignment
or just the returned value of a calculation.

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

48

Operator Expression Description
= x = y Set x to the value of y.

+ x + y Increase x with the value of y.

- x - y Decrease x with the value of y. The operator can also

be used as a unary operator as prefix for integer or
real values.

*

x * y Multiply x and y.

/

x / y Divided x with y. If x has the value 0, the complier
will throw a division by zero error.

DIV

x DIV y Will do an integer division of x with y. The result will
round downwards.

MOD

x MOD y Will do an integer division of x with y, and return the
remaining as an integer value.

++

++x Increase x by 1. Short for x = x +1.
This is a unary operator. The operator can both be
pre-fixed and post-fixed. However the result will not
differ whether pre-fixed or post-fixed notation is
used.

--

--y; Decrease x by 1. Short for x = x - 1.
A unary operator. It works the same whether the
operator is pre-fixed or post-fixed.

+=

x += y Increase x with the value of y. Short for x = x + y.

-=

x -= y Decrease x with the value of y. Short for x = x - y.

Figure 11: Assignment operators

Relational operators
A relation operator will return true or false for an expression. This is used for control
flow statements as an if-else statement to determine the flow. When selecting data from
a table, relation operators are used to limit the number of records fetched.

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

49

Operator Expression Description
>

x > y Greater than: True if x is greater than y.

>=

x >= y Greater than or equal: True if x is greater than or
equal y.

<

x < y Less than: True if x is less than y.

<=

x <= y Less than or equal: True if x is less than or equal y.

==

x == y Equal: True if x is equal y.

!=

x != y Not Equal: True is x is not equal y.

like

x like y Match: True if x is equal y. The operator like uses the
wildcards * and ? to evaluate an expression. Often
like is used in select statements where records only
matching a part of a field must be fetched.

&&

x && y Logical and: This is one of the conditional operators.
Will be true if x and y both are true. Often the
operator is used in combination with other relational
operators, where && is used to validate two
expressions.

||

x || y Logical or: True if x or y are true or both x and y are
true. This is also and conditional operator, often used
to validate two expressions.

!

!x Logical not: Will be true if x is false. This is the only
unary relational operator.

Figure 12: Relational operators

Note: If you are using an x && y expression and x is false, then y will not be evaluated, as && only
returns true if both operands are true. This is useful information, as you can optimize your code by
placing slow expressions at the right side like an expression which accesses the database.

Bitwise operators
Bitwise operators are, as the name indicates, used to evaluate expression by using
arithmetic and conditional operators at the bit level. These bitwise operators can only be
used with integer values.

A common situation for using bitwise operators is as an alternative to having a set of
variables setting true or false values if you have to control some access controls with
several levels. However the use of bitwise operators will make your code more difficult
to read. This might be the reason that these operators are not commonly used in the

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

50

standard application. In fact, the only place you may find yourself using the bitwise
operators is when you are interfacing with external applications such as interacting
directly with Windows API or need to do any low-level operations on the database.

To be able to understand the result of an expression using bitwise operators, you will
have to translate the integer values to binary numbers.

13 & 10 // 1101 bitwise and 1010

The expression 13 & 10 will give the result 8. This is because 13 and 10 is compared bit
by bit and only the bits set for both digits are counted. The expression is translated to
binary after the comment. Only the fourth bit is equal, and thereby the result is 8.

Operator Expresion Description
<<

x << y Shift left: The binary value of x will be shifted y
positions to the left. This will increase the value of x.

>>

x >> y Shift right: The binary value of y will be shifted y
positions to the right. This will decrease the value of
x.

&

x & y Binary AND of x and y: The bits set at the same
position for x and y will make the result.

|

x | y Binary OR of x and y: Bits set for x and y will be
summed.

^

x ^ y Binary XOR of x and y: The bits which are not set at
the same position for x and y will make the result.

~

~x Binary NOT of x: All bits will be reversed.

Figure 13: Bitwise operators

2.3 Control Flow Statements
Code in X++ is executed sequentially. Often it is necessary to have a block of code
executed a number of times or only execute part of the code. Control flow statements in
combination with relational operators are used to set up conditions for how the code is
executed.

Loops
A loop is used to repeat the same block of code. An expression can be set up for the
loop in order to determine the number of times to repeat the loop.

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

51

static void Intro_While(Args _args)
{
 Counter counter = 1;
;

 while (counter <= 10)
 {
 info(strfmt("while loop %1", counter));
 counter++;
 }
}

This is an example of a while loop. An integer variable used to control the number of
iterations is set to the value 1. The while loop will be executed as long as the counter
variable is less than or equal to 10. For each loop, a line is printed to the Infolog and the
counter variable is increased by 1.

The function strfmt() is used to format any base type variables into a string. Since the
info() method only accepts a string as its first parameter, the counter variable is
formatted to a string. Strfmt() uses the notation %<variable number> to insert variables
in the text.

Notice that the while loop starts and ends with brackets {}. The brackets indicate the
beginning and end of a block of code. Only code within the brackets will be looped. It is
not mandatory to set begin and end brackets, but if the brackets are not added, only the
first line of code after the while will be repeated. If the bracket were skipped in this
case, the loop would never end. It is considered best practice to always add begin and
end brackets, even if a block only contains one line, as it makes the code easier to read.
If your need add more lines later, the block of code to be looped is already defined.

In X++ while loops are often used to fetch data from the database. For examples on how
to use while loops for selecting data, see the section Select statements.

static void Intro_DoWhile(Args _args)
{
 Counter counter = 1;
;

 do
 {
 info(strFmt("do-while loop %1", counter));
 counter++;
 }
 while (counter <= 10);
}

A do-while loop is similar to a while loop. The main difference is that a do-while loop
will always be executed at least one time, as the condition for the loop is processed after
each iteration. A while loop, where the condition is evaluated at the beginning of each

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

52

iteration, may not be executed at all if the condition for the loop is not fulfilled. The
example shows the same code used in the while loop. Notice that the while clause in a
do-while loop must be ended with a semicolon.

static void Intro_For(Args _args)
{
 Container names = ["Lay", "Kai", "Zbigniew", "Rolf", "Memed"];
 Counter counter;
;

 for (counter=1; counter <= conlen(names); counter++)
 {
 info(strFmt("%1: Name: %2", counter, conpeek(names, counter)));
 }
}

A for loop functions much like a while loop but offers a more concise syntax. A for
loop has three components contained within parenthesis: a counter variable
initialization clause; a validation expression; and an incrementing expression. For each
iteration of the loop, the counter variable is updated based on the incrementing
expression. Braces are used to indicate the scope of the loop. The validation expression
is evaluated at the start of each loop. When the validation expression evaluates to false,
the loop is no longer executed and control is passed to the statement immediately
following the closing brace. It is important that the code within the loop adjust the
values evaluated within the validation expression in order for the loop to end. The for
loop used in the example is traversing a container with five elements. The variable
counter is initialized to 1 and is used to peek the first element of the container. The
block is repeated as long as the counter variable is less than or equal to the length of the
container.

Conditional Statements
Depending on the result of an expression, you often need to execute different parts of
code which is the reason for having conditional statements.

static void Intro_IfElse(Args _args)
{
 NoYesId printToInfolog = true;
;
 if (printToInfolog)
 {
 info("Print to Infolog");
 }
 else
 {
 print "Print to window";
 pause;
 }
}

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

53

If statements are the most common conditional control flow statement. In the most
simple form, you can use a single if condition, which consists of a relational expression
contained in parentheses. If the expression in the if statement is true, the block of code
in the if statement is executed. This block of code may be a single statement or a series
of statements contained in braces {}. To extend an if statement an else clause can be
added. In this case, the else condition will be executed if the expression in the if
statement is false. The above example illustrates the use of an if-else statement. More
complex logic can be implemented by nesting if statements. In the example below, a
condition has been set for the block of code within the else clause.

static void Intro_IfElse(Args _args)
{
 NoYesId printToInfolog = true;
 NoYesId printToWindow = true;
;
 if (printToInfolog)
 {
 info("Print to Infolog");
 }
 else if (printToWindow)
 {
 print "Print to window";
 pause;
 }
}

In the above example, you could use two separate if statements to get the same result.
However, by nesting the second if under the else, the second block will never be
validated if the first if statement is true, and thus offers a slight performance advantage.

You can add as many if statements inside each other as needed. But be careful as this
can make the program difficult to read and debug. Often, the need for these multiple if
statements comes from the need to condition a program’s execution based on the
individual value contained in a variable. If the number of values is small, a normal if
statement is fine, however, if the variable can take on more than two or three values, the
list of if statements soon becomes unwieldy. Fortunately, X++ offers a conditional
statement that is especially designed to handle this situation, the switch statement:

static void Intro_Switch(Args _args)
{
 SalesStatus salesStatus = SalesStatus::Invoiced;
;

 switch (salesStatus)
 {
 case SalesStatus::Delivered:
 info("Salesorder is delivered");
 break;
 case SalesStatus::Invoiced:
 info("Salesorder is invoiced");
 break;

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

54

 case SalesStatus::Canceled:
 info("Salesorder is cancelled");
 break;
 default:
 info("Do nothing");
 }
}

If this switch was constructed using if-else statements, it would have required several
levels making the code more difficult to read. In a switch statement all conditions are
added at the same level making the code easy to read and easy to add additional
conditions.

An expression is set on top of the switch statement which defines the variable to be
evaluated. Following the switch clause are one or more case clauses. Each case clause
specifies one or more values separated by commas and terminated by a colon. X++
evaluates each of the case clauses from top to bottom. If the value of the variable
specified in the switch clause is equal to one of the specified values then the code
following that case clause is executed. If no cases are validated true, the default case is
executed. The default case is not mandatory for a switch. If you want to notify the
application users if no cases are true, you should add a default. Notice a break is added
to the end of each case in the switch. When X++ encounters a break clause, control is
passed to the first statement following the end brace defining the scope of the switch
statement. If the break command is skipped, all cases after a true case will be executed.
This is in fact the most common bug when using switch statements. Running a best
practice check will catch missing breaks in switch statements.

static void Intro_TernaryOperator(Args _args)
{
 Boolean printCustomerName = false;
;

 print printCustomerName ? "Customer name" : "Customer account";
 pause;
}

For simple conditional expressions, there is a useful short alternative. This is a ternary
operator, an operator with three operands. The first operand consists of a conditional
expression, like in an if statement, followed by a question mark. The second and third
operands are each statements that will be executed based on whether the first operand
evaluates as true of false. If the expression is true than the first statement will be
executed otherwise control is passed to the second statement. these clauses are put after
the question mark and are separated with a colon. Note that the expressions defined for
both the true and false conditions must resolve to the same data type.

Since the ternary operator allows a conditional statement to be written concisely on a
single line, they can enhance the readability of a program. They are most useful for
assignment statements when the value being assigned can only take one of two possible

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

55

values. For example, they are often used to set the visible or enabled properties for form
controls.

Exceptions
Loops and conditional statements are both designed to control which block of code to
be executed. Unexpected conditions like warnings and errors need to be shown to the
user as they occur. Exception handling should separate information in unexpected
conditions from the regular code block and takes action based on the information that
triggered the error.

static void Intro_TryCatch(Args _args)
{
 Counter counter;

 try
 {
 while (counter < 10)
 {
 counter++;

 if (counter MOD 7 == 0)
 throw error("Counter MOD 7 is zero");

 if (counter MOD 3 == 0)
 throw warning("Counter MOD 3 is zero");
 }

 }
 catch (Exception::Error)
 {
 print (strfmt("An error appeared at loop %1", counter));
 }
 catch (Exception::Warning)
 {
 print (strfmt("A warning appeared at loop %1", counter));
 retry;
 }

 pause;
}

Try-catch statements are used for exception handling in X++. A try-catch statement
consists of two or more separate blocks of code, a try block which attempts some
operation, and one or more catch blocks where exceptions thrown within the try block
are caught. Exceptions may either be thrown by the kernel or by using the command
throw from code within the try block. The catch part takes action on exceptions. You
may have multiple catch blocks, each designed to catch a particular type of exception.
Action will only be taken on types of exceptions explicitly referenced in your code. The
try-catch example shown will take action on the exception type's error and warning.

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

56

You can add a catch block without specifying a catch type to handle all types of
exceptions not defined for any other catch blocks.

So what is the big deal about using exception handling, as you can make similar code
using control flow statements? The benefit of using exception handling is that you can
catch the exceptions before they are thrown to the Infolog, and take appropriate action.
They are especially useful when doing database operations like updating records. When
updating a record, an exception might occur due to database locks. Usually, this is a
temporary condition and if the operation is retried it will succeed. Without exception
handling, an unsuccessful update will be passed to the standard error handler which will
display an error in the infolog and unnecessarily terminate the program. When an
exception is thrown you can use the command retry to re-run the try block, and the user
will never have noticed that an exception occurred. When coding a catch block, it is
usually necessary to include logic that will detect that the condition causing the error
has been unresolved, otherwise your program could wind up in an endless loop as it
endlessly retries the code that generated the error.

Miscellaneous
X++ has commands which can be used to override the execution of a block of code.
Often these commands are used in control flow statements, when the remaining code in
that block is not to be executed.

static void Intro_Break(Args _args)
{
 Counter counter;
;

 for (counter=1; counter <= 10; counter++)
 {
 print counter;

 if (counter == 5)
 {
 break;
 }
 }

 pause;
}

Previous examples on how to use the break command in switch statements to end each
case has been shown. You can also use the break command in any block of code. If used
in a control flow statement, the expression set for the loop will be interrupted. Here a
break is set in a for loop, causing the loop to end after five runs. If you are executing a
heavy block of code, like doing a search on the database, you can speed up your code
adding a break when your needs are fulfilled, rather than waiting for the loop to
complete.

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

57

Using the return command instead of break in a loop will give the same result as using
break, however, the break command is generally preferred. Return is used to return a
value from a method. The use of methods is described in the chapter Classes.

static void Intro_Continue(Args _args)
{
 Counter counter;
;

 for (counter=1; counter <= 10; counter++)
 {
 if (counter MOD 3 == 0)
 {
 continue;
 }

 print counter;
 }

 pause;
}

The difference between break and continue is that break steps out of the loop, while
continue will just skip the remaining code in the current iteration. You will get the same
result using an if statement instead of using the continue command. It is an option, and
if you are about to add a condition to a large code block, you could consider using
continue, instead of adding an if statement and indenting at lots of code lines.

2.4 Select Statements
X++ uses select statements to fetch data from the database. Select statements can be
written from code like any other statements in X++. In order to use a select statement
you must first declare variables for the tables being referenced. A special form of the
while statement, while select, can be used to create a loop that will fetch all of the
records that fulfill specific criteria. The selection criteria are defined using expressions
based on operators and variables. Notice that the base type str cannot be used in
expressions, unless the length of str is specified. This is yet another reason to use
extended data types.

static void Intro_Select(Args _args)
{
 CustTable custTable;
 CustTrans custTrans;
 TransDate fromStartYear = systemdateget();
;

 while select custTable
 join custTrans

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

58

 where custTrans.accountNum == custTable.accountNum
 && custTrans.transDate >= fromStartYear
 {
 info(strfmt("%1, %2, %3", custTable.accountNum, custTrans.transDate, custTrans.voucher));
 }
}

This is an example on how to use select statements in X++. The tables CustTable and
CustTrans are joined, and CustTrans records with a transaction date equal to or higher
than the start of year are fetched. Notice that a variable is declared which will hold the
system date returned by the function systemdateget(). While this function could be used
directly in the select statement, it would slow down the select, as the function
systemdateget() would have to be calculated for every loop.

X++ select statements do not precisely follow the SQL standard. Also, X++ does not
implement all of the standard SQL keywords. If you are familiar with writing SQL
statements, you will soon adapt the way select statements are used in X++. For an
overview of the keywords available in X++ sorted by keyword, see figure 14: Select
keywords overview.

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

59

Keyword Description
asc

Set the sorting order to ascending. All selects are default fetching data
ascending. Used in combination with order by or group by.

Example
select custTable order by accountNum asc;

avg

Aggregate keyword used to calculate the average value of a field from the
fetched records. Selects using aggregate keywords using only one call to the
database calculating a result based on multiple records.
See class method KMKnowledgeCollectorStatisticsExecute.runQuery().

Example
select avg(amountMST) from custTrans;

count

Aggregate keyword used to count the number of records fetched.
See class method KMKnowledgeCollectorStatisticsExecute.runQuery().

Example
select count(recId) from custTrans;

delete_from

Will delete multiple records in one call to the database. This really speeds up
when deleting a lot of records, as an ordinary while select, calling delete will
generate a database call for each record.
See class method InventCostCleanUp.updateDelSettlement().

Example
delete_from myTable
where myTable.amountMST <='1000';

desc

Set the sorting order to descending. Used in combination with order by or
group by. Select descending can be very slow, as indexes are always sorted
ascending.
See table method CustTable.lastPayment().

Example
select custTable order by name desc;

exists join

Exists join is used to fetch records where at least one record in the secondary
table matches the join expression. No records will be fetched from the
secondary table using exists join.
See class method InventAdj_Cancel.cancelInventSettlements().

Example
while select custTable
 exists join custTrans
 where custTable.accountNum == custTrans.accountNum

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

60

firstfast

Instruct to select the first record faster. Can be used in situations where only
one record is shown, like in a dialog.
See class method ProjPeriodCreatePeriod.dialog().

Example
select firstfast custTable order by accountNum;

firstonly

Only the first record will be selected. Firstonly should always be used when
not using while in selects, even if the select only will return a single record.
The methods find() and exists() often created on tables uses all firstonly.

forceliterals

Will force the kernel to select data without using a prepared select. Used to
make sure the database chooses the optimal index based on the values used
in the select statement.
To optimize joins between large tables, the kernel default fetch data using
forceliterals. The kernel uses the table property TableGroup for this. Data is
fetched using forceliterals in joins where at least two tables are not from the
TableGroup Parameter or Group.

Example
select forceliterals custTrans order by voucher, transDate
 where custTrans..accountNum >= "4000";

forcenestedloop

Used in joins to instruct the kernel to fetch a record from the primary table,
before fetching any records from secondary tables. Often used in
combination with forceselectorder.
See class method ReqCalc.actionCalcDimTrans().

Example
select forcenestedloop forceselectorder custTable
 join custTrans
 where custTable.accountNum == custTrans.accountNum
 && custTable.name >= "4000";

forceplaceholders

Will force the kernel to select data using a prepared select. Used to overrule
the default forceliterals in join on large tables. The kernel default select uses
forceplaceholders when not selecting from large tables.
See class method ReqCalc.actionCalcDimTrans().

Example
select forceplaceholders custTable
 join custTrans
 where custTable.accountNum == custTrans.accountNum
 && custTable.name >= "4000";

forceselectorder

Forceselectorder will instruct the kernel to access tables in a join in the
joined order. Often used in combination with forcenestedloop.

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

61

forupdate

If records in a select are to be updated, the keyword forupdate must be
added.

Example
while select forupdate custTable

from

Default all fields of a table is selected. From is used to select only the fields
specified. This will optimize a select, especially on tables with many fields.
Use it for optimization only, as it makes the code more complex.

Example
select accountNum, name from custTable;

group by

Sort the fetched data group by the fields specified. Only the fields specified
in the group by will be fetched.
See class method InventStatisticsUS.calcTotals().

Example
while select custTable group by custGroup;

index

Set the sorting order of the fetched data. The kernel will convert the keyword
index to an order by using the fields from the index. Index should only be
used if the fetched data must be sorted in a specific way, as the database will
choose a proper index.

Example
while select custTable index accountIdx

index hint

Index hint will force the database to use the specified index. The database
will always try to choose the best index. Index hint should only be used if
the database does not choose a proper index.

Example
while select custTable index hint accountIdx

insert_recordset

Used to insert multiple records in a table. Insert_recordset is useful when
copying data from one table to another as it only requires one call to the
database. The same number of fields must be selected from both tables, and
the fields base type must match.
See class method ReleaseUpdateDB_V25toV30. updateASPEmail().

Example
insert_recordset myTable (myNum,mySum)
select myNum, sum(myValue) from anotherTable group by myNum where
myNum <= 100;

join

Join will fetch data using an inner join. Records matching the join expression
will be fetched from both tables.
See table method SalesTable.LastConfirm().

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

62

Example
while select custTable
 join custTrans
 where custTable.accountNum == custTrans.accountNum

maxof

Aggregate keyword used to return the highest field value fetched.
See class method KMKnowledgeCollectorStatisticsExecute.runQuery().

Example
select maxOf(amountMST) from custTrans;

minof

Aggregate keyword used to return the lowest field value fetched.
See class method KMKnowledgeCollectorStatisticsExecute.runQuery().

Example
select minOf(amountMST) from custTrans;

next

Used to step to the next record in a select. It is preferable using a while select
instead.

Example
select custTable;

next custTable;

nofetch

Select without fetching data. Can be used if the fetched result is just passed
on to another method like setting the cursor.
See class method PurchCalcTax_PurchOrder.initCursor().

Example
select nofetch custTable;

notexists join

Opposite of exists join. Will fetch records from the primary table, where no
records in the secondary table match the join expression.
See class method InventConsistencyCheck_Trans.run().

Example
while select custTable
 notexists join custTrans
 where custTable.accountNum == custTrans.accountNum

order by

Set the sorting order of the fetched data. Used to make sure the fetched data
are sorted in a exact way. If no index exists for the order by fields, this might
be time-consuming.
See table method CustTrans.transactionDate().

Example

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

63

select custTrans order by accountNum, transdate desc

outer join

Outer join will select records from both tables regardless if there are any
records in the secondary table matching the join expression.
See class method SysHelpStatistics.doTeams().

Example
while select custTable
 outer join custTrans

reverse

Fetch the data in reversed order. The keyword asc and desc are related to a
single field where reverse is related to the table.
See class method InventUpd_Reservation.updateReserveLess().

Example
while select reverse custTable

setting

This keyword is used in combination with update_recordset.

sum

Aggregate keyword used to sum values of a field fetched.
See class method KMKnowledgeCollectorStatisticsExecute.runQuery().

Example
select sum(amountMST) from custTrans;

update_recordset

update_recordset will update multiple records in one database call. Useful to
initialize fields in a fast way. The fields updated are specified after the
keyword setting.
See class method ProdUpdHistoricalCost.postScrap().

Example
update_recordset myTable
setting field1 = myTable.field1 * 1.10;

Figure 14: Select keywords overview

In previous version of Axapta, it was common practice to specify which index to use in
select statements using the keywords index and index hint. Modern database
optimization routines are extremely good at determining the best index to support a
given query so there is no need to specify an index in select statements. Indeed,
specifying the wrong index can have a significantly adverse effect on performance. You
should only consider using an index if you need to ensure that the fetched data is
returned in a specific order.

The keywords forceliterals, forcenestedloops, forceplaceholders, forceselectorder can
be used to optimize query performance. These keywords change the default behavior of
how data is retrieved from the database also called the execution plan. Be careful how

MORPHX IT Intro to X++

 © 2006 Steen Andreasen

64

you use these. You might get better performance on your test data, but realize worse
performance on live data. The impacts of these keywords are dependent on the
composition of the data. Don’t use them unless you know what you are doing.

When using select statements to retrieve records to be modified such as deleting and
updating records the Transaction Tracking System referred to as TTS must be used. The
TTS allows you to define logical transaction boundaries. A logical transaction may
involve the update of records in several different tables. Often the integrity of the
database is dependent on the relationship between the updated records. The TTS ensures
that should a single update in the transaction fail, the other transactions in the group will
be rolled back to their pre-transaction state in order to preserve the integrity and
consistency of the database. The system will not allow you to update existing records
without using the TTS, and will generate an error. For more information on TTS, see
the chapter Data Dictionary.

2.5 Functions
X++ has a set of system functions that you can draw upon to perform various tasks.
These functions are written in C++ and are part of the Axapta kernel. Several of the
functions can be used for type conversion like converting an integer to a string. There
are also a collection of useful functions that perform date and string operations. An
overview of the system functions can be found under the System Documentation node in
the AOT.

When using functions in X++, you just have to type the function name and enter the
parameters in parentheses. Advance X++ programmers may recognize that functions are
addressed in the same way as Global class methods. From an X++ standpoint, they look
the same. One way to identify the origin is by right-clicking to lookup the function or
method, as you cannot lookup a function.

2.6 Summary
The programming language X++ used by MorphX has been introduced in this chapter.
You should by now have acquired knowledge on how the syntax of X++ is. How to
declare variables, using flow statements and how data are selected from the database.
Learning the X++ language is the first step, when getting to know how to making your
own modifications for Axapta. The next chapters will show how to use the individual
nodes in the AOT, and how to add logic using X++ to the AOT objects.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

65

3 Data Dictionary
The data model for the Axapta application is defined in the Data Dictionary. When
modifying an Axapta installation this is the area in which you would commence
designing your new data model. The data in an Axapta installation is stored in a
relational database. In short, this means that data is separated in tables to prevent
redundant data occurring and relations are defined between the tables making it possible
to gain access to the related data. Basic knowledge about creating a database
relationship model and how to normalize data will be beneficial when designing your
data dictionary modifications for Axapta. Explanation of relational databases, their
development and subsequent support is not detailed within this book. There are many
books available in this subject as well as vast amount of knowledge now available on
the internet.

An Axapta installation uses either a Microsoft SQL Server or an Oracle database for
storing data. Tables, views, fields and indexes are synchronized to the database when
created, changed or deleted from Axapta. This definition of the data, is the only
information about the data dictionary stored in the database, the actual data is physically
stored within the Microsoft SQL Server or Oracle database. Information regarding the
actual table relations and delete restrictions may be found in MorphX. Visual
MorphXplorer can be used to build the actual entity relationship diagram (ERD).

3.1 Tables
Two main categories of tables exist:

 Application Tables. These are used to define and build the application modules.
On the initial definition of your Axapta installation, you will determine which
specific application tables you will be using. This will be defined based on the
specific configuration keys which are enabled and will be synchronized to the
database software at start-up.

• System Tables. These are tables that contain information specific to the
operation of the Axapta infrastructure and are created in the kernel of the
application. Systems tables are automatically synchronized to the database
operating system.

If discovering synchronization problems, the SQL tool located in the main menu under
Administration | Periodic | SQL Administration will be useful. Running a
Check/Synchronize will fix the most common synchronization errors.

Company
Axapta has the option of using the same application for information from different
companies. Even though all of the data is kept on the same physical database, Axapta

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

66

will determine which data is to be used for each company defined – even though the
application will appear to be exactly the same in its look, feel and functionality.

This is useful for a number of areas:

• You may have test data that you wish to use for training new staff on your
current Axapta system. They can sign in to Axapta under the ‘test’ company and
you are safe in the knowledge that none of your critical ‘live’ data will be
damaged.

• You may wish to have a ‘planning’ or ‘budget’ company where you can prepare
future business models.

• You may have more than one physical company that handles completely
different business, but uses the same systems functionality. You can have
separate information to support each company: For example, distinct General
Ledger definitions, Customer and Creditor specifications, stock and inventory
management rules and even employee structure. All of this information will be
stored under a separate company id.

Axapta manages this by using the system field dataAreaId to define which company the
data belongs to. When adding a record, dataAreaId is automatically initialized with the
current company id. Whenever a user requests to view data from forms and reports or
when the application fetches data using a select statement, Axapta will always return
data from the current company, as a filter for dataAreaId is automatically added by the
kernel.

static void DataDic_ChangeCompany(Args _args)
{
 DataArea dataArea;
 CustTable custTable;
;

 while select dataArea
 {
 if (!dataArea.isVirtual)
 {
 info(strfmt("Company: %1", dataArea.id));

 changeCompany(dataArea.id)
 {
 custTable = null;

 while select custTable
 {
 info(strfmt("%1, %2", custTable.dataAreaId, custTable.accountNum));
 }
 }
 }
 }
}

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

67

The above example illustrates what to do if you need to fetch data from more than one
company and print customer accounts printed from all non-virtual companies. The
changeCompany() is used to switch to the selected company. The company is changed
within the changeCompany() code block and the starting company is automatically set
afterwards. Notice that CustTable is set equal null. The table variable must be reset
otherwise data will be fetched from the default company. ChangeCompany() should be
used with precaution as you might end up modifying data in the wrong company.
Virtual companies are described in the section Table Collections.

Application tables
When a new field or a new form is required in Axapta, the data being entered must be
stored in the database in an appropriate table. New fields can either be added to an
existing table, or to a new table. If you choose to add new fields to an existing table, the
new fields will be added to the current layer even though the modified table belongs to
another layer. This goes for all objects on a table, except delete actions. When
upgrading an application to a new release, this is really an advantage as you will only
have to manually merge nodes modified in more than one layer. The Tables node is
located under Data Dictionary in the AOT.

Table Browser
The table browser is accessed by right-clicking a table and selecting Table Browser
from the Add-Ins menu. The table browser is created using a standard form which is
called SysTableBrowser. You can call the table browser from any application table or
system table. You may select the Table Browser from any data source. By default, all
fields with the property Visible set to “true” are shown. To reveal the common fields of
a table, switch to show Auto-report fields. You can filter the records shown in the table
browser by writing a select statement, but it is far easier to filter using the query icon
from the top menu.

To get an overview of data in a table, the table browser is quite handy as you will not
have to know from where in the menu the table is accessed. For testing purposes the
table browser can be used to create data or alter existing data. However, it is extremely
important you only use this method for testing. Data changed used the table browser
will be validated upon the business logic defined in the table scripts, but the form which
has been created within Axapta must be used to key in live data for the table as this
form may contain additional logic. You may damage your data using the table browser
in a live application and therefore this is not an application user tool.

Creating tables
It is important that you initially consider how your new tables are going to be used.
When the new tables are installed in a live application, and data has been entered to the

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

68

tables it will be more complex to redesign your tables and indexes as you also will have
to convert existing data.
Performance is also an important issue. If you are creating a new transaction table, you
must assure that you have a well defined index for fetching data, both for simple selects
and when using the new table in joins to other tables. Where additional fields are needed
on an existing table, you might have chosen to create a new table with the required
fields. This may be a better solution; just keep in mind that each time you need to
access the new fields you will have to join the new table with the existing table. This
can be frustrating, and slower, when fetching the data from additional tables. As long
you have considered your design this might be the right solution. The point is, when
creating tables you must have the overview of how the tables are going to be used
before shipping your modifications.

Example 1: Creating a table

Objects used from MORPHXIT_DataDictionary project

 Table, MyTable

In this first example, a table to store customer information will be created. Initially a
few fields is added to the table. Throughout this chapter more features will be added.

1. Create a new table by going to the Tables node in the AOT, right-click and choose

New Table. A new table called "Table1" will be created. Open the property sheet
and rename the table to "MyTable".

2. Expand the new table node so the nodes at the next level are visible. Open another

instance of the AOT and go to Data Dictionary/Extended Data Types. Locate the
extended data type AccountNum and drag the extended data type AccountNum to
the Fields node of MyTable.

3. Locate the extended data types CustName, CustGroupId and CurrencyCode and

then drag them all to the Fields node of MyTable.

4. Save the table by pressing ctrl+s at the MyTable node. The table is now

synchronized to the database and you have created your first table!

When the extended data types were dragged to the Fields node of the table, a new field
was created of the same name as the extended data type. This is the easiest way of
creating new fields. You can multi-mark the extended data types and drag them at one
time. You can then define the individual properties for the new fields.

By using the table browser, you can now add records to MyTable. When creating a new
record notice that the fields' custGroupId and currencyCode both have a lookup button
and only values from the related lookup table can be chosen. The reason for this is that
the extended data types for two of the fields you created have a relation to the tables

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

69

CustGroup and Currency. Without any coding you have already created a new table
with relations!

The table property TableGroup is used to group tables. This is a property which is
often forgotten when creating a new table. This property is used to specify the content
of a table. For example, whether the table is a main table or a transaction table; such as
the customer and customer transaction tables respectively. Browsing the existing tables
will give you an idea of how to set the table group property. The default value of the
property TableGroup is "Miscellaneous". As data confirmations and data exports can
be filtered based on the table group property it must be set. If not defined correctly for
tables containing huge amount of data, such as transaction tables, joined select
statements will not perform optimally as the kernel uses the table group property to
determine whether to select using forceLiterals. For more information on selects, see
chapter Intro to X++.
There are still some more properties which require setting, especially properties related
to security and performance. The common table properties will be explained in this
chapter.

For a complete overview of the properties for the data dictionary, please see the
Appendix Properties.

Table variables
Tables are declared in X++ like any other variable. To initiate a table variable with a
value from the database select statements are used. You can also set a table variable
equal to another as long as both tables variables are of the same type.

static void DataDic_OneCursor(Args _args)
{
 CustTable custTable, newCustTable;
;

 select firstonly custTable;

 newCustTable = custTable;
}

In this example with the CustTable, only one cursor position will exist if one table
variable is set to equal another. If one of the table variables is used to select another
record, both table variables will point to the new record.

static void DataDic_TwoCursors(Args _args)
{
 CustTable custTable, newCustTable;
;

 select firstonly custTable;

 newCustTable.data(custTable);

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

70

}

To have two separate cursors the method data() must be used. Now the table variable
custTable and newCustTable will each have a cursor.

Temporary tables
A temporary table contains no data and is not synchronized to the database. A
temporary table may be used as any normal table in joins and selects. The table property
Temporary determines whether a table is temporary. Any application table can be set
to temporary by setting the table property Temporary to “Yes”. Caution: Setting a table
containing data to temporary will cause existing data to be deleted! To easily locate
temporary tables in the AOT, all temporary tables are prefixed with Tmp*. A common
reason for using temporary tables is for the sorting of data. You might have to present
data using a specific sort in a form or a report which cannot be accomplished using a
select statement or a query. Instead you can create a temporary table with the fields
needed and the sorting to be used. Data must be fetched from the tables and inserted in
the temporary table according to the sort requirement. As long the temporary table is in
scope, the temporary table will contain data. The content of a temporary table is stored
in the file system as a temporary file.

static void DataDic_TmpTable(Args _args)
{
 CustTable custTable;
 CustTrans custTrans;
 TmpCustLedger tmpCustLedger;
;

 while select custTable
 {
 tmpCustLedger.accountNum = custTable.accountNum;
 tmpCustLedger.name = custTable.name;
 tmpCustLedger.insert();
 }

 while select tmpCustLedger
 {
 info(strFmt("%1, %2", tmpCustLedger.accountNum, tmpCustLedger.name));
 }
}

In this simplified example, the customer account numbers and names for all customers
are inserted in the temporary table TmpCustLedger. The content of TmpCustLedger is
looped and printed to Infolog. Data inserted will usually be filtered and fetched from
one or several tables.

Using temporary tables will generate an overhead as initially, the data must be fetched
and inserted in a temporary table. Next, the temporary table must the looped. If you
have a form with a complex query which makes the form act slow while navigating,

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

71

using a temporary table might give a better solution. It will initially take a longer time to
load the form, but the application will perform much faster once the data is loaded and
thereby provide a more user-friendly system.

For more information on using temporary tables in forms, see chapter Forms.

static void DataDic_SetTmp(Args _args)
{
 CustGroup custGroup;
;

 custGroup.setTmp();

 custGroup.custGroup = "10";
 custGroup.name = "Test customer 10";
 custGroup.insert();

 while select custGroup
 {
 info(strFmt("%1, %2", custGroup.custGroup, custGroup.name));
 }
}

An instance of a table can be set to temporary from X++. Data will not be deleted from
the database, only the table variable will be empty. In the example above, the table
CustGroup has been set to temporary. A single record is inserted in the temporary
instance of CustGroup. When looping the temporary table, only the single record which
has been inserted is printed. You should be careful if using existing tables as temporary
tables. If used in a live system and someone uncomments the code line setting the table
to temporary, the result will be fatal. You can find examples of this in the standard
package. However, the extra work of creating a new temporary table instead might be
paid off in the long run.

If you have temporary tables with a lot of records you should consider building your
temporary table at the server side. The first record inserted in a temporary table will
determine from where the temporary table will run. It can be an advantage creating a
class for maintaining your temporary table, as an entire class can be set to run on the
server.

For more information on defining where to run your code, see chapter Classes.

System tables
Unlike application tables, system tables are non-changeable. You cannot modify the
data model of a system table. System tables are tables used by the kernel to handle tasks
such as keeping the database in sync with the application, handling licensing and user
information. The system tables can be found in the AOT under the node System
Documentation/Tables.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

72

You can use system tables as any application table in your modifications. If using
system tables, keep in mind that the data stored in a system table can be vital for the
application. The system tables prefixed with sql*, stores information to keep the
database in sync with the application. Changing data in these tables may cause the
application to be unstable.

When updating system information such as users or license keys, the system tables are
being updated by the application objects. However, kernel tasks maintain most of the
system tables. There is one particular system table to take note of. The system table
SysLastValue stores usage data. The table is frequently used in the application as it
stores the last user settings for an object. You might not see SysLastValue declared
from code, as the table is wrapped in the runbase framework or used by the class
xSysLastValue.

For more information on usage data, see the chapter Intro to MorphX.

Common Table
The system table Common is the base for all tables. The table contains no data, and the
table can be compared with a temporary application table. Common is used like the base
type anytype. You can set any table equal to the table Common. This is useful if you
need to transfer a table as a parameter and not knowing the exact table before execution
time.

static void DataDic_Common(Args _args)
{
 Common common;
 CustTable custTable;
;

 common = custTable;

 if (common.tableId == tablenum(custTable))
 {
 while select common
 {
 info(common.(fieldnum(custTable, name)));
 }
 }
}

The example above is initializing Common with CustTable. A check is made to assure
that Common is now equal to CustTable. All records from CustTable are looped, and
the customer name is printed in the InfoLog. Notice, the system function fieldnum() is
used to get the field name printed. If you do not know the fieldname at runtime, you can
enter the field id in parentheses instead.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

73

Util Tables
The system tables prefixed with Util* are in fact not real tables. You will not find any of
these tables in the database. They are stored in the layer files, but appear in the AOT as
system tables. The Util* tables contain information on any object in the AOT, even in
the old layers if you have upgraded your application, and contain a huge amount of data.
As such, you should not use these tables in complex select statements, as even joining
two Util* tables will take a very long time. Also, when using the Util* tables remember
to use an efficient index. You can check the available indexes by using the Application
Hierarchy Tree.
The Util* tables are used for a lot of the tools in MorphX. If you are going to develop
your own tools for MorphX you will find these tables useful. For more information on
tools using the Util* tables, see Appendix MorphX Development Tools.

Fields
Both extended data types and base enums can be dragged to create a new field. If
neither of these fulfills your needs, you should start creating new ones before creating
your fields. If selecting and exiting extended data types or base enums, you should
check whether a configuration key is defined in the property sheet, as your fields will
not be viewable for the application users if the related configuration key is disabled.
All fields should have an extended data type or a base type set in the properties. You
can of course add fields manually to a table, but by making it a habit of dragging the
types to be used, you will not forget to fill out the properties for extended data types or
base enums. The benefit of using extended data types or base enums is that if changing
property values such as field length or alignment, this will affect all fields using this
extended data type or base enum. When an application user right-clicks a key field such
as the customer account, and chooses Rename from the Record info form, the extended
data type for customer account is used to locate all places in the application where that
extended data type is used. This is a very powerful feature of Axapta. There are few
applications in the market-place that provide application users which such flexible
functionality.
Best practice states that all fields should start with lower case letters. As all extended
data types and base enums begin with an upper case letter, you would have to manually
change the fields when dragging to create. This is a time consuming rule which does not
make must sense in the real world. You will not gain much when looking at the code in
the editor as some fields are created using lower case and some are created with higher
case.

When looking at the fields in the AOT, you might have noticed the icons in front of the
fieldnames. The icon informs you about the base type of a field. Extended data types
and base enums also used the icons. This is a very good aid when picking a field or a
type when using the X++ editor.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

74

Common Field Properties
In the previous MyTable example a table was created and fields were added. Some of
the properties also needed to be set. The field AccountNum is defined as the key field
for the MyTable. Key fields must always have the property Mandatory set to “Yes” as
this will prevent a record being stored with a blank value in the key field. From the table
browser or from a form you will easily spot mandatory fields as they are underlined
with a red color. Normal practice in Axapta is that key fields must only be filled when
inserting a new record. The rename option mentioned earlier must be used to change the
value of a key field. The property AllowEdit is set to “No” and the property
AllowEditOnCreate is defaulted to ‘Yes’ making it possible to enter a value when
inserting a record.
The field labels that application users see come from the extended data type or the base
enum. Unless you want to override the label, you should not specify any label in the
property sheet for a field. If you often override the label of an extended data type, you
should consider creating a new extended data type.
If you have fields in a table which have no use to the end-user, such as a container field
described below, you should set the property value Visible to “No”. This will make the
field invisible for the application users. Note that the field will not show up in the table
browser.

Container Fields
Fields of the base type container are often use for storing binary files like bitmaps. You
should be cautious of adding such fields to an existing table as this type of field is often
large in comparison to other fields. The table CompanyInfo is an example of this; if
adding a large bitmap for the company logo it may affect the performance of the
application. The table CompanyInfo is widely used and as the normal practice is to
select all fields from this table, the bitmap will always be loaded when fetching a
CompanyInfo record. In this case you should either consider using small bitmaps or
create a related table for your bitmap. The table CompanyImage is a generic table
whose purpose is to store bitmaps. An alternative is to add your binary files to the
Resources node in the AOT. For more information on resources, see chapter Resources.

System Fields
All tables have a set of system fields which are automatically added when creating a
new table. The system fields are not listed in the AOT. You can get the list of system
fields by checking the fields for the system table Common. The fields prefixed with
modified* and created* contain no value unless you set the properties with the
corresponding name at the table property sheet. By default those values are not logged
as it will affect performance slightly.

RecId is the system field which is used as a unique id for a record. This is an integer
counter shared by all tables. The system table SystemSequences keeps track of the
counter. Each time a record is inserted in a table the counter is increased by one and the
field recId is initialized with that value. The use of recId is one of the main reasons for
using COM, in the event of inserting records to the Axapta database from an external

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

75

system. If these records are inserted directly to the database, the true status of recId
value will not be realized.

For an explanation of the field dataAreaId, see the start of section Tables.

Field Groups
Fields visible for the application users must be part of at least one field group. You can
use fields in MorphX which are not part of a field group. However, only by using field
groups will you obtain the full benefit of MorphX. Field groups are widely used when
creating forms and reports. Instead of adding fields one by one to a design, you should
add field groups. If a field group is later changed, e,g, when adding a new field to a
group, then the new field will automatically be available everywhere that specific field
group is used.
The application users can view all fields from a table by right-clicking a form and
selecting Show all fields from the Record info form. The fields are grouped by field
groups. Fields which are not part of a field group are all shown in a default group. If all
new fields are added to logically named field groups, the application user will get an
more logical and easier overview of fields in that table.

Example 2: Adding field groups

Objects used from MORPHXIT_DataDictionary project

 Table, MyTable

In the previous example the table MyTable was created and fields were added. Now
field groups will be added to the previously created MyTable.

1. Locate the field group node AutoReport. Mark all 3 fields and drag the fields to the

AutoReport node.

2. Go to the field group node AutoLookup. Drag the fields accountNum and custName

to the AutoLookup node.

3. Create a new field group called “Identification” by right-clicking the Field Groups

node and choose New Group. The name of the field group is set by using the
property sheet. Add the field accountNum to the field group.

4. Create a new field group called “Overview” and add all 4 fields to the field group.

5. Finally, create a new field group called “Details” and add the fields custName,

custGroupId and currencyCode.

6. Save the table.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

76

You might wonder why so many field groups are needed for a few fields: AutoReport
and AutoLookup are reserved field groups. The other 3 field groups are used for
grouping the fields on forms and reports.
When selecting the print icon in a form, the fields of the AutoReport group are
printed. If no fields are added, the report will be empty. This feature is referred to as
auto reports and is used by the application user to print simple reports directly from
forms. The common fields should be added to the AutoReport field group.
AutoLookup can be used to determine which fields to be shown when pressing the
lookup button. If no fields are added to the AutoLookup, the table properties fields
TitleField1 and TitleField2 will be used together with the first index field from each
index. Form lookups are further explained in the chapter Forms.

It is recommended to always create the two field groups Identification and Overview.
The field group Identification should contain all of the key fields for a table. If the table
has a unique index, all fields from the unique index should also be added. Consider the
field group Overview as a summarization of the table. This field group is used for the
tab page called Overview which most forms have. All the common fields and at least all
mandatory fields should be added to this group.

Aside from the Overview field group, all fields should be part of at least one other field
group for making a logical grouping of all fields. The field groups Identification and
Details are the logical grouping of the fields in MyTable. Before using the field groups
on a form or a report, labels must be added. A label can be added to a field group using
the property sheet for a field group.

Not only fields can be added to a field group. Display and edit methods can also be
added. However the solution is not bulletproof as methods added to a field group is
identified by a consecutively method number. If a method is added or deleted from the
table, the methods will be re-numbered and you will have to check that the correct
display and edit methods are attached to the field groups. How to use methods is
described in section Methods.

Indexes
Any table must have at least one index. If a table has a unique index you will be able to
fetch an exact record. This is however not always possible and not always the best
solution. Transaction tables will often have several records with the same values making
it impossible creating a unique index. As transaction tables are frequently addressed and
contain a lot of records, having a unique index will impact performance. The point is the
better index you have, the better your application will perform. Main tables and group
tables like the customer table and customer group table should have unique indexes,
whereas tables with a lot of records like transaction tables should not have a unique
index. Be aware that creating many indexes on tables will impact performance, so create
your indexes with care. Each time data is changed in a table, the database will update
the indexes for that table.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

77

Example 3: Adding indexes

Objects used from MORPHXIT_DataDictionary project

 Table, MyTable

The next step is to add indexes to MyTable. In this example two indexes will be created.

1. Locate the node Indexes in MyTable. Right-click and choose New Index to create an

index. Use the property sheet to name the index “AccountIdx”. Drag the field
accounNum to the index.

2. Go to the property sheet for AccountIdx and set the property AllowDuplicates to

“No”.

3. Create a new index named GroupIdx. Add the fields custGroupId and accountNum

in this order.

4. Save the table.

A unique index has been added to MyTable by setting the property AllowDuplicates to
No. This will prevent entering two records with the same values for the fields which are
part of the unique index. If a table contains data and you subsequently change an index
of that table to unique, you will force an error if duplicate records exist for the index
you are trying to set unique. You might not even have any data in the current company,
but none of the companies must have duplicate records for the new index. It is possible
to create more than one unique index for a table but this is not particularly effective
database design. In additions, having several unique indexes will make the use of the
table unnecessary complex.
Tables with a unique index should have the properties PrimaryIndex and ClusterIndex
set. Only unique indexes can be selected as a primary index. The primary index is used
as the default sorting when data is fetch from the table. Caching of the table will also
use the primary index. A unique index is specified as a ClusterIndex for better
performance. Clustered indexes contain both index and data, whereas a normal index
contains only a sorted list of the index fields. When a record is fetch in a normal index
the database must first lookup the index and subsequently find the record.

Relations
If you click the Transactions button in the customers form you will open the customer
transaction form. Try selecting another customer in the customer from. Notice that the
customer transaction form will automatically be refreshed with the customer
transactions for the selected customer. This is one of the reasons for using relations.
Relations will connect your tables and let MorphX know how the data model looks like.
Using relations will also save you from writing many lines of code. The example shown
below with customer transactions is made without writing any lines of code.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

78

Example 4: Adding relations

Objects used from MORPHXIT_DataDictionary project

 Table, CustTable

A relation to MyTable will be created in CustTable making it possible to relate a
customer account to an account in MyTable.

1. Find the table CustTable and go to the Fields node. Add a new field using the

extended data type AccountNum. Rename the field to “altCustAccountNum”.

2. Go to the field group Delivery in CustTable and add the field altCustAccountNum.

3. Locate the node Relations in CustTable. Right-click the node Relations and choose

New Relation. Rename the new relation to “MyTable” using the property sheet.

4. Right-click the new relation MyTable and choose Normal. Go to the property sheet

and select altCustAccountNum as Field and an accountNum as RelatedField.

5. Save the table.

A new field was created in CustTable and related to the table MyTable. The new field
altCustAccountNum is part of the field group Delivery. Try opening the form CustTable
and go to the tab page Setup. In the field group Delivery you will find the new field
with the label Account number. Notice that the field has a lookup button. As a relation
to MyTable was made in CustTable, a lookup button will automatically be added. You
can now pick an account number from MyTable using the lookup button. If an account
number which is not created in MyTable is entered in the new field in CustTable, an
error will occur. A relation will, by default, secure that only values from the related field
are valid. If needed, you can disable relation validation in the property sheet.

The relation described in CustTable was created as a normal relation using a field as the
relation. Any number of fields can be added to define the relation. As MyTable only has
one field in the primary index, only one field is needed. All of the fields part of a
primary index must be added as normal relation fields. Besides a normal relation, two
other relation types exist, field fixed and related field fixed. These are used to narrow
the choices of a relation and are often used for filtering data depending on the value of
an enum, or even defining which table to relate. Take for example the table
LedgerJournalTrans which contains manually entered journal lines. Depending on the
account type, when the user selects the Lookup button on the account field, a different
table will be selected such as ledger, customer or vendor tables. If you check the
relations LedgerTable, CustTable and VendTable in the table LedgerJournalTrans, you
will notice the relations are created using two normal relation fields and one field fixed
relation for the account type.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

79

This example was using different tables. You could also use the fixed field relation and
the related field relation for filtering data on the same table, as more than one relation
can be created for the same table. Remember the relation fixed field relation and related
field relation will be added to your expression.
The use of lookups is further explained in the chapter Forms.

An Extended data type can also have a relation to a table. However, if a table has
relations on the same field, the table relation will overrule an extended data type
relation. Having relations in two places might seem confusing when getting to know
MorphX. Using the Visual MorphXplorer will be a help, as relations from both tables
and extended data types will be shown in the diagrams.

Delete Actions
To assure data consistency delete actions are used. If you have created a table to enter
information about customers. This table is related to the customer table. If you decide to
delete a customer from the customer table, the data in your table will still remain, but
you will no longer require the information. This will cause in-consistence in your data
both now and in the future: For example, if your newly created table was for customer
transactions and a new customer was created with the same id, the data in the related
table would be visible again, but for another customer.
To prevent this situation, delete actions will either delete data in related tables if a
customer is deleted, or prevent a customer from being deleted if related tables contain
data for the customer. Typically, transactions for a customer will prevent the customer
to be deleted, whereas information only relevant for the customer like personal data will
be deleted when the customer is deleted.

Example 5: Adding delete actions

Objects used from MORPHXIT_DataDictionary project

 Table, CustTable

In this example delete actions will be added to both CustTable and MyTable to ensure
data consistency.

1. Go to the node DeleteActions in MyTable. Right-click and choose New

DeleteAction. Use the property sheet for the new delete action and set to the
CustTable. The Delete action mode should also be set to Restricted.

2. Now locate CustTable and add a new delete action to MyTable. Open the property

sheet for the new delete action and choose MyTable. Set the delete action mode to
Cascade.

3. Save the table.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

80

Open the form CustTable, create a new customer and select an alternative account
number from MyTable for the new customer. Once you have completed this, from the
table browser, try deleting the account number from MyTable that is related to the new
customer, and you will get an error. The delete action set to “restricted” in MyTable will
prevent deleting a record that is used in related tables. If you try deleting the new
customer and then check MyTable in the table browser, you will notice that the account
number related to the deleted customer is also deleted. Setting a delete action to cascade
will delete related records.

Delete actions use relations to figure out whether to delete or prevent deleting related
data. If no relation has been specified for a table used in a delete action, the delete
action will have no affect.

static void DataDic_DeleteActions(Args _args)
{
 MyTable myTable;
;

 ttsbegin;
 select forupdate myTable
 where myTable.accountNum == "10";

 if (myTable.validateDelete())
 myTable.delete();
 ttscommit;
}

When deleting records using X++ some rules must be followed to have the delete
actions validated. In this example a record is fetched from MyTable. Before the record
is deleted a validation is made. If the record was just deleted without calling
validateDelete(), the delete action would not be validated, which could cause
inconsistent data.
A delete action can be set to a third mode called “Cascade + Restricted”. This delete
action mode will act as restricted if used from the table browser or from a form.
Deleting a record using X++, this mode will perform a cascade delete from the related
table without calling validateDelete(). Reviewing the code example above, this would
have been the same as deleting a record in CustTable from the customer form and
subsequently causing related MyTable record to be deleted. Confused? The delete
action mode Cascade + Restricted is hardly ever used, and there might be a good reason
not doing so.

Methods
Methods are used for adding X++ code to your application. The code in methods is also
referred to as business logic. When records are changed, inserted or deleted from a table
different default methods are executed. You can add you own methods and have them
executed from one of the default methods. When changing a default method you are
overriding a method. To override a method go to the Methods node of a table, right-

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

81

click and choose Override Method. A list of the default methods will be shown. If you
select the method validateField(), you will have the following code shown in the editor:

public boolean validateField(fieldId _fieldIdToCheck)
{
 boolean ret;

 ret = super(_fieldIdToCheck);

 return ret;
}

Note the super() call. This executes the code from the corresponding method in the
parent class. Actually, when overriding a default table method you inherit a method
from a system class. When overriding one of the default table methods you will be
inheriting a method from the system class XRecord.

Table methods and classes are preferred for adding logic to the application. Having no
business logic in the user interface will make it easier to reuse and to upgrade the code.
You cannot avoid having code on forms and in reports, but you should aim to not
modify data from code on forms or in reports. You should be able to replace your forms
and reports with another user interface like a web interface without re-coding your
business logic.

The use of methods has only been explained briefly here to get an understanding of the
ability of methods. In the chapter Classes, methods are explained more detailed.

Common methods
As you modify your data by performing inserts, updates or deletes of records, the
default methods are executed. If you create a new record from the table browser or a
form the table method initValue() is executed. InitValue() is used to set a default value
for the fields.

public void initValue()
{
 super();

 this.custGroupId = "10";
}

Try overriding initValue() in MyTable and add the above line. Through the table
browser, open MyTable and press ctrl+n to create a new record. The field custGroupId
will now have the default value 10. The keyword this used in initValue() is used to refer
to the current object. You cannot replace this with MyTable, as the compiler would
expect MyTable to be a table variable declared in the method header. Using this
prevents confusing the object reference with variables, and the notification is used in all
parts of MorphX.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

82

Note: To get an overview of which methods are executed, you can override the methods you want to
check and add a line printing a text in the InfoLog in each overridden method. Alternatively, override a
method and set a breakpoint at super(). When the breakpoint is executed the methods called can be seen
in the stack trace window in the debugger.

Each time the value of a field is changed the method modifiedField() is called. The
method is useful to initialize the values of other fields if the value of the current field is
changed.

public void modifiedField(fieldId _fieldId)
{
 switch (_fieldId)
 {
 case fieldnum(MyTable, custGroupId) :
 this.custCurrencyCode = "";
 break;
 default :
 super(_fieldId);
 }
}

As shown in the example above, when the value of the field custGroupId is changed, the
value of the field custCurrencyCode will be set to blank. ModifiedField() receives the
field number of the active field as parameter. A switch statement is used to check which
field is active. If none of the checked fields are active the super() call is executed
instead. The switch case contains only a validation for one field, so an if-else statement
could have been used instead. By using a switch statement it will be easier to later
extend the code with additional checks.
This method was first introduced in version 3.0. Until then, modified field checks had to
be done from forms. This caused a lot of logic to be put in forms, which ought to be at
the table level. For this reason, you will still see modified field checks used widely in
forms. The ideal solution is to have all generic checks at table level. However, if the
logic is specific for a single form, it is sometimes necessary to put the check on a form.

print this.orig().custCurrencyCode;

A nice feature when a field value is modified, is that you can re-call the value before the
field was modified. The field value retained is the last committed value. The method
orig() is used to get the stored value. Orig() will return an instance of the current table.
A single field value from orig() is retained by specifying the field. When the record is
committed orig() will be updated.

The method validateField() is similar to modifiedField(). Both methods receive the
active field number as parameter. Where modifiedField() is used to initialize the value
of other fields and does not return an value, validateField() is used for validation only
and will return true or false. If validateField() return the value false, the application user
will be prevented to continue changing a field value. It is important to use the respective
methods for initialization and validation as this makes coding easier.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

83

public boolean validateField(fieldId _fieldIdToCheck)
{
 boolean ret;

 ret = super(_fieldIdToCheck);

 if (ret)
 {
 switch (_fieldIdToCheck)
 {
 case fieldnum(MyTable, custName) :
 if (strlen(this.custName) <= 3)
 ret = checkFailed("Customer name must be longer than 3 characters.");
 }
 }

 return ret;
}

The super() call will check whether a valid value has been entered if the field has a
relation. A mandatory field will also be checked. In the example above, if the checks in
super() are true, the validation for the field custName will be checked. In this case a
warning will appear in the Infolog if the length of a customer name is less than or equal
to 3 characters. The global method checkFailed() is normally used for adding validation
messages to the Infolog.

Saving a record will cause the method validateWrite() to be executed. Where
validateField() will check a field entered by the application user, validateWrite() will
just check mandatory fields. Checks made by validateWrite() are the same as the super()
call in validateField(). If a field is not mandatory, the application user may not enter all
fields before saving a record. So if your condition is not related to the value an
application user enters in a specific field, you should put the validation in
validateWrite(). Syntax of validateWrite() is similar to validateField(). After super() you
should check the return value before processing your validations.
If validateWrite() is true, insert() or update() will be executed. If the record has not been
saved previously insert() is called. Update() is called if the system field recId has a
value and thereby the record has been save previously. Insert() and update() are rarely
overridden. At this point you should have done your validations and set the value of
your fields. If you need to override insert() or update() you might be on the wrong track.
However, if you need to ensure a field has a certain value upon inserting a record, you
can initialize your field before calling super() in insert(). Some special cases might also
require overriding these methods; for example, if you need to synchronize the content of
a saved record to another table. Examples on synchronization can be found in the tables
CustTable and EmplTable. This is not a recommend solution, but it can be the best
choice among your options.
Deleting a record has a similar execution of methods. When deleting a record the
method validateDelete() is first executed. If true, the method delete() will be called. The
same rule for inserts and updates goes for deletion. You should, therefore, execute your

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

84

validations before delete() is called. ValidateDelete() will also check whether a delete
action actually allows the deletion of a record.

Using X++ for entering data requires a bit more than using the user interface like forms.
Only the table methods called will be executed. If a validation method is not called, no
validation will be performed upon update, insert or delete. When inserting and updating,
the only check done is checking unique indexes.

static void DataDic_InsertRecord(Args _args)
{
 MyTable myTable;
;

 ttsbegin;
 myTable.initValue();
 myTable.accountNum = "100";
 myTable.custName = "Alt. customer id 100";
 myTable.custCurrencyCode = "USD";

 if (myTable.validateWrite())
 myTable.insert();
 ttscommit;
}

The above example shows how to use the table methods to insert a record in MyTable.
InitValue() is called and will set the value of the field custGroupId. The record will only
be inserted if validateWrite() is true. As all mandatory fields have a value, the record
will be inserted.
Instead of calling insert() you could call write(). This will update an existing record, but
if the record does not exist, a new record will be inserted.

Calling the validation methods will cost performance and you might – depending on
your case, choose to validate your data via other methods. You can also skip the code
on insert(), update() and delete() by using the corresponding table methods prefixed
do*. These methods cannot be overridden and can only be called from X++. If you do
skip all logic on the table methods to optimize your code, you must assure that your data
will not be corrupted.
The select keywords delete_from, insert_recordset and update_recordset make only one
call to the database from the client when processing multiple records. Overriding insert,
update and delete will affect these performances enhanced select keywords and causing
insert, update or delete per record instead.

You will find the methods find() and exist() on most tables. These are not overridden
methods. The methods are usually created to fetch a single record using a unique index.
It is recommend adding these two methods when creating a new table as sooner or later
you will need these methods. All fields which are included in the unique index should
be added as parameters. Find() is used to fetch a single record from a table. This could
be for setting a value of a field in the table method initValue(). Exist() is used to check

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

85

whether a record matching the index fields exist in the table. A check like that is often
used before trying to add a new record.
You will find many examples on these methods by browsing the tables in the AOT.
Methods used for similar operations, but which do not have a unique index should not
just be called find() or exist(). Consider these name as reserved and use a suffix if the
method is not using an unique index like findVoucherDate().

Transaction Tracking System
As the name says the Transaction Tracking System normally referred to as TTS is used
for tracking transactions. The idea is to secure the entire transaction to be committed to
the database. This is vital for a relational database and even more for an ERP system.
Whilst performing an invoice posting you must ensure that this does not result in
corrupt data if the system crashes. TTS secures that all database operations within a
TTS loop are committed entirely or not.

Every time you are performing an insert, update or delete you should use the TTS. In
fact you cannot update a record without doing it in a TTS loop. A TTS loop is
initialized by using the keyword ttsbegin. The keyword ttscommit will write all data
operations within the TTS loop to the database. A loop can be aborted by using the
keyword ttsabort, which will roll back the database to the starting point. If the system
crashes, a ttsabort will automatically be invoked by the database. You can see an
example on the use of TTS from the previous example inserting a record in MyTable.
This does not mean that every time you have a database operation, you should put your
code in a TTS loop. If your code is called by another method which has already started a
TTS loop, you might not need to start another TTS loop. Starting another TTS loop
within a TTS loop will add another level. Each level must be committed with a
ttscommit. Be aware that having nested TTS loops and you do not ensure equal ttsbegin
and ttscommit statements you will have an error from TTS. This is nearly always caused
by a missing ttscommit. You can execute a job calling ttscommit to fix the TTS error.
You will of course have to solve the reason for the TTS unbalance, but the alternative is
to restart the Axapta client.

static void DataDic_UpdateRecord(Args _args)
{
 MyTable myTable;
;

 ttsbegin;
 select forupdate firstonly myTable;
 myTable.custName = "Customer updated";

 if (myTable.validateWrite())
 myTable.update();
 ttscommit;
}

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

86

If you need to update a record you must always fetch the record using the keyword
forupdate in the TTS loop. A common mistake made when selecting forupdate is to
fetch your data for update before calling ttsbegin. If you do this an error will occur. In
the example above, the first record in MyTable is fetched and the field custName is
changed before updating via the ttscommit..

3.2 Maps
In Axapta several of the features in the Account Payable module and the Account
Receivable module are very similar, such as the main tables with either customers or
vendors, transactions tables and setup tables. Features like journals for manually
entering vouchers also exist in several of the modules. With similar features the
business logic is also similar, therefore making it possible to reuse much of the code.
However, although the tables and their fields may appear similar in their construction,
the names used are likely to be quite different. This is where table maps are used.
Maps are often referred to as table maps to differentiate from the foundation class map.

The most common map in MorphX is AddressMap. Address information is used in
several tables and validation of address information like zip code will not differ whether
entered for an employee or a customer. Mapping all tables using addresses to the same
map will makes it easy to reuse the code of a map as you will not have to worry about
the naming of fieldnames in a specific table.
Maps have similar nodes and properties as a table. In maps, typically only fields are
created and mapped, as properties are already specified at the mapped table. You can
use a map as any table from X++ or objects like forms or reports. Only if using a map
from a form or a report, you should consider creating field groups for your map.

Example 6: Creating a table map

Objects used from MORPHXIT_DataDictionary project

 Map, MyMap

A map will be created, mapping the fields in common for the tables CustTable and
MyTable.

1. Locate the node Maps, right-click and select New Map. Rename the map to

“MyMap” using the property sheet.

2. Drag the extended data types AccountNum, CustName, CustGroupId and

CustCurrencyCode to the Fields node of MyMap.

3. Save MyMap, right-click MyMap and select Restore.

4. Go to the node Mappings, right-click and choose New Mapping. Open the property

sheet for the new mapping and select the table CustTable. A line for each of the

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

87

fields in MyMap is now added to the new mapping. Use the property sheet for each
of the mapping fields to specify the related field in the property MapFieldTo. The
related fields from CustTable are accountNum, name, currency and custGroup.

5. Repeat step 5 by adding a map for the table MyTable.

6. Go to the node Methods and create the following method:

void listRecords(MyMap _myMap)
{
;
 while select _myMap
 {
 info(strFmt("%1, %2", _myMap.accountNum, _myMap.custName));
 }
}

7. Save the map.

In the example, the map was restored after the fields were added. Each time a change is
made to the fields in map, you will have to restore the map otherwise changes will not
be shown in mappings before restarting the client.
A method was added to the map which is going to be used to test the map. This is a
simple method printing a value from the current record the map is initialized with. Try
creating a job with the following content:

static void DataDic_TestMyMap(Args _args)
{
 MyMap myMap;
 CustTable custTable;
 MyTable myTable;
;
 myMap.listRecords(myTable);
}

Notice that a map is declared just as a table. In fact only the name shows a map is used.
It is recommend suffixing the name of the map with *Map making it easier to read the
code. The method on the map is called with MyTable as parameters. This will result in
all records of MyTable to be printed in the Infolog. A map contains no records and can
be considered as a specialized Common table. The map can be initialized with any of
the tables declared in the map.
The methods of a map are similar to those of a table. You can initialize fields, check
modified fields and validate before saving or deleting. Calling a default method like
insert() on a map will execute the corresponding insert() on the mapped table. You can
use this for mapping your own methods. However, you must make sure the name of the
method is the same for all mapped tables. For an example on this, take a look at the map
method CustVendTrans.existInvoice(). This method calls the corresponding
existInvoice() method for the mapped table, thus making it possible to have different
validations for different tables in the map.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

88

3.3 Views
In a relational database, data is divided into numerous tables to prevent redundant data
and for better performance. This is all very good to manage your data, but extracting
data for reports becomes more complex as you will often have to fetch data from several
tables. To make extraction of data easier, views can be used. A view is the result of an
inner join of two or more tables. Views are read only and support aggregated functions
on the fetched data. You can use views as an alternative to data sources in a report.
However providing data for OLAP cubes is the main purpose with views. Views are
synchronized to the database. This makes views useful if you need to read data from an
Axapta table using external tools as you can fetch data directly from the database
instead of using the COM interface.
OLAP cubes in Axapta are populated using Microsoft SQL Server Analysis Services.
Describing the use of OLAP is out of the scope of this book. You can find more
information about OLAP in Axapta by checking the manuals in the standard package.

Example 7: Creating a view

Objects used from MORPHXIT_DataDictionary project

 View, MyView

In this example a view to sum customer transactions and print customer information
will be created.

1. Go to the node Views, right-click and select New View. Rename the view to

"Myview" using the property sheet.

2. Locate the node Metadata/Data Sources, right-click and select New Data Source.

Go the property sheet for the new data source and pick the table CustTable using the
property Table.

3. Expand the data source CustTable and go to the node CustTable/Data Sources. Add

an additional data source by right-clicking. Select CustTrans as the table for the data
source.

4. Open the property sheet for CustTrans and set the property Relations to Yes.

Expand the node Relations for the CustTrans data source and check that a relation
has been added.

5. Right-click the node Metadata and choose Open New Window. This will open a new

window with the sub tree metadata from MyView. Drill down the new window to
CustTable/Fields. Select the fields AccountNum, Name and CustGroup and drag the
selected fields to the other window at the node Fields at the first level of the view.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

89

6. Repeat step 5 by dragging the field AmountMST from CustTrans/Fields. Open the
property sheet for the new view field and set the property Aggregation to Sum.

7. Save the new view.

When creating a view to fetch data from a table, the view will be defined in the same
way as using a standard Axapta query. Fields to be used in the view must be selected
from the chosen tables. In this example a single field from the customer transaction
table was used for an aggregated function. When using aggregate functions, the records
in the related table will be fetched group by. The example showed customer transactions
were sum grouped by customer. If the field TransDate from CustTrans was added
without any aggregation, the field AmountMST would have been calculated and
grouped by customer and transaction’s date instead. Notice that aggregated view
fieldnames are automatically prefixed with the aggregation function name.
You can view the result of MyView by opening the table browser. All customers with
transaction are listed and the balance is summed using the field AmountMST from
CustTrans.

Views can be used as any table with a few limitations. In relations, delete actions and
tables collections views cannot be used. You can use a view as an alternative to a table
from X++ or from a data source. If creating a report you could use the view without
having to figure out how to do calculations on your report. This would however give the
application users some limitations as the application user can normally at runtime make
their own settings for calculations.

3.4 Extended Data Types
Extended data types are a central part of MorphX. Whether you are adding fields to a
table or declaring variables from X++, extended data types should always be used
instead of using base types. The main reason for this is that your modifications will be
easier to maintain and you can ensure that a field is presented in the same way, no
matter where it is used in the application.
An extended data type is extended from a base type or another extended data type. You
can have as many levels as needed. The difference between a base type and an extended
data type is that an extended data type has a property sheet where information such as
labels, length and left or right adjustment are stored. Relations can also be added to an
extended data type.

Before creating a new extended data type you should check whether an existing one will
fulfill your needs. If you are creating a new table and, within that table, want to lookup
item ids from the table InventTable, you should use the extended data type ItemId. By
using ItemId you would not have to specify labels or a relation to InventTable as this is
all defined at the extended data type.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

90

Figure 15: Extended data type lookup in Application Hierarchy Tree

Deciding which extended data type to use not always an easy task, especially if an
extended data has been extended several times. The Application Hierarchy Tree can be
used to get an overview. You can call the Application Hierarchy Tree from the Add-Ins
menu by right-clicking an extended data type. Only the base type and the extended
levels for the selected extended data type will be shown.
Some extended data types are extended from system extended types. System extended
data types are located in the AOT under System Documentation/Types. Regional
settings like amount and types for system fields are all created as system fields.

Example 8: Creating an extended data type

Objects used from MORPHXIT_DataDictionary project

 Extended Data Type, DataDic_AltCustAccount

An extended data type extending from another extended data type will be created. The
new extended data type will make the previously created table relation in CustTable
unnecessary.

1. Go to the node Extended Data Types, right-click and create a new string. Name
the new extended data type "DataDic_AltCustAccount" using the property sheet.

2. Enter the label "Alt. customer" and the help text "Identification for alternative

customer account." for the new extended data type.

3. Extend DataDic_AltCustAccount from AccountNum using the property

Extends.

4. Expand the nodes for DataDic_AltCustAccount and go to the node Relations.

Add a new relation by right-clicking, choose New and select Normal. Use the
property sheet to select MyTable and the field accountNum as the relation.

5. Save the extended data type and wait until the database has been synchronized.

6. Go to the table CustTable and locate the field altCustAccountNum. Open the

property sheet and change the ExtendedDataType property to
DataDict_AltCustAccount.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

91

7. Locate the relations in CustTable and find the relation MyTable. Press the delete

key to remove the relation for MyTable.

8. Save CustTable.

9. Change the extended data type for field accountNum in MyTable as done at step

6 and save MyTable.

You now have a new extended data type for the alternative customer account. The table
relation deleted in CustTable was unnecessary as the extended data type just created
will now handle the relation. It is much more flexible having the relations at the
extended data type level as you will not have to modify each table where the extended
data type is to be used. The extended data type was also changed for the field
accountNum in MyTable. No lookup button will be added to accountNum as the related
table is the same. This is also called a self relation.
Label and help text was specified for the new extended data type. If no labels were
entered for the extended data type, labels from AccountNum would have been used. If
you have found an extended data type which suits your needs, but another label or help
text is required, you should create a new extended data type. Do not use an existing
extended data type and override the label of the extended data type by specifying a label
or help text at the field properties. If referring to a field by using X++, the extended data
type is used and information about the field label will not be available. This is all
explained further when explaining display and edit methods in the chapter Forms.

Note: The entire database will be synchronized when saving an extended data type extended from another
extended data type. If creating a lot of extended data types press ctrl+break to stop synchronization and
synchronize when saving the last extended data type.

Both extended data types and base enums can be used as extension for a field. So why
create an extended data type for a base enum? Only extended data types can be used
when adding a field to dialog. If a field used in a dialog is of the type enum like NoYes,
then the extended data type NoYesId extending the base enum NoYes must be used. A
dialog is created using classes, and is described in the chapter Classes.

Extended data type array
Defining an extended data type as an array, is one of the powerful features of extended
data types. Each array element of an extended data type will be created as a database
field. Both from the AOT and from X++ a field based on an extended data type array
will look like, and be addressed as, any other field.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

92

Figure 16: The extended data type Dimension

The node Array Elements is used when defining an extended data type as an array. The
first entry of the array will be the entry created when creating a standard extended data
type. The following array entries are created under the node Array Elements. Only label
and help text is specified for these subsequent array entries. All other properties are
inherited from the first entry in the array. As with the first entry, separate relations can
be defined for each array entry.
The most common extended data type using this feature is Dimension which is used
throughout the application for grouping data. Dimension consists of 3 array entries,
each having their own relation. If you need another dimension for your application you
will only have to add an array entry to the Dimension extended data type. All objects
like tables, forms and reports will have the new dimension shown without having to add
any line of code.

static void DataDic_EDTArray(Args _args)
{
 CustTable custTable;
;

 select firstonly custTable;

 info(strfmt("%1, %2, %3", custTable.dimension[1],
 custTable.dimension[2],
 custTable.dimension[3]));
}

The same notification for declaring a variable is used when addressing the single array
entries of an extended data type. In the example above, the 3 dimensions from
CustTable are printed for the first record. When looking up the fields for CustTable,
only the field Dimension will be listed for the array. You must manually specify the
array entry to be printed. If array entries are referred directly, such as in this example, a
new array entry added will not be printed. A better solution would have been to loop all
array entries rather than fix the code to print the first 3 entries.
If looking at a data source in a query, the opposite will be shown. A data source will
show a field for each array entry. Dimension is always added to a field group when used

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

93

in forms and reports so the dimension field group will automatically recognize a new
array entry added.

3.5 Base Enums
For categorizing data you have two options. Create a related table, such as item groups
which is used for grouping inventory items. However, if you only need a fixed number
of categories or the application users are not able to define the categories, you can use a
base enum. Item type, as used for defining the type for inventory items, is a good
example.

A base enum can have a maximum of 255 entries. A few base enums have a lot of
entries such as the base enum LedgerTransTxt. However, most enums have only a few
entries. The value of a base enum is stored in the database as an integer value. Entry
values starts by default from zero and are consecutively numbered. The property
EnumValue will show you the number stored in the database for an entry. If adding a
new entry to a base enum in the standard package, you should make a break in the
numbering, specifying a higher value in the property EnumValue for your new entry.
The base enum NumberseqModule uses this practice. An entry made to a base enum in
the SYS layer will be created in the current layer. To prevent having the number taken
for your new entry if upgrading your application, you should skip some numbers.
From X++, base enum names are always used. When using base enums in relations, the
integer value is used instead. If you are changing the number of an entry during an
upgrade, you will also have to change the relations using the enum. Changing the
number of an entry will set the base enum property UseEnumValues to Yes. Changing
this property to No will result in renumbering all entries starting from zero and
numbered consecutively.

static void DataDic_BaseEnum(Args _args)
{
 InventTable inventTable;
;

 while select inventTable
 where inventTable.itemType == ItemType::BOM
 || inventTable.itemType == ItemType::Service
 {
 info(inventTable.itemId);
 }
}

To refer to a base enums entry, the name of the base enum is entered followed by a
double colon. By pressing the second colon lookup will show the available entries. Here
all items of the invent types BOM and Service are fetched. You could use the base
enum entry numbers instead, but it would make your code more difficult to read and
maintain.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

94

 while select inventTable
 where inventTable.itemType >= ItemType::BOM

Instead of checking whether the field itemType is equal to one of the enum entries
specified, ‘greater than’ or ‘equal to’ the item type BOM would have fetched the same
records. However, this is not recommended as it makes the code more difficult to
maintain. If a new entry is created for the base enum ItemType, the new entry would
also have been fetch, which may not have been the intention.

Note: The first entry of a base enum normally has the value zero - which will return false, if the first entry
is validated in an if-expression. This is also the reason why fields of the type enum should not be
mandatory as the first entry of an enum would be considered as not valid.

System enums are located in the AOT under System Documentation/Enums. These are
all enums used for selections in property sheets. If you need to address properties using
X++ you should consider checking the system enums. As an example, the system enum
TableGroup represent the entries of the table property TableGroup.

3.6 Feature Keys
Prior to version 3.0 of Axapta, feature keys were used to configure user restrictions and
to determine which tables to be synchronized to the database and handling licenses.
This was not without issue when configuring the Axapta system and could take quite
some. By version 3.0 security settings are handled by using configuration and security
keys and licenses by licenses keys. Feature keys cannot be used in version 3.0. The
reason for having the feature keys in version 3.0 is for backward compatibility. If
upgrading from version 2.5 you will be able to see you features keys making it easier to
manually replace the feature keys with configuration keys and security keys.

3.7 Licenses Codes
When purchasing Axapta you will have to decide on system settings such as number of
users, number of servers, access to MorphX and X++. Which application modules you
are going to use must also be decided. For each system setting and module you will
receive a license code. All license codes will be compiled in a code letter. These license
codes are used for controlling which part of Axapta you will have access to. Only
modules with a valid license code will be available in the main menu. Trying to execute
an object without a valid license code from AOT will result in an error.
Partners usually have a code letter with license to all features in Axapta. A customer
will buy part of the features fitting for the customers business. When creating
modifications for a customer you can easily have a different setup. This can cause errors
as your modifications might only be working in your application as you have access to
all features. Before shipping your modifications to a live system, you should consider
testing your modifications with the same features enabled as in the live application.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

95

You can create new license codes and attach the license codes to your modifications.
However to use your own license codes you will have to contact Microsoft as they will
have to generate license codes on your behalf. Creating new license codes is used by
companies creating modules for the GLS layer or by partners who want to sell their own
modules.

Configuration keys have a property called LicenseCode, which is used for attaching a
license code to your modifications. You do not need license codes for setting user
permissions. This is done using security keys. License codes are solely used if you want
a license code like most software packages have.

3.8 Configuration Keys
You have two levels of security settings in Axapta. Configuration keys are the highest
level, and security keys are the second level. If a configuration key is disabled, the
related objects will not show up in menus, forms or reports and no one will have access
to those related objects. Configuration keys are defined in a tree hierarchy where the top
configuration key is related to a license code. The form SysConfiguration shows the
hierarchy of configuration keys. Only configuration keys where the related license code
has been entered can be enabled and the top level configuration key can only be
disabled by removing the license code. If you have all license codes entered not all
configuration keys are enabled by default. Some configuration keys are, by default,
disabled. This goes for advanced features and country specific features.
When changing the settings of configuration keys, the database must be synchronized.
Configuration keys determine whether a table should be synchronized to the database or
not. You should be careful when changing configuration keys as data will be lost for
tables where the configuration keys are disabled.

Only a few configuration keys should be created for each module. You might have a
main configuration key for a module and sub configuration key for each sub module.
Normal practice would be to attach a configuration key to each table, map, view and
menu item for the modifications. This will ensure that an object where the configuration
key is disabled will not show up in the menu. In addition, an error will occur if a user
tries to activate an object from the AOT as there will not be access to the database for
that object.

Most of the objects in the AOT have a property for defining a configuration key. You
might have seen that some of the extended data types and base enums in the standard
package have a related configuration key. Having configuration keys at all levels would
be difficult to maintain. However, it makes sense adding configuration keys to some
extended data types and base enums. In the table SalesTable there is a field called
ProjId. The extended data type for ProjId has a configuration key. If you have a valid
license to the modules Account Receivable and Project you will be able to enter a

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

96

project id for a sales order. If you only have a license to Account Receivable, you will
not have this option as the field ProjId will not show up.
Adding a configuration key to an entry of base enum is used on occasion in the standard
package. Take a look at base enum FormTextType. Each of the entries added to this
base enum from the GLS layer have configuration keys. If you do not have the related
modules enabled it will not makes sense to select the base enum entries. You can use
this for your own modifications as well. If you want to prevent the application users
from selecting an entry from a base enum, you can create your own configuration key
and attach it to a base enum entry.

static void DataDic_ConfigurationKey(Args _args)
{
 SalesTable salesTable;
 ProjTable projTable;
;

 select firstonly salesTable;

 info(salesTable.salesId);
 info(salesTable.custAccount);

 if (isConfigurationKeyEnabled(configurationkeynum(ProjBasic)))
 {
 info(ProjTable::find(salesTable.projId).name);
 }
}

From X++ you can make a check for whether a configuration key is enabled. The global
method isConfigurationKeyEnabled() is used to validated configuration keys. There is
no reason for executing code for a feature which is disabled. In the above example, the
name of the project related to a sales order will only be printed if the top level
configuration key for the project module is enabled. If the check was left out, a blank
value would have been printed. But what if the code was to update or delete a record?
Having left out the check it could have modified the wrong record.

Note: Several tables and fields are prefixed with DEL_. These are objects not used anymore and will
remain until the release of the next version. The tables and fields are only renamed as if they were
deleted, data from the previous version would have been lost during an upgrade. All are having the
configuration key SysDeletedObjects30 set. When you have completed an upgrade you can disable this
configuration key.

3.9 Security Keys
Where configuration keys are setting access for all users, security keys will set access
for a group of users or per user. You would normally set security keys for a group of
users as it is far too complex maintaining settings per user. Security keys are like
configuration keys linked hierarchically. The standard package uses 9 security keys for
each module. One top level security key related to a configuration key, one security key

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

97

for tables and the last 7 security keys are used for the groupings of the module objects
as seen from the main menu. You can view the security hierarchy from the form
SysUserGroupSecurity.

Configuration keys can be related to any security key. However you should only define
a configuration key for the top level security keys. If a configuration key is disabled, the
security key will not be available and disabling a top level security key will disable all
security keys at a lower level.
Security keys must be added to all tables, maps views and menu items. If one of these
objects does not have a security key you will not be able to set access rights for the
object, and the object will be accessible for all users. Configuration keys can be left out
if your modifications are not to be used for a distributed module as modifications
created for a single installation would normally not be disabled.

Security keys are not only defined as enabled or disabled when setting up user
restrictions. Instead an access level is defined. The choices of access level are no access,
view, edit, add or delete. These access levels are set at the data dictionary and the menu
items. At tables, maps and views you use the property MaxAccessMode to define the
access level a user can retain. Tables will, by default, have MaxAccessMode set to
Delete, which will allow the users to retain full access to a table. If a table is used for
transactions, you should set MaxAccessMode to “View” as transactions are not
intended to be modified.
Menu Items has a similar property called NeededAcccesLevel which acts just the
opposite of table as you must specify the required access level to execute the menu item.
The default value for NeededAccessLevel is View. You should only change the needed
access level for menu items of the type action. Many of the action menu items perform
operations which may not be executed by the daily application user. Or at least a menu
item requiring a higher access level will be considered twice before just enabling.

Adding security keys should be one of your last tasks when creating your modifications.
You should at least have the security keys added before doing your final test. You will
of course not be able to verify all combinations for the security keys. But you should try
to set up security keys for an application user to give you an idea of how the application
user will experience your modifications.

3.10 Table Collections

If using more than one company it will be useful to share data from tables with general
information. In the standard package this is done with tables storing data like zip codes
and country codes. To share data from a table among all companies set the table
property SaveDataPerCompany to No. This will merge data for the table and make the
data accessible from all companies. In practice, the kernel will delete the system field
dataAreaId for the table.

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

98

Table collections can be used to share a table for a part of companies. The benefit is that
you will not have to change any settings on the existing tables. A new table collection is
created by creating a new table collection node and dragging the tables to be share to the
new table collection. A table collection is just a template for tables to be shared by any
number of companies. Defining which companies to share the tables of a table
collection, is defined from the main menu.

The form SysDataAreaVirtual is used to define virtual companies. Table collections are
shared using a virtual company. You cannot switch to a virtual company like any
normal company. Virtual Company is just the term used to for sharing a table collection
among a set for companies. In the form you pick which companies to share specific
table collections. Before creating a virtual company you should export data for the
tables used in the table collection, as existing data will be deleted from these tables
when added to a virtual company.
When using table collection for setup tables such as customer groups, setting up a
virtual company will be easy. If you are going to share data from main tables like the
inventory table, you should do some more investigation as you cannot only share the
table InventTable. You must include all tables which are related to InventTable.

Sharing data should be used with precaution. Before commencing the sharing of data,
you should carefully try out your settings in a test environment, either using the
property SaveDataPerCompany or using table collections. You should make sure that
your modifications will not cause errors on any objects using the tables to be shared.

3.11 Special Table Use
All the basic steps using the data dictionary have been explained throughout this
chapter. This section will show examples on how to use some of the advanced features
in MorphX in relation to tables.

Using System Classes
In the AOT under System Documentation/Classes you will find some classes prefixed
with Dict*. These are classes which can be used to address any data dictionary node or
property sheet. If writing generic code where you are not aware of the called table until
runtime, you will be able to use the system classes. Your case might be to loop the
fields of a table, build a lookup for the user to pick a field.

Two example of using system classes for the data dictionary are shown here. The first
example will loop all the fields of a table. In the second example methods of a table will
be looped.

Elements used from MORPHXIT_DataDictionary project

 Job, DataDic_SystemClassesFields

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

99

 Job, DataDic_SystemClassesMethods

static void DataDic_SystemClassesFields(Args _args)
{
 SysDictTable dictTable;
 DictField dictField;
 Counter counter;
;

 dictTable = new SysDictTable(tableNum(MyTable));

 for (counter=1; counter<=dictTable.fieldCnt(); counter++)
 {
 dictField = new DictField(dictTable.id(), dictTable.fieldCnt2Id(counter));

 if (dictField.isSystem())
 info(strfmt("System field: %1", dictField.label()));
 else
 info(strfmt("User field: %1", dictField.label()));
 }
}

Fields from the table MyTable are printed. A text specifies whether the field is a system
field or a normal.
The class SysDictTable is used to initialize the table. With this class you can get a
handle to any table properties or child nodes. Notice that SysDictTable is an application
class inherited for the system classes DictTable. Several system classes are inherited as
application classes, and if so you should consider using those instead of the base classes
as the inherited class will have additional validations.

static void DataDic_SystemClassesMethods(Args _args)
{
 SysDictTable dictTable;
 MethodInfo methodInfo;
 Counter counter;
 CustTable custTable;
;

 select firstonly custTable;

 dictTable = new SysDictTable(tableNum(CustTable));

 for (counter=1; counter<=dictTable.objectMethodCnt(); counter++)
 {
 methodInfo = dictTable.objectMethodObject(counter);

 if (methodInfo.returnType() == Types::UserType)
 {
 info(strfmt("Method: %1, return value: %2",
 methodInfo.name(),
 dictTable.callObject(methodInfo.name(), custTable)));
 }
 }

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

100

}

This example shows how to get a handle to the methods of a table and have certain
methods executed. This could also be achieved by calling the methods directly from the
CustTable variable, but what if the table was not known till runtime and the table
variable was the system table Common.
The methods of CustTable are looped. The first record of CustTable is fetched to have a
cursor for the called methods. If a method is returning an extended data type or base
enum which the kernel refers to as user types, the method is executed and the returned
value from the method is printed together with the method name.

External databases
Integration with external systems where data has to been transferred is never an easy
task The problem is, that modification for integrating an external system is often made
by two parts. To secure that everything works well, a common platform for the
integration must be chosen. One option is using the business connector, also referred to
as COM from the external system as you can call any business logic within Axapta.
Consider the business connector as an Axapta client without user interface. This will
require a connection always open or at least always accessible.

Another option is using an external database for storing data to be exchanged. Each
system will then access the shared database. From Axapta, a batch job could be
configured to schedule processing data in the external database. In this way you will be
able to integrate two systems without having to require skills on how to communicate
directly with the external system.

Elements used from MORPHXIT_DataDictionary project

 Job, DataDic_ExternalDatabase

static void DataDic_ExternalDatabase(Args _args)
{
 LoginProperty loginProperty;
 ODBCConnection odbcConnection;
 Statement statement;
 ResultSet resultSet;
 ResultSetMetaData resultSetMetaData;
 Counter counter;
;
 loginProperty = new LoginProperty();
 loginProperty.setDatabase("Northwind");
 loginProperty.setDSN("AX30SP4"); // Datasource name for the Axapta database
 loginProperty.setUsername("sa"); // Database login name
 loginProperty.setPassword(""); // Database password

 odbcConnection = new ODBCConnection(loginProperty);

 statement = odbcConnection.createStatement();

MORPHX IT Data Dictionary

 © 2006 Steen Andreasen

101

 resultSet = statement.executeQuery("select * from Employees");
 resultSet.next();
 resultSetMetaData = resultSet.getMetaData();

 for (counter=1; counter <= resultSetMetaData.getColumnCount(); counter++)
 {
 switch (resultSetMetaData.getColumnType(counter))
 {
 case 0,1 :
 info(resultSet.getString(counter));
 break;
 case 3 :
 info(date2StrUsr(resultSet.getdate(counter)));
 break;

 }
 }
}

This example will only function with Micosoft SQL Server. The demo database
"Northwind" which is installed by default when installing Micosoft SQL Server is used.
You will have to specify the data source, login name and password for your Micosoft
SQL Server database. The first record from the table Employees from the Northwind
database will be read and each field will be printed to the InfoLog. If you want to
process all records from the table this can be achieved by adding a WHILE loop to
resultSet.next(). First the connection to the external database is established, and then the
table is fetched. Before printed, a field from the external table the type of the field is
checked, as the type must be known before being able to choose the right method
converting the field value.

3.12 Summary
Throughout this chapter designing changes to the data dictionary have been explained.
You should by know have learned how to arrange data in tables for optimal
performance and to use extended data types to make modifications easier to maintain.
Using relations and delete actions to secure consistency of your data and how to use
configuration and security keys to make it possible to set user permissions.
The table browser has been used for checking the data entered to the database. This is a
tool normally not available for the application users. In the following chapters you will
learn how to create the user interface for the data dictionary.

MORPHX IT Macros

 © 2006 Steen Andreasen

103

4 Macros
In Axapta’s predecessor, macros were widely used. The predecessor did not support
classes, so macros were used instead. This might be the reason that macros are a part of
MorphX today. In MorphX macros are not commonly used. A few places make use of
macros such as keeping track of the list of fields stored when using dialogs. It is
recommended only to use macros to define constants. Macros are not supposed to be
used for code, as reusing code from macros is not flexible as using methods.

Macros can be created under the Macro node in the AOT, as a local macro in a method
or a single line defining a constant. The main difference between a macro and a method
is that a macro has no variable declaration part, and the code in a macro is not validated
for errors before executed from a method. This is one of the main reasons not to put
code in macros, as it makes the code more difficult to read.

When using macros in your code, the macros must be declared after the variable
declaration. The common place to put the definition is in the ClassDeclaration of a
class, form or a report. This will make the macro definition available for all parts of the
object.

4.1 Macro commands
For writing macros a set of simple macro commands are used. You have commands for
setting the start and the end of a macro like in a method. An if-statement can be set to
control the flow of a macro. Macro if statements are used to validate whether a
parameter is specified for a macro or not. For a list of the macro commands, see figure
17: Macro commands overview.

MORPHX IT Macros

 © 2006 Steen Andreasen

104

Command Description
#define

Used to define a constant.
See macro HRMConstants.

Example
#define.myConstant100('100')

#endif

Ends a #if.empty or a #if.notempty statement.

#endmacro

Ends a #LOCALMACRO or a #GLOBALMACRO.

#globalmacro

No difference whether declaring the start of a macro with #localmacro or
#globalmacro. #globalmacro is not used in the standard package, consider using
#localmacro instead.

#if.empty

Will return true if the macro has not been called with the parameter validated in the
statement.

Example
#if.empty(%3)
 %3 = %2;
#endif

#if.notempty

Will return true if the macro has been called with the parameter validated in the
statement.
See macro InventDimJoin.

Example
#if.notempty(%3)
 print %3;
#endif

#linenumber

Returns the current line number of the macro. Can be used while debugging, but not
of must use.

#localmacro

Specify the start of a local macro. See classDeclaration for class
SalesReport_Heading.

Example
#localmacro.MyLocalMacro
 print %1;
#endmacro

#macrolib

Used to load an AOT macro from code. See class method
BOMHierarchy.searchDownBOM().

Example
#macrolib.MyMacro

MORPHX IT Macros

 © 2006 Steen Andreasen

105

#undef

Undefine a constant declared with #DEFINE. A defined constant cannot be used if
#undef is called with the define name.

Example
#define.MyConstant(100)

print #MyConstant;

#undef.MyConstant

print #MyConstant; // will fail, as #MyConstant is not defined.

Figure 17: Macro commands overview

4.2 Defining constants
This is macros in the simplest form. Instead of using text in your code it is strongly
recommend defining your text as constants. Often you will need an integer or a text for
setting a value. If you are going to set RGB color it is not easy to read the following:

myStringColor(255, 255, 255)

Instead you should consider defining a constant with a descriptive name:

myStringColor(#RBGColorWhite)

Using a macro as a constant rather than entering the value in code makes it easier to
maintain. If, at a later time, you need to change the value, you will only have to modify
the macro. Best practice will catch integer and text values used in code making it easy
to change integer and text values to constants. A practice way of organize the constants
you are using in your modifications is by creating a macro in the AOT for keeping all
your constants in one place. Take a look at the macros located in the AOT, and you will
see that some of the macros are prefixed with a module name followed by the word
Constants.

To define a macro the macro command #define is used. The above mentioned RGB
value is defined as follows:

#define.RBGColorWhite(255, 255, 255)

MORPHX IT Macros

 © 2006 Steen Andreasen

106

4.3 Creating macros
If browsing classes in the AOT you will see a macro called CurrentList is used a lot in
the application. This is the most common macro used. The macro CurrentList is used
for the list of fields to be stored in dialogs.

 #define.CurrentVersion(2)
 #localmacro.CurrentList
 FromDate,
 ToDate,
 Interest,
 CategoryA,
 CategoryB,
 CategoryC,
 Model
 #endmacro

This is a snip of ClassDeclaration from the class InventReport_ABC. The constant
CurrentVersion is used to keep track of the version number of the CurrentList macro. If
the list of fields is changed in the macro CurrentList, the constant CurrentVersion is
manually increased. This is a part of the interface used to store values used in dialog,
which are explained further in the chapter Classes.

static void Macros_LocalMacro(Args _args)
{
 CustTable custTable;
;
 #localmacro.selectCustTable
 #ifnot.empty(%1)
 while select %1
 #ifnot.empty(%3)
 order by %3
 #endif
 {
 info(queryValue(%1.%2));
 }
 #endif
 #if.empty(%1)
 info("No table specified.");
 #endif
 #endmacro

 #selectCustTable(CustTable, accountNum)
 #selectCustTable
}

Macros are either created directly in the code, or put in an AOT macro and then the
AOT macro is declared in the code. The above example is showing a #localmacro
created in the code. The macro will select records from a table and print a field from the
chosen table. The table to be fetched, and the field to be printed must be specified in the
parameters. If no table has been specified when the macro is called a text will be printed
to the Infolog. As you cannot declare variables in a macro, integer values prefixed with

MORPHX IT Macros

 © 2006 Steen Andreasen

107

a percentage sign such as %1 are used instead. The integer values are consecutively
numbered and refer to the parameter position when calling the macro. Here the macro
has 3 parameters. The sorting order of the fetched data is optional as a #ifnot.empty
condition is checking whether the third parameter is specified. Of course, there ought to
be more validations, as more could go wrong, but this is a common way of using the
macros. The validations must be before calling the macro. Notice that you can call a
macro without entering the parentheses after the macro name.

Note: If changing an AOT macro, you must recompile all AOT objects which are using the AOT macro.
Changes to an AOT macro are first recognized by the objects using the macro when compiling.

If your macro is going to be used in several places it would make sense creating the
macro in the AOT as you will then be able to reuse the macro. To create a new macro in
the AOT unfold the Macro node, right-click and choose New Macro. A new empty
macro node will be created. You can name the new macro by opening the property
sheet. Now paste the code of the #localmacro to your new macro.

static void Macros_MacroLib(Args _args)
{
 CustTable custTable;
;
 #macrolib.Macros_MyMacro

 #selectCustTable(CustTable, accountNum)
 #selectCustTable
}

To use the macro created in the AOT the macro command #macrolib is used. Here the
AOT macro is name Macros_MyMacro. Note that an AOT macro can contain as many
#localmacro as required. You can also add constant definition and #localmacro to the
same AOT macro. Still, it might be better dividing your constants and #localmacro into
two macros, making your code easier to read.

Note: If an AOT macro name is equal to the name of a #localmacro in the same AOT macro, then the
#localmacro can be addressed without declaring the AOT macro using #macrolib. This will not work
properly as the parameters for the #localmacro will not be recognized.

4.4 Summary
In this chapter the use of macros in MorphX has been explained. You should now be
able to define constants using macro commands and to create macros either in your code
or added to an AOT macro, also called a macro library.
Also, you should by now know what macros can be used for, and when to use a macro,
and more importantly why to put your code in methods rather than using macros.

MORPHX IT Classes

 © 2006 Steen Andreasen

109

5 Classes
X++ is an Object Oriented Programming language, also called OOP language. This
means that code is encapsulated in objects. By using the object’s parameter profile, an
object can communicate with other objects. One of the powerful features is inheriting of
code. A class can be inherited in a subclass making it possible to reuse the code of the
parent class, also called the super class. This makes it easier to maintain modifications,
as you can extend existing functionality by creating a subclass for your modifications.
If you want to read more about OOP you can find several useful resource sites by
browsing the internet. Basic knowledge on OOP will help you when designing your
classes. You will not need to have knowledge at OOP reading this chapter however it
will help clarify some of the terms used.

A class is a collection of methods. Compared to table methods, using a class makes
reusing your code easier. The main difference is that classes can be inherited, and a
class method can refer to other methods within a class. By that, you cannot say it is
better to put your code in classes as table methods serve some purposes and classes
others. The default tables methods can be used to execute your own table methods. If
the code is relevant for other objects than a single table, you should consider using a
class instead. Another option would be to declare a class and execute a class method
from a default table method.

Classes are one of the complex data types in MorphX. A base data type stores a single
value whereas a class object can store several values. Like base types, classes use
variables to store values. Variables within a class can only be referenced by the methods
of the class. From outside a class, the class methods are used to reference variables in a
class. This is also called encapsulate. Consider a class as a custom designed object
where the class methods are the handles to use the class. The class has no values set as
only a class object can contain values. When declaring a class an object of the class is
created. This is just like declaring a table variable as only a table variable can have a
cursor.

5.1 Classes Basics
Axapta has two main categories of classes, application classes and system classes. You
use application classes for constructing your application. Only application classes can
be created and modified. System classes are primary used for doing runtime changes to
the user interface. You will find an explanation of system classes later in this chapter.
Application classes is located in the AOT under the node Classes.

Methods
One of the ideas with an OOP language is to split code up in small bricks, where each
brick provides a certain operation. A class is such a brick. Classes are divided into

MORPHX IT Classes

 © 2006 Steen Andreasen

110

methods, where each method is doing or should be doing a single task. To make your
code reusable you should bear this in mind when designing your methods. You could
write most of your code for a class in a single method, but it would make the class
useless for other purposes. Some use a rule of thumb to only have a certain number of
code lines in a method. This can be a good solution, as long you bear in mind that your
methods should be easy to reuse for other purposes.

Methods components
The code in a method consists of 4 blocks: Identification, variable declaration, code
lines and return value. In the top of a method is the identification of the method which
has the following syntax:

< modifiers> <return type> <method name>(parameter profile)

Modifiers are optional keywords defining the behavior for the method. An explanation
of these keywords can be found in the section Modifiers.
The return type must be specified. This can be any base type or complex type. If you do
not want a method to return a value you should used the keyword void as return type.
Void is also used by some of the default methods on objects such as tables and forms
which have no return type.
The name of a method should start with lower case letter. Use a descriptive name for the
method which specifies what the method does. Names like calcInventQty() or
isFormDatasource() will explain much more than just calcQty() or formDatasource().
After the method name the parameters are specified. Parameters are declared like any
variables. It is a common practice to prefix parameter variable names with "_" to avoid
confusing parameter variables with variables used in the method. It is optional whether
a method should have parameters. You can however also set parameters to be optional
when the method is called. This is done by initializing a parameter variable. Note that
optional parameter variables should be the put as the last parameters in the parameter
profile.
If you are overriding a method, your method will have the same parameter profile.

The second block is variable declaration. You can find more information on variable
declarations in the chapter Intro to X++.

Code lines are added after the variable declarations. If the method has a return type the
keyword return is used for returning the value. Calling return will end executing of the
method and return the value for the type specified. You can use return any number of
times in a method. However it is considered best practice to only have one return in a
method, as having several returns makes the code more difficult to read. Create a
variable to store the value to be returned and call return as the last line of your method.

public AmountMst sumCustTrans(CustAccount _custAccount,
 TransDate _transDate = systemdateget())
{
 CustTrans custTrans;

MORPHX IT Classes

 © 2006 Steen Andreasen

111

 AmountMst sumAmountMst;
;

 if (!_custAccount)
 throw error("Customer account not specified.");

 sumAmountMst = (select sum(amountMst) from custTrans
 where custTrans.accountNum == _custAccount
 && custTrans.transDate >= _transDate).amountMst;

 return sumAmountMst;
}

This method calculates the sum of the customer transaction and returns the sum using
the variable sumAmountMst. The method has two parameters where one is optional. If
the first parameter customer account is not specified an error will occur, and if the
method is called with only customer account, the second parameter transaction data will
be initiated to current date.

Icons
The icon for a method is determined by the modifiers. Overridden methods have an icon
with an arrow , methods created in the current class has the icon , protected
methods has an icon with a key , private methods are represented with an icon with a
keyhole and static methods has an icon with a red cross .

The icons make it easy to get an overview of the methods of a table or class. Take a
look at the class CustBillExchangeClose It is easy to spot the type of methods. Note that
overridden methods and instance methods are sorted alphabetically and static methods
are listed right after. There is a good reason for this sorting, as static methods are
referred in a different way.

Note, that an icon has a "traffic light" at the right side of the icon. The colors red and
yellow indicate whether there are errors or warnings in the method. A green light
indicates the method has been compiled without any errors.

Class Components
An application class has 3 default nodes: ClassDeclaration, new and finalize. See figure
18: Default application class nodes. In ClassDeclaration global variables for the class
is defined. Variables can only be declared in ClassDeclaration, you cannot initialize
variables. Only variables declared locally in methods can be initialized at the same time.
Macros to be global for the class are also declared in ClassDeclaration.

MORPHX IT Classes

 © 2006 Steen Andreasen

112

Figure 18: Default application class nodes

When declaring a class you are declaring a class object. Before being able to reference
the class object, you must initiate the class object. The compiler will throw an error if
you are trying to reference a class object not initiated. The keyword new is used to
initiate the class. The syntax is new <Class name>(). The class object and the class
initiating the class object must be of the same type. This means that the class object and
the class used to initiate the class object must be equal or a parent class to the class
object.

MyClass myClassObject;
;

myClassObject = new MyClass();

Initiating a class will invoke the method new(). As any other methods new() can also
have parameters. Variables declared in ClassDeclaration are often initialized with the
parameter values from new().
Invoking new() will call the constructor for the class. A constructor is used to initialize
a class. Several programming languages have a method by the same name of the class.
This method is referred to as the constructor. This practice is not used in MorphX as
new() is used as the constructor.
It is common practice in MorphX to create a method called constructor() if you need to
initialize your class using different subclasses. Normally the constructor() method has a
single parameter which is used in constructor() to determine which subclass to initialize
using new(). The class NumberSeqReference which is part of the number sequence
system in Axapta uses such a construct() method.

The method finalize() is used to remove the class from memory. After finalize() is
called you will not be able to reference the class object. This is not a method which is
called automatically as the garbage collector will automatically remove objects not used
anymore from memory. It is not common practice to call finalize() each time an object
is not used anymore. Even though you have a loop initiating the same class for each
loop, you would not have to call finalize() as the garbage collector is set to run when a
specific number of objects are no longer used.
It will make sense using finalize() if you object is not intended to be used any more, and
to prevent other objects using your class object.

Example 1: Creating a class

Objects used from MORPHXIT_Classes project

 Class, MyClass

MORPHX IT Classes

 © 2006 Steen Andreasen

113

In this example a class with a single method will be created. This is a simple example to
show how to create and use a class.

1. Go to the node Classes, right-click and chooses New Class. A new class called

"Class1" will be created. Open the class by double-clicking the new class.

2. Check the left window to make sure that ClassDeclaration is selected. Rename the

class by changing "Class1" to "MyClass".

3. In ClassDeclaration, declare a variable of the extended data type ItemId.

ClassDeclaration should look like the following:

class MyClass
{
 ItemId itemId;
}

4. Now add an new method to the class by pressing ctrl+n. The new method called

"Method1" will automatically be opened in the editor. Change the name of the
method to "parmItemId".

5. Add the extended data type ItemId as parameter to the new method parmItemId().

The parameters should be initialized with the global class variable itemId. Set the
parameter variable equal to the global class variable itemId. The method must return
itemId.

itemId parmItemId(ItemId _itemId = itemId)
{
;
 itemId = _itemId;

 return itemId;
}

6. Click the save icon in the editor tool bar to save all changes to the class.

As class variables cannot be referenced from outside a class you can create a method to
set and get the value of a class variable. Such methods are often prefixed with parm*.
The class MyClass contains one method called parmItemId() which will return the value
of the global class variable ItemId if called without any parameters. The optional
parameters in parmItemId() can be used to set the value of ItemId. These types of
methods are especially used in dialogs for transferring the value of a dialog field to a
calling object. The ability to set a value makes it possible using the class without using
the user interface of the dialog.

static void Classes_TestMyClass(Args _args)
{
 MyClass myClass;

MORPHX IT Classes

 © 2006 Steen Andreasen

114

;
 myClass = new MyClass();
 myClass.parmItemId("Item100");

 info(myClass.parmItemId());
}

The easiest way of testing a class is by creating a job. Try creating a job which looks
like the job shown here for testing MyClass. The job initiates MyClass and executed the
method parmItemId() with a parameter. The method parmItemId() is called again
without a parameter, printing the previously set value to the Infolog.

void methodWithFunction()
{
 void methodWithFunction(CustAccount _custAccount)
 {
 ;
 info(_custAccount);
 }

 methodWithFunction("4000");
}

Functions can be written inside a method. A function can only be used by the method
and cannot be referenced outside the method. The syntax of a function in a method is
similar to the one of a method. Here a function is declared of the same name as the
method. This is allowed as long as the parameter profile is not equal to the methods
parameter profile. A function is called without qualifying the object name. Note that no
validation will be done whether the right number of parameters is entered for a function.
You should consider functions in methods as an option in X++. This is not a
recommended feature as it does not make code easier to reuse. Instead you should
consider creating another method.

Modifiers
It is optional to specify modifiers for a class or a method. Modifiers are however quite
useful as you can set restrictions on the use of a method or a whole class and how a
class is inherited.

Access Modifiers
You can add an access modifier to a class or a method to restrict the use of a method.
Both instance and static methods can use access modifiers and restrictions can be set at
different levels. You may want a method only to be used within the class or only to be
used for the class hierarchy. The default level is public which will give full access to a
class and all methods of the class. The access modifiers are shown in figure 19:
Overview of access modifiers.

MORPHX IT Classes

 © 2006 Steen Andreasen

115

MorphX support setting access modifiers for methods and classes only. Variables
declared in ClassDeclaration will always be accessible for subclasses.

Keyword Description
Public

Default behavior for classes and methods. A public class can be inherited
and class methods can be overriden in subclasses and called outside the
class.

Protected

Only methods can be protected. A protected method can overridden in
subclasses, but can only be used inside the class hierarchy.

Private

Both classes and methods can be set as private. However this will only
affects methods. A private method can only be used within the current
class.

Figure 19: Overview of access modifiers

Access modifiers in MorphX are often forgotten as the default behavior is public. This
let to that every part of a class can be accessed from anywhere. Having no restriction for
a class might cause the class is not used as intended to. You should consider specifying
access modifiers to make the use of your class easier to understand. A class often has
several method used for calculations done internally in the class. Such methods should
be restricted from being overridden by subclasses.

Example 2: Access Modifiers

Objects used from MORPHXIT_Classes project

 Class, MyClass_AccessModifiers
 Class, MyClass_AccessModierers_sub

A super class and sub class will be created to show the use of methods access modifiers.

1. Create a new class and rename the class “MyClass_AccessModifiers”.

2. Add a method called publicMethod() to the class. Set the access modifier to public.

Add a line printing the access modifier keyword to the Infolog.

public void publicMethod()
{
;
 info("public");
}

3. Repeat step 3 by adding similar methods for the access modifiers protected and

private. Remember to set the access modifier for each method.

4. Save the class MyClass_AccessModifiers.

MORPHX IT Classes

 © 2006 Steen Andreasen

116

5. Create a sub class called MyClass_AccessModifiers_sub. ClassDeclaration for the
sub class must look like the following:

class MyClass_AccessModifiers_sub extends MyClass_AccessModifiers
{
}

6. Right-click the node MyClass_AccessModifers_sub and choose Override Method.

Select the method protectedMethod(). This will create a new method in the sub
class.

7. Save the class MyClass_Modifiers_sub.

The super class contains 3 methods, but when overriding the methods in the subclass
only the methods public and protected are shown. MorphX will validate the access
modifiers and only show methods which can be overridden. Even though methods by
default are declared public it makes sense using the keyword. Methods with access
modifier qualified cannot have the access modifier changed in a subclass. Note that, an
overridden method will only contain a call to super(). The super() call will execute the
code written for the method in the super class.

Note: The tools Visual MorphXplorer and Application Hierarchy Tree called from the add-ins menu will
help you get an overview of the class hierarchy. Remember to update the cross-reference.

When creating a sub class it is considered good practice to prefix the subclass with the
name of the super class followed by "_". If the super class is SalesFromLetter, the name
of a sub class could be SalesFormLetter_Confirm.

static void Classes_Modifieres(Args _args)
{
 MyClass_Modifiers_sub modifiers_sub;

;
 modifiers_sub = new MyClass_Modifiers_sub();
 modifiers_sub.publicMethod();
}

This job is testing the class MyClass_AccessModifiers_sub. Only the method with the
access modifiers public is executed, as the private and protected methods cannot be
executed from outside the class hierarchy. When pressing the dot after the class name
all methods from the super class and the subclass are shown. The compiler will,
however throw an error if trying to use a method without the proper access level.

Note: Prior to version 3.0 access modifiers was not validated by the compiler. Access modifiers could
still be specified but had no effect.

Using the modifier private for a class will not have any effect. If you want to restrict
how a class is declared you could instead set new() as private. This will prevent

MORPHX IT Classes

 © 2006 Steen Andreasen

117

declaring the class in the normal way using new(). Instead you could create a
constructor() method to control how the class is declared. A constructor() method is
always created as a static method and will be accessible depending on the access
modifier for the contruct() method.

Access modifiers can also be used in forms and reports to prevent methods being called
outside the object. In fact you can use most type of modifiers in forms and reports
however it only makes sense using access modifiers.

Static Modifier
By default methods are created as instance methods. This means that you must declare a
class object before being able to access the method. If the keyword static is added to
method you can access the method without declaring the class object.

static EmplTable find(EmplId _emplId,
 boolean _forUpdate = false)
{
 EmplTable emplTable;

 if (_emplId)
 {
 emplTable.selectForUpdate(_forUpdate);

 select firstonly emplTable
 index hint EmplIdx
 where emplTable.emplId == _emplId;
 }

 return emplTable;
}

The above code block shows the find() method from EmplTable. The method will
return an employee record based on the employee id given as a parameter. Table
methods such as find() and exist() are always created as static. When using a method for
finding a table record it will not makes sense to first declare a table variable as the
method should return the table variable.
The following block of code shows how to call the static find() method on EmplTable.
Note that the double colon syntax used for static methods. This is the same notification
used to refer an enum entry.

static void Class_CallStaticMethod(Args _args)
{
;
 info(EmplTable::find("AMO").name);
}

Static modifiers are often used in classes for methods which need to be accessed
frequently. The class WinAPI is a good example on using static methods. WinAPI

MORPHX IT Classes

 © 2006 Steen Andreasen

118

contains a list of static method such as methods to access the file system for doing file
operations. Typically only a single method is required at the time from WinAPI such as
checking whether a file exists.

Methods created for the purpose to declare an object of a class use the static modifier.
The most common examples are the methods main() and constructor(). Note that main()
is the only user defined method of a class invoked by the kernel.

Final Modifier
Setting a class to final will prevent the class to be overridden. The reason could be that
you would either force the use of the class as it is. The class might be intended to be
used by another class or the class may be used to provide data to another class. The final
class InventOnhand is an example of this.

A final method cannot be overridden by a subclass. Only instance methods can be
qualified as final, as a static method cannot be overridden. Defining a method as final
will only prevent inheriting. The method will have the same access level as a public
method. You can however use final together with one of the access level modifiers like:

final protected void protectedMethod()
{
;
 info("protected");
}

Display and Edit Modifiers
MorphX has two special modifiers, display and edit which are used in the user interface.
These are used for form and report controls which are not related to a data source field.
Both display and edit can be qualified with the modifiers static and final. You will find
a detailed explanation on the display and edit modifiers in the chapter Forms.

Abstract Modifier
An abstract class or method is the exact opposite of a final. The use of abstract classes is
a way of planning inheritance as it forces creating a subclass for using the class, as an
abstract class cannot be declared. This is often used in the standard package for super
classes to control that the super class is not declared by mistake. The class
SalesFormLetter which is used for creating documents such as sales confirmations and
sales invoices uses this practice. The class has an construct() method which should be
used, and to prevent the class being declared using new() SalesFormLetter is qualified
as abstract.

abstract CustAccount myAbstractMethod()
{
 // The code in this method is never executed

MORPHX IT Classes

 © 2006 Steen Andreasen

119

 #if.never
 select firstonly custTable
 where custTable;
 #endif
}

Methods can be declared as abstract, but only if the class is abstract. An abstract method
must be overridden as an abstract method cannot have a code block. Abstract methods
contains only a parameter profile. You can however use the macro call #if.never to add
"code" to an abstract method. This will help clarify why this method must be overridden
in the subclass. You might wonder why you should not simply add comments in the
abstract method. The point is that code within the macro call is shown in color as with
any other code in the editor making it easier to differentiate comments and code. Note
that no validation is done on code written in the #if.never macro so anything could be
written. It is optional to qualify methods of an abstract class as abstract. For this reason
you will still be able to add variables in the ClassDeclaration of an abstract class..

The access modifiers protected can be use with abstract methods. An abstract method
cannot be static, as the static methods only exist in the super class.

Interface Class
MorphX can only handle single inheritance, meaning that only one super class is
allowed. This is not bad at all, as in languages supporting multi inheritance it can be
tricky getting an overview of the class hierarchy.

Another option exists as you can create interface classes and implement the interface
classes in your sub class. Like abstract classes and methods an interface class cannot be
declared and the methods of an interface class cannot contain code. So what is the
difference between an abstract class and an interface? Well an abstract class is used to
give instructions on the content of a subclass. An interface does not have to be part of
the hierarchy. You can implement more than one interface for a class. Interfaces are
used for common tasks like the interface SysPackable which is controlling that the
methods for storing the last values of a dialog are created.

interface MyClass_Interface
{
}

An interface is in fact not a real class. When creating an interface you are replacing the
class keyword with interface. Interfaces can be inherited by another interface, but a
class cannot inherit an interface, a class implements an interface.

public abstract class Runbase extends Object implements sysSaveable, sysRunable
{
}

MORPHX IT Classes

 © 2006 Steen Andreasen

120

When implementing an interface class in a class the keyword implements is used. Here
the class header from the class Runbase is shown. Note that implements are put after the
inherited class.

Note: By calling the global method pickInterface(true) from a job all interface classes will be listed in a
lookup window. The global class has several methods prefixed with pick* which can be used for lookups
of AOT nodes.

Any access modifiers can be used in an interface class. Remember an interface class is
not a super class, but a sort of template for your class.

Passing Values
As seen, a methods parameter profile can contain any number of parameters. Both base
types and complex types can be passed on as parameters. The use of passing and
returning variables to and from a method is the main purpose of methods. It makes your
methods acts like bricks which are easy to fit together.

Call by
In MorphX, variables are called by value. This means variables passed to a method will
not be changed by altering the parameter variable inside a method. Using a temporary
table as a parameter differs from that rule as temporary tables are called by reference. If
a temporary table is passed as a parameter to a method, and the temporary table
parameter is modified in the method, the calling variable will also be changed.

No matter which type of parameter variables you are using it is recommended to create
a local variable for a parameter variable, instead of modifying the parameter variable as
this will make your code easier to understand.

Example 3: Call by

Objects used from MORPHXIT_Classes project

 Class, MyClass_PassingValues

A class containing two methods will be created. The purpose is to show how MorphX
acts when passing variables to a method. A parameter in the method callByValue() is
changed inside in the method. This is not considered best practice.

1. Create a new class called MyClass_ParameterValues.

2. Add a method called callByValue() with one parameter of the extended data type

Counter. Increase the value of Counter by 10 and have the method returning the
result.

Counter callByValue(Counter _counter)

MORPHX IT Classes

 © 2006 Steen Andreasen

121

{
 _counter += 10;

 return _counter;
}

3. Add a method called callByReference() with the temporary table TmpAccountSum

as parameter. The method should fetch the last record from the temporary table and
print a field to the Infolog.

void callByReference(TmpAccountSum _tmpAccountSum)
{
 TmpAccountSum tmpAccountSum;
;
 tmpAccountSum = _tmpAccountSum;

 select firstonly tmpAccountSum order by accountNum desc;
 {
 info(tmpAccountSum.accountNum);
 }
}

4. Save the class.

To test the class MyClass_PassingValues create the following job:

Static void Classes_CallByValue(Args _args)
{
 MyClass_PassingValues passingValues = new MyClass_PassingValues();
 Counter counter = 100;
;

 info(strFmt("%1", counter));
 info(strFmt("%1", passingValues.callByValue(counter)));
 info(strFmt("%1", counter));
}

The job is initializing the counter variable and printing the value to the Infolog before
calling callByValue(). The return value of callByValue() is printed to the Infolog, and at
last the counter variable is printed again showing that callByValue() has not modified
the initialized value of the counter variable.

static void Classes_CallByReference(Args _args)
{
 CustTable custTable;
 TmpAccountSum tmpAccountSum;
 MyClass_PassingValues passingValues = new MyClass_PassingValues();
 Counter counter;
;

 while select custTable
 {

MORPHX IT Classes

 © 2006 Steen Andreasen

122

 counter++;

 if (counter > 5)
 break;

 tmpAccountSum.accountNum = custTable.accountNum;
 tmpAccountSum.insert();
 }

 select tmpAccountSum;

 info(tmpAccountSum.accountNum);
 passingValues.callByReference(tmpAccountSum);
 info(tmpAccountSum.accountNum);
}

A similar test is done with the method callByReference(). First the temporary table must
have some data inserted. The first 5 records from CustTable are looped and inserted.
The first record of the temporary table is printed to the Infolog. CallByReference() is
called with the temporary table as a parameter, and will print the last record from the
temporary table. Note, when printing the temporary table again after calling
CallByReference(), the fetched record has been changed to the record fetched by
CallByReference().

Call by reference can be confusing and this might not be appropriate for your case. To
avoid having your temporary table variable changed in the calling code you should
modify callByReference() to look like the following.

void callByReference(TmpAccountSum _tmpAccountSum)
{
 TmpAccountSum tmpAccountSum;
;
 tmpAccountSum.setTmpData(_tmpAccountSum);

 select firstonly tmpAccountSum order by accountNum desc;
 {
 info(tmpAccountSum.accountNum);
 }
}

The method setTmpData() must be used to initialize the local TmpAccountSum as
setting TmpAccountSum equal to the parameter variable _tmpAccountSum will still
result in a call by reference. Note that only temporary tables are called by reference. A
normal table like CustTable would be called by value.

Recursive calls
A recursive method is a method calling itself. Make sure when creating a recursive
method that your code will not result in a never ending loop. With that said, recursive
methods are excellent for reusing you code and make your code simple.

MORPHX IT Classes

 © 2006 Steen Andreasen

123

Try adding the following method to the class MyClass_PassingValues:

void recursiveCall(ProjId _projId = "")
{
 ProjTable projTable;
 ;

 while select projTable
 where projTable.parentId == _projId
 {
 setprefix(projTable.parentId);
 info(projTable.projId);

 this.recursiveCall(projTable.projId);
 }
}

The table ProjTable which is the main table for projects is loop in the method
recursiveCall(). Projects are built in hierarchy in Axapta, so the method is sorting the
records by the tree hierarchy. A lot of code should have been written, or at least two
methods would have been needed if it was not for the recursive call. For each loop in
the method recursiveCall() a line is printed in the Infolog. The setprefix() method is
used to show the level of the projects in the Infolog. Write the following job to test the
method:

static void Classes_RecursiveCall(Args _args)
{
 MyClass_PassingValues passingValues = new MyClass_PassingValues();
;

 passingValues.recursiveCall();
}

Returning values
A method can only return one value, or rather one variable. When return is called the
method is ended. Sometime you might have a situation where it would be neat to return
more than one variable. In this case you could reconsider your design as you might try
to accomplish too much in your method.

Container returnContainer()
{
 CustAccount custAccount;
 custName custName;

 return [custAccount, custName];
}

MORPHX IT Classes

 © 2006 Steen Andreasen

124

As the return type can be a base type or a complex type you could also use a container.
You do not have to declare a container variable in the method as you can return the
values separated by comma in brackets [] like shown in the above example.
MorphX have set of foundation classes which also can solve this issue. A foundation
class can contain a number of variables. You will find more information on foundation
classes in the section Foundation Classes.

5.2 AOS
An Axapta installation can be configured to run as a 2-tier or 3-tier installation. Where a
2-tier installation consists of a client and a server, a 3-tier installation also has an
Application Object Server, also called AOS. Without an AOS server the workload is on
the client instead which will result in more calls between the database server and the
client. An AOS will reduce the traffic between database and client as the AOS will
communicate with the database instead, making it possible only to have calls to client
when communicating with the user interface.
You can have any number of AOS servers configured in a clustering environment to
spread the workload. For more information about AOS see the manuals in the standard
package. An explanation of the AOS is out of the scope for this book. The focus is how
to optimize your code using AOS.

Note: Optimizing your code for using AOS is an option. You should not optimize every part of your code
for using AOS as you might end up spending too much time on optimization. If you are having some
heavy modifications or limited bandwidth you will get a much better performance optimizing for AOS,
and you should.

Setting Tier
When a table method or a class is executed you can specify whether the code should be
executed from the AOS or from the client. The default table methods accessing the
database for inserts, updates and deletes cannot be overruled. These methods will
always run server side. Forms should always run on the client. By default an object will
be executed on the tier the object is called from. A decision on changing the default
behavior on where an object is executed should be caused by optimization only.

Your code will still run in both 2-tier environments and 3-tier environments as the
settings running an object on a specific tier is only validated in a 3-tier environment.
This also means that AOS optimization should only be made running 3-tier. Changing a
form to run server side will work in a 2-tier environment, but running the form in 3-tier
will cause the form never to be shown as the form has been specified to be executed on
the server.

To define the tier for executing an object the property RunOn and the modifiers client
and server are used. Menu items and classes have the property RunOn. The default
setting for menu items is running on the client. Classes are by default set to be called

MORPHX IT Classes

 © 2006 Steen Andreasen

125

from. The property RunOn can be set to client, server or called from. Setting RunOn to
called from means the object will be executed on the tier used by the calling object. The
keywords client and server are used to specify the tier in methods. A method is set to be
called from by adding both client and server as modifiers. Note that, it is considered
good practice to put AOS modifiers in front of any other modifiers.

server AmountMST balancePerDate(TransDate _transactionDate = systemdateGet())
{
 return this.CustVendTable::balancePerDate(_transactionDate);
}

The property RunOn in the property sheet for a class is used to define the tier for which
the class is executed. All instance methods in the class will be executed on the tier
specified by the RunOn property. Only static methods of the class can have their own
AOS modifier. The method shown above is set to run on AOS.
Tables differ slightly as both instance methods and static methods in tables can have
AOS modifiers.

If you set the RunOn tier for a menu item calling a class, then the class will default run
on the same tier if the class property RunOn is set to called from. The setting of a menu
item can however be overruled by the class. The tier is determined by where the class is
declared, where new() is called. This also means that the RunOn property of a super
class will decide on which tier the subclasses will be executed.

Objects to Optimize
So which object should be AOS optimized and when should this be done? A rule of
thumb is that table methods and classes with a lot of database calls should be candidates
for objects running on AOS. Reports using the runbase framework can also be set to run
on a server. It might sound wrong having a report running on server, while a form
cannot. The runbase framework will handle calls between client and the AOS so the
application user will still have the report dialog shown even though the report is
executed on the AOS.
The MorphX tools System Monitoring and Code Profile can be used to track calls
between the tiers. You should familiarize yourself with these tools before trying to
optimize your code for AOS.

5.3 Runbase Framework
A batch job is a task set to be executed at a specific time or to be repeated with a
specified interval. The batch server processing the batch jobs is typically set to run on a
dedicated server. An Axapta client is started to run the batch server, alternatively the
batch server can be set to run as a Microsoft Windows Service. You can find detailed

MORPHX IT Classes

 © 2006 Steen Andreasen

126

information on configuring batch servers and batch jobs by checking the manuals in the
standard package.

Heavy tasks like classes or complex reports processing a lot of records are typically
scheduled as batch jobs. This could be a daily task like transferring sales orders to an
external system or periodic printing of customer balances.

Batch jobs have no interaction with the application users as this will keep the batch job
on hold. When a class is scheduled as a batch job, the values entered by the application
users are used as the batch server will skip any dialogs.

Using Runbase Framework
The runbase framework has two primary functions. To create a similar layout for
dialogs presented to the application users and to make it possible to schedule a process
to be batch able. The classes prefixed with RunBase* are referred to as the runbase
framework. Several of these runbase classes are only called by the framework. In daily
use you will only need to know the purpose of a few of them. See figure 20: Common
used runbase framework classes.

Classname Description
RunBase

The class RunBase is used for tasks which should not be batch able.

RunBaseBatch

RunBaseBatch is used to give the application user the option to schedule a
batch job for the task.

RunBaseReport

Only used for heavy reports and is therefore a subclass of RunBaseBatch.

Figure 20: Common used runbase framework classes

The part of the runbase framework used for reports is explained in more detail in the
chapter Reports.

Example 4: Creating batch able class

Objects used from MORPHXIT_Classes project

 Class, MyClass_RunBaseBatch
 Menu item action, MyClass_RunBaseBatch

In this example a class using the runbase framework will be created. The class will have
an option to be executed as a batch job. Focus is on how to construct a class using the
runbase framework.
The class will print all customers where customer transactions are posted after a
specified date. The last entered from date used for searching customer transactions will
be stored.

MORPHX IT Classes

 © 2006 Steen Andreasen

127

Create a new class called “MyClass_RunBaseBatch”.

class MyClass_RunBaseBatch extends RunBaseBatch
{
 FromDate fromDate;
 DialogField dialogFromDate;

 #define.CurrentVersion(1)

 #localmacro.CurrentList
 fromDate
 #endmacro
}
The new class must be a subclass of the class RunBaseBatch. A variable of the extended
data type FromDate is created for storing the last entered date. The variable
dialogFromField is a variable of the class DialogField which is used to add a field to the
dialog shown to the application users. The macro constant CurrentVersion is keeping
track of the last version of the dialog. CurrentList is a macro containing the variables to
be stored from the last run of the class.

public container pack()
{
 return [#CurrentVersion, #CurrentList];
}
Pack() is overridden. The method is returning the two macros created in
ClassDeclaration.

public boolean unpack(container packedClass)
{
 container base;
 boolean ret;
 Integer version = conPeek(packedClass,1);

 switch (version)
 {
 case #CurrentVersion:
 [version, #CurrentList, base] = packedClass;
 ret = true;
 break;
 default:
 ret = false;
 }
 return ret;
}
Unpack() is also a overridden method(). The variables in the macro CurrentList are
initialized when unpack() is executed.

static void main(Args _args)
{
 MyClass_RunBaseBatch runBaseBatch = new MyClass_RunBaseBatch();
;

MORPHX IT Classes

 © 2006 Steen Andreasen

128

 if (runBaseBatch.prompt())
 runBaseBatch.run();
}
This is a static method declaring the class. Main() is used to execute the class. If the
dialog is not canceled by the application user, the method run() will be executed.

protected Object dialog()
{
 DialogRunBase dialog = super();
;

 dialog.addGroup("Date");
 dialogFromDate = dialog.addFieldValue(typeId(FromDate), fromDate);

 return dialog;
}
In this overridden method the dialog is declared. A field for entering from date is added
to the dialog.

public boolean getFromDialog()
{
 boolean ret;

 ret = super();

 if (ret)
 {
 fromDate = dialogFromDate.value();
 }

 return ret;
}
GetFromDialog() is called if the button Ok is pressed in the dialog. The value entered in
the from date field in the dialog is stored in the variable fromDate.

client server static ClassDescription description()
{
 return "Testing batch able class";
}
All classes inherited from the runbase framework should have this method. As the
method is static you cannot override the method from the super class, so description()
must be created manually. The method will add a caption to the top of the dialog
window.

public void run()
{
 CustTable custTable;
 CustTrans custTrans;
 Counter totalRecords;
;

 select count(recId) from custTable
 exists join custTrans

MORPHX IT Classes

 © 2006 Steen Andreasen

129

 where custTrans.accountNum == custTable.accountNum
 && custTrans.transDate >= fromDate;

 totalRecords = custTable.recId;

 startLengthyOperation();
 this.progressInit("List customers with transactions", totalRecords, #AviSearch);

 while select custTable
 exists join custTrans
 where custTrans.accountNum == custTable.accountNum
 && custTrans.transDate >= fromDate
 {
 progress.incCount();
 progress.setText(strfmt("%1, %2", custTable.accountNum, custTable.name));
 sleep(500);
 }
 endLengthyOperation();
}
Run() is processing the task for the class based on the dialog settings. The first select
statement is counting the number of customers to be processed using an aggregate
function. The counted numbers are used for a progress bar which will be incremented
for each loop where looping the customers. The global methods
startLengthyOperation() endLenghthyOperation() is used the set the scope to invoke the
hour glass. A macro call is used as parameter when initializing the progress bar. This is
macro constant from the macro library AviFiles which is declared in the runbase
framework. Instead of printed information to the Infolog, the progress bar is updated for
each loop. The function sleep() is setting a delay of ½ second making it possible to see
the progress bar.

Finally, create a menu item for the class by dragging the class to the menu item node
Output.

When executing MyClass_Runable a dialog will appear. The dialog has two tab pages.
The first tab page has a field group with the field for specifying from date. The value
added will be stored as the default value next time the class is executed. The prompt()
method in main() is calling the dialog() method. The method run() is called if the button
Ok is pressed in the dialog and the method getFromDialog() is validated true. You
should always start by overriding the methods pack() and unpack() when creating a
runbase class. If you try to create the static main() method before overriding these
methods you will have an error as pack() and unpack() are part of an interface
implemented by the runbase framework.
The second tab page is for the batch settings. Even though a class may not be executed
as a batch job you can still use the class RunBaseBatch. If the method canGoBatch() is
overridden and return false, the batch tab page will not appear.

Notice, if you need to validate the values keyed in by the application user in the dialog,
you should override the method validate(). The dialog cannot be closed using the Ok
button before the method validate() returns true.

MORPHX IT Classes

 © 2006 Steen Andreasen

130

You can execute the class MyClass_Runable directly by right-clicking the class and
choose Open. As the class has a static method called main() with the parameter Args,
the class can be executed without any coding. This is also called a run able class. All
classes with a static main() method are runable and can be executed from a menu item.
Note that the runbase framework is not required to create a runable class.
You should execute the class from a menu item. It is recommended always to create a
menu item for your runable class as you will then be testing your class as the
application users will execute the class. Runable classes are always created as action
menu items, if not calling a form or a report.

A progress bar was used in the example. For a task which takes more than a few
minutes to process you should consider adding a progress bar. This will make your class
more user friendly as the application user can see when the job is finished. As progress
bars are a part of the runbase framework you can easily add a progress bar to your
subclass. You can however use progress bars for any block of code. The classes
prefixed with SysOperationProgress* are used for building progress bars from scratch.
The form Tutorial_Progress will show you a lot of the features available when using
progress bars.
For an overview of the available animations in progress bars check the class
Tutorial_ShowAviFiles.

The parameter Args in main() is used to get a handle on the calling object. This is often
used when calling and runable class from a form as you by using Args will be able to
get the cursor record or just identify the calling object. The chapter Forms shows the
use of Args.

Dialog
A dialog is the user interface of a class. When you need a dialog for your class you
should use the runbase framework as dialogs is an integrated part of the framework. The
classes prefixed with Dialog* are used by the framework. Simple form features like
grouping fields, adding lookups to related fields are provided by the dialog classes. You
can add additional buttons to your dialog like calling a query. If your class is inherited
from the RunBaseReport class your report query and printer settings will automatically
be wrapped in the dialog.

Example 4: Class dialog

Objects used from MORPHXIT_Classes project

 Class, MyClass_RunBaseDialog
 Menu item action, MyClass_RunBaseDialog

In this example some of the common features in the class dialog is shown. To simplify
the code, the methods description() and run() has by purpose been left out.

MORPHX IT Classes

 © 2006 Steen Andreasen

131

Start duplicating the class MyClass_RunBaseBatch and rename the class to
“MyClass_RunBaseDialog”. Pack() and unpack() will remain unchanged. The run()
method must be deleted. The other methods will be modified as follows:

class MyClass_RunBaseDialog extends RunBaseBatch
{
 NoYesId selectDate;
 FromDate fromDate;
 ToDate toDate;
 NoYesId selectCustGroup;
 CustGroupId custGroupId;
 DialogField dialogFromDate, dialogToDate, dialogSelectCustGroup, dialogCustGroup;
 DialogGroup dateGroup, countryGroup;

 #define.CurrentVersion(1)

 #localmacro.CurrentList
 fromDate,
 toDate,
 selectCustGroup,
 custGroupId
 #endmacro
}
Some additional dialog fields have been declared. A variable is created to store each of
the dialog fields. The macro CurrentList is extended to store the new variables.

protected Object dialog()
{
 DialogRunbase dialog = super();
;
 dialog.allowUpdateOnSelectCtrl(true);

 dateGroup = dialog.addGroup("Date");
 dateGroup.frameOptionButton(FormFrameOptionButton::Check);
 dateGroup.columns(2);

 dialogFromDate = dialog.addFieldValue(typeId(FromDate), fromDate);
 dialogToDate = dialog.addFieldValue(typeId(ToDate), toDate);

 countryGroup = dialog.addGroup("Customer");
 countryGroup.columns(2);

 dialogSelectCustGroup = dialog.addFieldValue(typeId(NoYesId), selectCustGroup,
 "Select customer group");
 dialogCustGroup = dialog.addFieldValue(typeId(CustGroupId), custGroupId);

 return dialog;
}
The dialog group date now contains from date and to date. By default all dialog fields
will be added to a single column. The method columns() is used to set from date and to
date at one line. The dialog method frameOptionButton() is used to have a checkbox in
the field group header. The other field group Country has two fields. If the field

MORPHX IT Classes

 © 2006 Steen Andreasen

132

dialogSelectCustGroup is unmarked, the field dialogCustGroup cannot be edited. This
feature can only be used if the dialog method allowUpdateOnSelectCtrl() is set to true.

public void dialogSelectCtrl()
{
;
 if (dialogSelectCustGroup.value())
 {
 dialogCustGroup.allowEdit(true);
 }
 else
 {
 dialogCustGroup.allowEdit(false);
 }
}
Each time a dialog method is entered this method is executed if the dialog method
allowUpdateOnSelectCtrl() is set to true.

public boolean getFromDialog()
{
 boolean ret;

 ret = super();

 if (ret)
 {
 fromDate = dialogFromDate.value() ? dialogFromDate.value() : systemdateget();
 toDate = dialogToDate.value() ? dialogToDate.value() : systemdateget();
 selectCustGroup = dialogSelectCustGroup.value();
 custGroupId = dialogCustGroup.value();
 }

 return ret;
}
The values are retrieved from the dialog fields and initialized with the variables
declared in ClassDeclaration. The check field in the header of the dialog group date is
on purpose not added.

static void main(Args _args)
{
 MyClass_RunBaseDialog runBaseDialog = new MyClass_RunBaseDialog();
;

 if (runBaseDialog.prompt())
 runBaseDialog.run();
}
Main() has just been changed to executed the new class.

All that is left is to create a new action menu item for the class.

MORPHX IT Classes

 © 2006 Steen Andreasen

133

The class will not process anything as run() has been left out. As run() is a member of
the super class this will not give any error. Running the class will show the dialog seen
in figure 21: Dialog example.

Figure 21: Dialog example

The dialog shows two ways of making a value of a field value depended on another
field value. If unmarking the check field in the date field group header, the fields from
date and to date cannot be edited. Your case could be that a date range is entered and if
disabled all records are looped.
The Customer field group uses a similar functionality. The field Customer group can
only be specified if the Select customer group is marked. As the method
dialogSelectCtrl() can only be executed when using fields of the type DialogField this is
a often used solution. However dialogSelectCtrl() cannot refresh the dialog so the dialog
will not be update with the new settings before leaving the field select customer group.

An alternative to use the dialog classes for building dialogs is to create a form. The
runbase framework supports the using standard forms as dialogs. A form will be
presented just as a dialog. This is often a preferable solution for complex dialogs. If you
have to build a complex dialog it can often save time to use a form. You will have an
easier overview of your dialog and it will be easier later to extend the dialog. You will
find more information on using forms as dialogs in the chapter Forms.

In the dialog example the dialog fields could just as well have been added to a query
instead. By using the dialog method addMenuItemButton() a button called Select will
be added to the dialog. The query loaded when the select button is pressed must be
specified by overriding the method queryRun(). Add the following code to your dialog
to have a button for the query shown in the dialog:

dialog.addMenuItemButton(MenuItemType::Display,
 menuItemDisplayStr(RunBaseQueryDialog),
 dialogMenuItemGroup::BottomGrp);

MORPHX IT Classes

 © 2006 Steen Andreasen

134

By overriding queryRun() with the code below, a query containing CustTable joined by
CustTrans will be loaded.

public QueryRun queryRun()
{
 QueryRun ret;

 ret = new QueryRun(QueryStr(Cust));

 return ret;
}

Details on how to build and retrieve information from a query is explained in the
chapter Queries.

A useful feature of using the runbase framework is that the last entered value of a field
can easily be stored for the next run. Typically this is used for storing values of dialog
fields, however any variables can be stored. You will only have to add the variable to
the CurrentList macro. When changing CurrentList on an existing class, you should
increment the macro constant CurrentVersion by one, as errors might occur if using the
same version when changing the list of saved variables. The last values are stored in the
system table SysLastValue per user and company. Incrementing CurrentVersion will
cause a new record to be created in SysLastValue.
Pack() and unpack() must always be overridden as they are part of an interface in the
runbase framework. Also the two macros in ClassDeclaration are required. You will
have situations where the last values are not needed. To skip using the last values pack()
must return an empty container like connull() and unpack() must return false.

If you just need a dialog to appear with the choice to continue or not, there will be a
more simple solution than using the runbase framework. The class Box has a collection
of static method which supports all the common combinations. You can wrap the call of
a method from the class box in an if statement:

static void Classes_Box(Args _args)
{
 if (Box::yesNo("Continue", DialogButton::Yes,"Test of Box") == DialogButton::Yes)
 info("Here goes.");
}

5.4 Fundamental Classes
The last classes listed in the AOT under the node Classes are a special type of classes.
These classes are referred to as fundamental classes and are not ordinary classes which
should be inherited or modified. You can recognize the fundamental classes by the icon

.

MORPHX IT Classes

 © 2006 Steen Andreasen

135

You will be using the fundamental classes for your modifications even thought you
might not be aware of it, as these classes are normally not declared as a normal class.
The most important fundamental classes are declared by the kernel when starting the
client. Having a basic knowledge about fundamental class will help you understand
some of the elementary processes in MorphX. In the following you will find an
explanation of the most important fundamental classes.

ClassFactory
Whenever an object of the user interface is invoked like a form, report or a dialog the
class ClassFactory is activated, or at least ClassFactory should be called when executing
an object. When calling a form, report or a query from X++, the object should be
initialized using ClassFactory. This is automatically done if calling an object using a
menu item or when using the runbase framework.

The purpose by using ClassFactory is to have the same fundament. This can be used to
have a handle for making general changes to forms or reports such as adding headers or
controls to forms at runtime. For examples on how to use ClassFactory for forms and
reports, see the chapters Forms and Reports.

Note that running a 3-tier environment two instances of ClassFactory will exist. One
declared on the AOS and the other declared on the client. When an object is executed,
the ClassFactory instance on the current tier will be used. If you reference ClassFactory
from a form which will run on the client, referencing ClassFactory again from a class
running on AOS may not have the same result as the two instances are operating
separately. The purpose by this construction is to lower the number of calls between
client and server.

Global
All methods in the Global class are static methods. You can create instance methods in
the Global class. However using an instance method would require declaring the class.
The idea with Global is to have a collection of function create in X++ which can be
referenced without specifying the class name. Methods in global are referred in the
same way as a system function.

Several of the methods are a supplement to the functions used for base type operations
like the Global method date2StrUsr() which convert a variable of the type date to a
string formatted by the user default date settings.

You can add your own methods to the Global class. This can be useful if you have a
piece of code often used. Before adding your own Global method, you should check the
existing Global methods and the system functions located under System
Documentation/Functions as you might find a function already solving your needs.

MORPHX IT Classes

 © 2006 Steen Andreasen

136

Info
The Infolog system can be addressed using the class Info. An instance called infoLog of
the Info class is declared on startup of Axapta. You use the Info class when printing to
the Infolog. You should never reference the Info class directly as this is done by using
the global methods info(), warning() and error().

The Info class has other purposes as the class is being used by the Document handling
system and for calculation of user licenses.

You can find more information on how to use the Infolog in the chapter Intro to
MorphX.

5.5 System classes
System classes are used as application classes. A system classes can be inherited as any
application class. Some of the application classes in the standard package are subclasses
of a system class. As you cannot modify system classes inheriting a system class makes
it possible to add additional logic to a system class. Classes like SysDictTable or
SysReportRun are subclasses of system classes.

The types of often used system classes are described in the following sections.

Object
The system class Object is the base for all class in MorphX. You can compare Object
with the system table Common. Any class can the declared using the class Object. As
MorphX will validate methods of an object at compile time using the class Object it is
quite useful as the type of the object will not have to be known until runtime. This can
be used to execute your own method of a form or a report, where the name of the form
or report is not known until runtime. For an example on how to accomplish this, see the
chapter Forms.

Runtime changes
One of the primary uses of system classes is the ability to address any node in the AOT.
This is very useful, especially for forms and reports as you can override any property or
method at runtime. Throughout the book you will find examples on how to use system
classes for addressing any object in the AOT making your code more dynamic. System
classes used for addressing AOT nodes are usually prefixed with the corresponding
AOT node like all system classes for forms are prefixed with Forms*.

MORPHX IT Classes

 © 2006 Steen Andreasen

137

Args
You might have noticed the system class Args have been used as a parameter variable.
A run able class must have Args as parameter in the main() method. The purpose of
Args is to transfer parameters between objects. If you are calling a run able class from a
form you can use Args to pass a formRun object making it possible to query data in the
form, or even execute methods in the calling form.

Example 5: Args

Objects used from MORPHXIT_Classes project

 Class, MyClass_Args
 Menu item action, MyClass_Args
 Form, CustTable

A new menu item will be added to the customer form. The class called by the new menu
item will print the selected record in the form.

1. Create a new class and rename the class “MyClass_Args”.

2. The class has only the main() method making the class run able. Args is used to

make a check whether the calling object has the table CustTable. The caller could be
any form as long as the calling form uses CustTable. If validated true, the table
variable CustTable is initialized with the calling record and the result is printed.

static void main(Args _args)
{
 MyClass_Args myClassArgs = new MyClass_Args();
 CustTable custTable;
;

 if (_args.dataset() == tablenum(CustTable))
 {
 custTable = _args.record();
 info(strfmt("Customer selected: %1", custTable.name));
 }
}

3. Save the class and create a menu item for MyClass_Args.

4. Go to the Forms node in the AOT and locate the form CustTable. Expand the form

and drill down the design. Drag the menu item for MyClass_Args to the node
Design/ButtonGroup:ButtonGroup and save the form.

When running the form CustTable you will see the form has a button with the same
name as the class. No label was specified for the menu item, so the class name is shown
instead. Execute the class by clicking the button, and the name of the customer selected
is printed in the Infolog.

MORPHX IT Classes

 © 2006 Steen Andreasen

138

This was just a simple example on the use of Args. You could have used Args for
calling a report and add filters to your report only to print selected records. Args is often
used for passing parameters to a class to have the heavy tasks executed by a class. As a
form always run on client, this will make it possible to put the workload of a form on
the AOS. By browsing the AOT, you will find plenty of examples using Args.

Foundation Classes
MorphX have a group of system classes which can be used as an alternative to complex
data type. These are called foundation class. Characteristics for foundation classes are
that they can store a dynamic list of variables. Values are stored in memory so they are
very fast to use. Compared to a temporary table which swaps data on the disk, a
foundation class will perform significantly better.

Five different foundation classes are implemented in MorphX: Array, List, Map, Set
and Struct. The foundation classes are designed to use any type. A useful thing is that
you can use a foundation class as a parameter for a method or having a method
returning a foundation class.

You can find useful examples on the use of the foundation class by locating them in the
AOT and press F1 to see the online help.

Optimized Record Operations
If you have a task which fetches the same records several times you should consider
using a record sorted list for better performance. The case could be that you are printing
a lot of records, but before printing you have a class updating the same records.
Normally you would have to fetch the records in your class and when calling your
report, the reports query would fetch the records second time. To prevent fetching the
records the second time, you can use the system class RecordSortedList. Posting and
printing sales invoice is one of the places in the standard package using
RecordSortedList.

If you do not need your records to be sorted, or if the fetched data are already sorted in
the preferred order you would be better off using RecordLinkList instead.

The system class RecordInsertList is an alternative to the select keyword
insert_recordset. However insert_recordset is preferable.

For examples of the use of optimized record operations, take a look at the online help.

MORPHX IT Classes

 © 2006 Steen Andreasen

139

File Handling
Importing data from a simple text file is pretty simple as MorphX have a set of system
class handling files. The base class for file handling is the system class Io. The system
classes AciiIo and CommaIo are subclass of Io used for text files.

static void Classes_CommaIo(Args _args)
{
 CommaIo fileOut;
 FileName fileName = "c:\\Customers.csv";
 CustTable custTable;
;
 #File

 fileOut = new CommaIo(filename, #io_write);

 if (fileOut)
 {
 while select custTable
 {
 fileOut.write(custTable.accountNum,
 custTable.name,
 custTable.custGroup,
 custTable.currency);
 }
 }
}

The example shows the use of CommaIo. CustTable is looped and written to a comma
separated file. A macro constant from the macro library File is used for setting write
access when declaring the CommaIo file. The method write() in the CommaIo class will
take any number of fields as parameters. Note that double backlash must be used when
referring to a path in the file system. In MorphX you will not have to close the file, as
this is automatically done, when the code initializing the file is out of scope.

Note: If you have to export complex data types such as containers, this can be done using the system
class BinaryIo. Alternatively you will have to export your data as XML.

5.6 Special Use of Classes
In this section examples on how you can use classes for more special cases are shown.
Several of the chapters in this book have examples like this, also using classes for
integrating to external products or showing some of the classes you might not notice as
they have a special purpose.

MORPHX IT Classes

 © 2006 Steen Andreasen

140

Using COM
The Business Connector also referred to as the COM connector can be used to integrate
Axapta with an external product. In this example Microsoft Outlook is accessed from
Axapta using COM. To use this example you must have at least one licensed COM user.

Elements used from MorphxIt_Classes project

 Job, Classes_ReadFromOutlook

static void Classes_ReadFromOutlook(Args _args)
{
 SysOutlookApplication sysOutlookApplication;
 SysOutlook_NameSpace sysOutlookNameSpace;
 SysOutlookMapiFolder sysOutlookMapiFolder;
 SysOutlook_Folders sysOutlookFolders;
 SysOutlook_Items collection;
 COM message;
 Notes messagebody;
;

 #sysOutLookComDef

 sysOutlookApplication = new sysOutlookApplication();
 sysOutlookNameSpace = sysOutlookApplication.getNameSpace("MAPI");

 sysOutlookNameSpace.logon();
 sysOutlookFolders = sysOutlookNameSpace.Folders();
 sysOutlookMapiFolder =
sysOutlookNameSpace.getDefaultFolder(#OlDefaultFolders_olFolderInbox);

 collection = sysOutlookMapiFolder.Items();
 message = collection.GetFirst();

 while (message)
 {
 info(message.subject());

 message = collection.GetNext();
 }
}

Application classes prefixed with SysOutlook* are used to access Micosoft Outlook.
The class SysOutlookApplication will open a COM connection and
SysOutlookNamesSpace will logon to Microsoft Outlook. A warning will appear in
Axapta and you will have to accept to access your mail client. The macro library
SysOutlookComDef contains a list of macro constants use for Microsoft Outlook. The
default folder Inbox is selected in Microsoft Outlook and subject for all mails in the
Inbox are printed to the Infolog.

This example is only reading from Microsoft Outlook. However you could as well be
writing or synchronizing your mail client with data from Axapta. The form

MORPHX IT Classes

 © 2006 Steen Andreasen

141

HRMInterviewTable is using Microsoft Outlook for creating appointments in the
calendar based on data keyed in from Axapta.

Note: If you are going to interface an external system you can use the COM Class Wrapper Wizard to
create a COM wrapper for your external system. The SysOutlook* class are made using this wizard.

X++ Compiler
MorphX has a system class called XppCompiler which can be used to compile X++
code written as text. You might wonder what is the use of this as you have everything
integrated in MorphX, so why bother? This could be a way of giving administrators of a
system the option to write their own validations using X++ code without going to the
AOT making modifications. In a controlled environment you could make your
modifications more flexible by allowing the user to handle simple adjustments.

There are places in Axapta where the user has some hardcode variables which can be
used in a text field like the form TransactionsTexts. What if instead of using the
hardcode variables you could specify your own variables written in X++? This could be
pretty neat, and by using the class XppCompiler you can achieve this.

Elements used from MorphxIt_Classes project

 Class, Classes_XppCompiler
 Menu item output, Classes_XppCompiler

A class with two methods is created. The class must be runable.

Notes buildFunction()
{
 TextBuffer textBuffer = new TextBuffer();
;

 textBuffer.appendText("static void test(Counter _counter, CustTable _custTable)");
 textBuffer.appendText("{");
 textBuffer.appendText("while select _custTable");
 textBuffer.appendText("{");
 textBuffer.appendText("info(_custTable.name);");
 textBuffer.appendText("_counter++;");
 textBuffer.appendText("}");
 textBuffer.appendText("info(strfmt(\"Customers printed: %1\", _counter));");
 textBuffer.appendText("}");

 return textBuffer.getText();
}
First a method creating the function code to be used by the class XppCompiler is build.
This function will take two parameters, a counter and the table CustTable. All records in
CustTable will be looped. Customer name and total number of customers will be printed
to the Infolog.

MORPHX IT Classes

 © 2006 Steen Andreasen

142

The system class TextBuffer is used to build the string containing the function. Adding
strings using + sign is very slow. TextBuffer should always be used when adding
several strings.

static void main(Args _args)
{
 MyClass_XppCompiler myClassXppCompiler = new MyClass_XppCompiler();
 xppCompiler compiler = new xppCompiler();
 Notes codeString;
 CustTable custTable;
;

 codeString = strfmt(myClassXppCompiler.buildFunction());

 if (compiler.compile(codeString))
 {
 runbuf(codeString, 0, custTable);
 }
 else
 {
 info(compiler.errorText());
 }
}
The main() method will declare the compiler class XppCompiler. If the code built in the
buildFunction() is compiled without errors the function runbuf() will execute the code.
The first parameter of runbuf() is the code string and the following parameters are the
parameters specified for the build function. All variables used in the built function must
be specified as parameters as you cannot declare any variables.

5.7 Summary
Classes are fundamental in MorphX. The application classes are used for creating the
business logic. System classes bind the kernel with the application. This chapter should
have clarified the differences and explained how classes are used. You should by now
have required knowledge of the options when using classes in MorphX. In the following
chapter you will see how you can combine the use of classes for designing the user
interface.

MORPHX IT Forms

 © 2006 Steen Andreasen

143

6 Forms
Forms are the most important part of the user interface as a form is the link between the
application user and the database. When an application user insert, update or delete data,
forms are used. The database can be accessed using the table browser, but you should
never consider this as an option in a live system as you might mess up your data. A
form will typically do additional validations compared to the table browser, besides a
form will structure the data fetched making it easy to use.

A form has at lot of features useable for the application user like sorting, filtering and
personalizing the appearance of a form. Some of those features available for the
application users will be mentioned in this chapter. However keep in mind the focus is
how to use MorphX to construct forms.

Figure 22: Form overview

6.1 Creating Forms
An Axapta form is created in the AOT using the node Forms. A form consists of two
parts, the query fetching data and the design which is used for defining the layout of the
form. The design will normally be used to present the tables fetched in the query.

MORPHX IT Forms

 © 2006 Steen Andreasen

144

Example 1: My first form

Elements used from MORPHXIT_Forms project

 Form, MyForm
 Menu item display, MyForm

To get experience on how to use forms start creating a form as shown in Figure 22:
Form Overview. This is a simple form which will learn you the basic steps creating a
form. In the following examples details will be explained and more features will be
added to this example. For simplicity no labels are used in this example, however labels
should always be created for your modifications.

1. Right-click the AOT node Forms, and select New Form. Rename the form to

"MyForm" using the property sheet.

2. Expand the nodes for the new form so the nodes Data Sources and Designs are

visible. Open another windows of the AOT, located the table SalesTable and drag
SalesTable to the form node Data Sources.

3. Go to the node Designs/Design and open the property sheet. In the property

Caption enter the text "Sales orders". Select the data source SalesTable in the
property TitleDatasource.

4. Right-click the node Designs/Design and select New Control/Tab. Go to the

property sheet for the tab control and set Width to "Column width" and Height to
"Column height".

5. Now add a tab page by right-clicking the node Designs/Design/[Tab:Tab] and select

New Control/TabPage. Rename the new tabpage "Overview" by using the property
sheet. Enter a label for the tab page by typing "Overview" in the property Caption.

6. Add a grid control to the tab page Overview by right-clicking

Designs/Design/[Tab:Tab]/[TabPage:Overview] and select New Control/Grid.

7. Go to the new grid control and set the properties Width and Height to "Column

width" and "Column height".

8. Expand the data source SalesTable and pick the fields SalesId, CustAccount,

CurrencyCode and SalesStatus. Drag the fields to the grid control in the mentioned
order. This is easiest done by right-clicking the data source SalesTable, select Open
New Window and drag the fields from the new AOT window.

9. Add a second tab page by right-clicking the node [Tab:Tab]. Rename the new tab

page to “General” and set the Caption property to "General".

MORPHX IT Forms

 © 2006 Steen Andreasen

145

10. Go to the data sources SalesTable and locate the Fields node of the data source. The
field groups defined in the data dictionary for SalesTable are listed right after the
fields. Select the field groups Identification, Currency, Customer and Status. Drag
the field groups in the mentioned order to the design node
Designs/Design/[Tab:Tab]/[TabPage:General].

11. Save the form. You have now created your first form!

12. Create a menu item for the form by dragging the form MyFrom to the node Menu

Items/Display.

The form just created is an example of a common form in Axapta. No data connection
needs to be configured. Just pick the tables to be used and drag the tables to the query
part of the form. Creating the layout of the forms is really simple as MorphX will auto
positioning controls. When dragging a field to the design a control is automatically
created and the control is auto arranged according to the other control.

The best part is that not a single line of code was written to create this form, only a few
properties were set. You will often have to add code to your forms, but the example
shows how easy it is to presents the data of table. Designs are always auto positioned,
even for complex forms and this is really timesaving.

The properties set in the design for this example are properties always set for a standard
form. At the node Design the text for the caption bar shown in top of a form was
specified. The property Caption specifies the form name and the TitleDatasource
property will shown the value of the fields specified in the tables’ properties TitelField1
and TitleField2 positioned after the caption name.
Setting the properties Width and Height to Column width and Column height will allow
the application users to resize the form. Width and Height are set for both the tab
control and the grid control to make it possible to resize the grid control too.

Fields should always be added to forms using field groups as it makes it easier changing
which fields to be shown on forms using the data dictionary. A field group control has a
property called AutoDataGroup. Changes made to the data dictionary field groups will
automatically be reflected by form and report field groups with the property
AutoDataGroup set to Yes. This makes it easy to add a new field to an existing field
group as only the data dictionary has to be changed.
To simplify this example fields groups was not used for the grid control. You can either
drag field groups to a grid control or specify a field group in the property DataGroup
on the grid control. A table will typically have a field group called Overview, which
contains the fields to be used by the grid control.

Note: If you want to discover more of the features available with forms you can try running the forms
prefixed with tutorial*.

MORPHX IT Forms

 © 2006 Steen Andreasen

146

6.2 Form Query
A query contains the tables to be used by a form. It is not mandatory to have a query
defined for your form. You could just fetch the data for your form using selects.
However a query should always be the first choice for objects accessed by the
application users as the query provided several features for the application users such as
filtering, sorting and printing data.

The nodes used for constructing a form query in the AOT differs a bit from queries built
other places in the AOT such as queries in reports. Where a report query is logic built
with tables presented at their respective join level in the tree, a form query is listing all
tables at the same level in the tree under the node Data Sources. When adding a table to
the data source node of a form, you will be adding a form query data source. This can be
a bit confusing when switching between developing forms and reports. You will soon
adopt these differences as properties are similar. From X++ queries are addressed in the
same way no matter which kind of object used.
For more information about the basics of queries, see the chapter Queries.

Joining Data Sources
The most common way of filtering the records to be listed in a form is by joining the
data sources. This could either be accomplished by joining the forms data sources or if
the form is called from a related form which join the forms data sources with the calling
forms data sources.

Example 2: Outer joined form

Elements used from MORPHXIT_Forms project

 Form, MyForm_OuterJoin
 Menu item display, MyForm_OuterJoin

In this example the form created in example 1 will be extended to show data from the
employee table. No labels are created in the example.

1. Duplicate the form MyForm, and rename the form to “MyForm_OuterJoin”.

2. Expand the Data Sources node of the new form, open another window of the

AOT and find the table EmplTable. Drag EmplTable to the Data Sources node.

3. Open the property sheet for Data Sources/EmplTable. Pick SalesTable in the

property JoinSource. Set the property LinkType to OuterJoin.

4. Select the field SalesTaker from SalesTable and drag the field to

Designs/Design/[Tab:Tab]/[TabPage:Overview]/[Grid:Grid].

5. Repeat step 4 by adding the field Name from EmplTable to the grid.

MORPHX IT Forms

 © 2006 Steen Andreasen

147

6. Select the field group Name from EmplTable and drag the field group to the

tabpage control General.

7. Go to the tabpage General and set the property Columns to 2.

8. Save the form and create a display menu item for the form.

The form MyForm_OuterJoin has two additional fields in the grid showing the
employee id and name of the sales receipts. The employee name is fetched from the
employee table. Still the same numbers of records are fetched, as the data sources are
joined using an outer join. Using an inner join would have resulted in only sales order
with sales receipts would have been shown. Try changing the property LinkType for the
data source EmplTable to see how data are fetched.

When adding data sources to your form by dragging a table from the data dictionary, the
name of the data source will be equal to the table name. You can however change the
name of the data source. If you are joining the same table more than once in a query, the
data source must have difference names. This is just like declaring two table variables
of the same table from X++.

The property Columns changed for the tabpage named General will divide the field
groups into two columns. By default all field groups will be listed in one column, so the
number of columns should be adjusted if you form contain several field groups.

Note: If you are unsure about how two tables are related try creating an AOT query with the two tables to
be joined. In the AOT query the relations will automatically be shown by setting the property Relations to
true at the joined data source.

Joining tables to present data from several tables is very performance friendly, and
should be considered when joined data where a 1-1 relation exist. For the application
users there will be no differences whether fields are from one or more tables. The
application user might even not be aware of that data are fetched from several tables.
As data from both SalesTable and EmplTable were presented in the grid control in the
example, the join mode must either be inner join or outer join. An exist join or not exist
join would have caused data not to be shown from the joined table.

Form Link Types
Join mode of a form is set by using the data source property LinkType. Besides the
standard join modes, forms have 3 additional join modes which are used to makes forms
more users friendly: Passive, Delay and Active. When using an inner join or an outer
join all records from the joined data source is always fetch immediately. This is
necessary when joining several data sources in a grid. If data from the joined data
source is not in the same grid control, you should consider using one of the special form
join modes.

MORPHX IT Forms

 © 2006 Steen Andreasen

148

The default value of LinkType is Delayed. This is the most used join mode when joined
data sources are not listed in the same grid control. Joining delayed will make a delay
before fetching data from the joined data source. This is quite useful and will speed up
scrolling through the records in a grid control, making the form more users friendly. It is
only a matter of milliseconds and the application user will hardly know that data is
fetched delayed. The form SalesTable makes use of this technique.

Note: Using the join modes Delayed, Active and Passive will always cause data sources to be joined as an
outer join. All records will be fetched from the joined data source.

The LinkType Active is similar to Delayed. The only difference is that Active has no
delay before fetching data from the joined data source. Active is not used very often as
it will not give the application users the same flexibility as when joining delayed.
Joining Passive is the opposite of Active. Where Active will always fetch data from the
joined data source, using Passive will not fetch any data from the joined data source.
Passive can be used if you want to control when data is fetched using X++.

Linking Forms
Relations defined in the data dictionary are automatically used for linking forms. Say
you are creating a new form to be called from the customer form, showing customer
data. If the table for you new form has a field using the extended data type
CustAccount, your new form will automatically be linked to the customer form. The
extended data type CustAccount has a relation to the table CustTable used by the
customer form. When calling your new form from the customer form, the extended data
type is used by MorphX to create a link between the two forms. This type of linking is
referred to as dynalinks.

Try opening the customer form CustTable and open the customer transactions form by
clicking the button Transactions in the customer form. When stepping the customer
records in the customer from, the customer transaction form will automatically fetch
data for the current customer. This is done without any code and is the default behavior
when creating forms using related tables.

Some cases might require disabling dynalinks. You might need to show all records in
the related form, or make an alternative linking between the two forms.

void init()
{
 super();

 this.query().dataSourceNo(1).clearDynalinks();

 criteriaOpen = this.query().dataSourceNo(1).addRange(fieldnum(CustTrans,Closed));

 custTransDetails = new CustTransDetails(custTrans);
}

MORPHX IT Forms

 © 2006 Steen Andreasen

149

To disable dynalinks for the form customer transactions locate the form CustTrans in
AOT and edit the method init() located under Data Sources/CustTrans. After the super()
call in init() add a call to clear dynalinks as shown in the above code block. Now when
opening the customer transaction form from the customer form no filtering is done and
all records are shown.
The reason for disabling a dynalink could be that you need to show all records in the
related form as the related form is used to lookup all records. This could be the case if
calling a form for a lookup button.
Instead of using the dynalink based on the data dictionary relation, you can create your
own link. Try extending the init() method so it looks like the following:

void init()
{
 super();

 this.query().dataSourceNo(1).clearDynalinks();
 this.query().dataSourceTable(tablenum(CustTrans)).addDynalink(
 fieldnum(CustTrans, CurrencyCode),
 element.args().record(),
 fieldnum(CustTable, Currency));

 criteriaOpen = this.query().dataSourceNo(1).addRange(fieldnum(CustTrans,Closed));

 custTransDetails = new CustTransDetails(custTrans);
}

After the call of clearDynaLinks() a new dynalink is built using the addDynalink()
method. You must specify the field in the current data source to be linked with the
calling data source, and the calling record. Here element.args().record() is used to return
the calling record.
By adding this dynalink the customer transactions will now be filtered based on the
customer currency code instead of the customer account. This will of course not make
sense in a live application. The point is to show how to override default dynalinks.

Note: If you are unsure of which fields the dynalink uses for filtering, check the caption bar of the form.
The dynalink fields are listed as the last part of the caption text after the form name and the title1 and
title2 fields.

Setting Access
General restrictions for tables and fields are defined in the data dictionary. Restrictions
specific for a form should be defined at the form data source. You cannot override the
settings made in the data dictionary, but you can add additional access restrictions.
Access restrictions can be set at both data source and field level of a data source. For a
table you specify the max access mode which corresponds to the properties AllowEdit,
AllowCreate and AllowDelete for the data source. At the data source field level you can
set restrictions for single fields, such as defining whether the field should be editable or

MORPHX IT Forms

 © 2006 Steen Andreasen

150

visible. Restrictions can also be set at controls in the form design. However restrictions
should always be set at the data sources is possible as the same field can be used for
more than one control in the design. It is preferred not to not have code in design, or
modify default settings in the design. Programming in MorphX tends to not have any
code in forms, making it easy to switch the user interface. You cannot prevent
modifying your design as if a control in the design is not bound to a data source field,
you will have to set access restrictions in the design.

Some access restrictions are typically set using the properties. A form like CustTrans
showing customer transactions should not be editable. Often you will need to set
restrictions depending on the caller or depending on the single records in the form.

Example 3: Setting Access

Elements used from MORPHXIT_Forms project

 Form, MyForm_SettingAccess
 Menu item display, MyForm_SettingAccess

The example will show to set access restriction for a form data sources from X++.
Changing restrictions from X++ will normally be based on a condition. To simplify the
code no conditions has been added.

Duplicated the form MyForm, and rename the new form to “MyForm_SettingAccess”.
Override the form init() method and add the following:

public void init()
{
 super();

 salesTable_ds.allowCreate(false);

 salesTable_ds.object(fieldnum(salesTable, CurrencyCode)).allowEdit(false);
 salesTable_ds.object(fieldnum(salesTable, SalesStatus)).visible(false);
}

Save the form and create a display menu item for the form.

When executing the form you will not be able to add new records. The field
CurrencyCode cannot be edited and the field SalesStatus is not shown in the design.

Any properties and methods of a data source can from X++ be reference using the name
of the data source suffixed with _ds. When referring to the data source fields, you must
use the data source method object(). By using the table field id as parameter for object()
you will be able to reference the data source fields. In the standard package you will
find several examples where access restrictions are set using controls in the design
rather than using the data sources fields. This is not optimal, but the reason for not using

MORPHX IT Forms

 © 2006 Steen Andreasen

151

data source fields is that this option was first introduced in one of the latest versions of
Axapta.

6.3 Design
Some development environments are really time wasters when doing the layout of
forms, as you will have to adjust controls manually. This is not the case with MorphX.
In fact doing the layout of a form in MorphX is pretty straight forward. Best practice
recommends not having code in design and if possible auto position controls. This
speeds up development. When the query part of a form has been created, you can do
most of the layout of the design by dragging field groups from the form data sources to
the design.
You will have cases where code is needed in your design. And some basic adjustments
should be made to the properties for the controls of a design. This is though often minor
settings required.

Auto positioning controls in the design benefits in several ways. When adding a field or
a field group to the middle of a row of fields, the following controls will be positioned
accordingly. If a field is removed or added to a field group on a table, the related field
group in the design will automatically be updated. Setting a field to invisible will also
caused the following fields for field controls to be adjusted. If no fields of a field group
are to be shown, the field group will automatically be invisible.

Using auto settings will make it more difficult to do a special design for a form. You
can however disable any auto settings and positioning every control manually. The idea
with auto settings are that it should be quick and easy designing forms, and make forms
appears with a standardized look.

Creating Design
Some basic rules should be followed to have a standardized look and feel of your forms.
A typical form is shown in figure 23: Standard form. A form should be divided into
tab pages, where the first tab page normally called Overview should have a list of
available records. The fields shown at the first tab page should be defined in a table
field group. If a field is set to be mandatory, meaning that the field must be filled out,
the field should be shown at the first tab page. At the following tab pages, the remaining
fields from the data sources should be shown grouped by tab pages with logical names.
Fields which logical do not fit into a separate tab page are usually put at the second tab
page which is then named General. Fields should if possible be added using the table
field groups. Common practice is to add fields shown at the first tab page on the
following tab pages too. The first tab page is often a list of the most important fields of
a table, and these fields are typically part of another field group, so these fields will
appear twice.

MORPHX IT Forms

 © 2006 Steen Andreasen

152

Even if you create a simple form with only a few fields, you should consider following
this practice. You will save a little time just adding a single control to your form to
show the fields from the data source. This will however have you form looking different
and will break from the standard layout of forms.

Buttons are typically added to the right side of the form. It is preferable to use menu
items for a button as menu items are automatically validate by the setting of security
keys and configuration keys. For more information on creating menu items, see the
chapter Menus and Menu Items.

Figure 23: Standard form

The design of a form is created under the node Designs. Do not get confused by the
name of the node, as a form can only have a single design.

You can view the design of a form by double clicking the design node. This will open
the form in design mode as seen in figure 24: Form edit mode. The form edit mode is
intended to be used for creating and editing the form design. However you should just
consider using this graphical presentation for getting an overview of your design, as the
tool is pretty basic. Use the form tree nodes instead when creating and modifying your
form design.

MORPHX IT Forms

 © 2006 Steen Andreasen

153

Figure 24: Form edit mode

When opening the design of a form in edit mode a toolbar will be opened next to your
form. You can use the toolbar to add controls by selecting a control in the toolbar and
click on the form design to position the selected control. To remove a control from the
design, selected the control and press the delete key.

Viewing a form design in edit mode is useful when getting to know the single parts of a
form design, as you can navigate around your form design. Especially to get an
overview of a form with a lot of controls like the form SalesTable. When clicking a
control in the design, the property sheet will be active for the selected control. Until you
get familiar with the form controls this can be a quick way to located the properties of a
certain control.

Controls in Design
Creating the design is done by adding the controls to be used in the design, either by
dragging data source fields and field groups to the design or by manually adding a
control. When dragging from the data sources, a control of the corresponding type will
automatically be created with properties set to the related data source. This is the fastest
way to built you design and it will assures that your controls are created correctly.
Controls can be created manually. This is typically done for controls which are not
bound to a data source. Notice that fields and field groups cannot be dragged from the
table, as in a report design.

MORPHX IT Forms

 © 2006 Steen Andreasen

154

You should consider using a descriptive name for your controls. Creating a control
manually will name the control of the control type with a consecutively number.
Modifying a design where controls are created with the default names will make the
design more difficult to understand as you will have to expand all the nodes to get an
overview. Take a look at figure 25: Bad naming of controls. And this is just a simple
form.

Figure 25: Bad naming of controls

Labels used for fields and field groups are specified at the extended data types, base
enums or at the table. You will only have to specify labels for controls organizing fields
and field groups such as tab pages and grid controls. If you need another label for a field
or a field group you can override the default label by specifying another label for the
control. This is not recommended as you will disable auto settings and this will make
your form more time consuming to maintain.

For an overview of the available controls for a form design, see figure 26: Form
controls.

MORPHX IT Forms

 © 2006 Steen Andreasen

155

Name Description
ActiveX

Used to integrate an ActiveX control in a form. See form
KMKnowledgeAnalogMeter.

Animate

Used for playing movie clips.

Button

A simple button control. Use the MenuItemButton control
where possible, as the method clicked() on this control must be
overridden to have a job executed.

ButtonGroup

A buttonGroup control is used for grouping any kind of button
controls.

CheckBox

Returns a true of false value. Often used to set the value for a
NoYes enum.

ComboBox

The most common control used to show the entries of a
enums. Presents the enum with the available values shown in a
drop down list.

CommandButton

A special type of button control. The control has a property
called Command, where the action for the button is specified.
Normally the control would be used for adding Ok, Cancel and
Apply buttons to a form. See form ReqTransPoCreate.

DateEdit

Used for showing dates. Dates will be formatted accordingly
to the Windows regional settings.

Grid

Used to list available records in the form. A grid control is
typically added to the first tab page. The properties Width and
Height should always be set to Column width and Column
Height making it possible to resize the grid.

Group

Group control is commonly used for showing table field
groups. A Group control can also be used to arrange other
group controls to present groups in a specific number of
columns.

HTML

Can be used to append a HTML content to a form. See form
ForecastItemAllocationDefaultDataWizard.

IntEdit

Used for integer values.

ListBox

A simple edition of the ListView control. Can be used for
enums. This control is rarely used.

ListView

Often used where a fixed number of values can be selected,
where one ListView control contains all possible values and
another ListView control contains chosen values. Data must
manually be filled in a ListView. See form KMActionType.

MORPHX IT Forms

 © 2006 Steen Andreasen

156

Name Description

MenuButton

A MenuButton control is used for organizing buttons in sub
menus. Validations for enabling buttons in a sub menu are
often placed at the MenuButton clicked() method.

MenuItemButton

Used for creating a button for a menu item. MenuItemButton
is the preferred button type as no code is needed for executing
the related menu item. The properties MenuItemType and
MenuItemName defines the object to be executed. Normally
created by dragging a menu item to the form design.

Progress

Normally progress bars are created using the application
classes SysOperationProgress. This control can be used to
integrate the progress bar in the form. Use the progress control
method pos() to update the counter.

RadioButton

Alternative to the ComboBox control for showing enums.
Each entry of the enum will be shown as a select able button.

RealEdit

Used for real values.

Separator

A control used by the menuButton control. Will separate
buttons in a sub menu by adding a horizontal line.

StaticEdit

Shows a non editable text. The control can be bound to a data
source field. Normally the text for the control is set in the
property sheet or from X++. Notice, the control cannot be used
in a grid control.

StringEdit

Used for string values. If used for memo fields, the properties
Width and Height should be set to Column width and Column
height to allow resizing the memo field.

Tab This is the top level control of a standard form design. A tab
control is used for adding tab pages. The properties Width and
Height should always be set to Column width and Column
Height making it possible to resize tab pages of the tab
control.

Table

Fairly not used. Can show multiple records as a grid control.
Data must be filled in the control manually.

TabPage

Tabpages are added to a tab control. A tabpage is used for
storing any control containing data. The design of a form will
typically consist of one or more tabpages.

TimeEdit

Control for showing the time. Time will be formatted
accordingly to the Windows regional settings.

MORPHX IT Forms

 © 2006 Steen Andreasen

157

Name Description
Tree

Used for showing records in a tree view. The logic for
handling the tree is put in an application class. See form
ProjTable.

Window

Can be used when adding a bitmap to a form. See form
KMAction.

Figure 26: Form controls

Grid Control
The grid control has several features which are nice to know as it can make your
modifications more users friendly. You can mark a number of records in a grid control
in the same way as marking files in the Windows file system. This is useful if you need
to do a certain task on a number of records like calling a run able class updating the
selected records. A checkbox control is often added to the grid control for controlling
which records are marked. If you do not need to save information about which records
are marked using the mark feature is much better.

Example 4: Multi mark

Elements used from MORPHXIT_Forms project

 Form, MyForm_MultiMark
 Menu item display. MyForm_MultiMark

This example will show how to loop the marked records in a grid control.

1. Duplicate the form MyForm, and rename the form to “MyForm_MultiMark”.

2. Go to the node Designs/Design, right-click and select New Control/ButtonGroup.

3. Add a button to the control ButtonGroup by right-clicking ButtonGroup and select

New Control/Button. Go to the property sheet for the new button control and
change the name of the control by entering “MultiMarkTestButton” in the
property Name. Set the property MultiMark to Yes. In the property Text enter
“Show marked”.

4. Now override the method clicked() on the button control

[ButtonGroup:ButtonGroup]/Button:MultiMarkTextButton/Methods and add the
following code:

void clicked()
{
 salesTable salesTableMarked;
;
 super();

 if (salesTable_ds.anyMarked())

MORPHX IT Forms

 © 2006 Steen Andreasen

158

 {
 salesTableMarked = salesTable_ds.getFirst(1,false);

 while (salesTableMarked)
 {
 info(salesTableMarked.salesId);
 salesTableMarked = salesTable_ds.getNext();
 }

 }
}

5. Save the form, and create a display menu item.

Try opening the new form MyForm_MultiMark. Mark some records in the grid and
press the button Show marked. The value of sales id for the selected records will be
printed in the Infolog. In a real case you would have used a menu item button calling a
run base class and have the class processing the records. Only buttons with the property
MultiSelect set to Yes can be used when marking more than one records. This is nice, as
you will not have to validate each single menu item whether it is called with more than
one record. The form SalesTable in the standard package makes use of multi marking
for posting.

Note: A grid control only loads part of the records available in the form. This means that the vertical
scroll bar in a grid is positioned based on the number of cached records. This is done for better
performance.

Another nice feature using a grid control is that marked records can be copied and
pasted directly to Microsoft Excel. However only records bounded to a data source field
can be copied this way.

Both records and single fields can be colored in grid. Using colors can make your forms
more users friendly as it can be used to monitoring values of certain fields. You can find
examples on the use of colors in forms in the sections Special Forms.

Tree Control
If records in your data source are related hierarchically you should consider using a tree
controls. This will allow the application user to have a logical view of the records.
Forms like ProjTable and HRMOrganization makes use of the tree control.

Using a tree control can be a bit tricky, especially if using tree control for viewing data
as you will have to add some code to make it work. It is far easier to duplicate and
existing form using a tree control instead of trying to built your own from scratch. A
class is used to control the data in the tree control. You will find two versions of this
class in the standard package. The simplest class called FormTreeDatasource is used by
the form ProjTable. The form HRMOrganization is using a more advanced class called
CCFormTreeDatasource. The advanced version supports among others drag and drop.

MORPHX IT Forms

 © 2006 Steen Andreasen

159

A form using a tree control is often large and when the application user changes the size
of such a form the tree control might not be shown properly. This can be solved by
adding a ‘splitter’ between the tree control and the other field controls in the form. You
will then be able to click the splitter and expand the size for either the tree control or the
other field controls. A splitter is not an ordinary control, as it is built using a class. If
you want to make use of a splitter, copy the code from a form already using a splitter.
Figure 27: Splitter control is showing where a splitter control is added to the form
HRMOrganization. You use a field group control for creating a splitter and overrides
the methods mouseUp(), mouseMove() and mouseDown(). Make sure to check the
properties of the field group SplitControl as you will have to change several properties.

Figure 27: Splitter control

Display and Edit Modifiers
MorphX has two types of special method modifiers used by the user interface. These are
used if you need to show a value from a field which is not part of the query. You might
have a case which requires that you will have to build a complex query to join a certain
table field, or there might not be any relation to the required table field at all. To get the
field value in a simple way the modifiers display and edit can be used.

These two types of methods are normally referred to as display methods and edit
methods. Display and edit methods can be used in any content for returning the value of
a type. The modifier display and edit just tells that the method is meant to be used by
the user interface.

Before making your choice on using a display or edit method you should be aware that
you will not be able to sort a grid by controls using a display or edit method. Sorting
fields in a grid by clicking the label name of a field in a grid is commonly used by

MORPHX IT Forms

 © 2006 Steen Andreasen

160

application users. An application user will not know whether a control is bound to a
data source or the control is based on a display or edit method.

Example 5: Display and edit

Elements used from MORPHXIT_Forms project

 Table, SalesTable
 Form, MyForm_DisplayEdit
 Menu item display, MyForm_DisplayEdit

This example will show how to use the user interface modifiers, display and edit.
MyForm will be extended to have controls using both display and edit modifiers.

1. Duplicate the form MyForm, and rename the form to “MyForm_DisplayEdit”.

2. Open another window of the AOT and drill down to the methods of the table

SalesTable.

3. Drag the method customerName() to the table field group Customer.

4. Create a new method in SalesTable with the following code:

display LineAmount salesTotal(SalesTable _salesTable)
{
 return (select sum(lineAmount) from salesLine
 where salesLine.salesId == _salesTable.salesId).lineAmount;
}

5. Make sure the changes are save to SalesTable and drag the new method

salesTotal() to the form MyFrom_DisplayEdit to the design at
Designs/Design/[Tab:Tab]/[TabPage:Overview]/[Grid:Grid]. Position the
control last in the grid. Open the property sheet for the new control and select
SalesTable as value for the property DataSource.

6. Go back to the table SalesTable and add a new method with the following code:

edit CustName editCustomerName(boolean _set,
 CustName _name)
{
 CustName name = _name;
 CustTable custTable;

 if (_set)
 {
 if (name)
 {
 ttsbegin;
 custTable = CustTable::find(this.custAccount, true);
 custTable.name = name;

MORPHX IT Forms

 © 2006 Steen Andreasen

161

 custTable.update();
 ttscommit;
 }
 }
 else
 {
 name = CustTable::find(this.custAccount).name;
 }

 return name;
}

7. Save changes to SalesTable, and drag the new method to the form design at

Designs/Design/[Tab:Tab]/[TabPage:Overview]/[Grid:Grid]. Position the new
control in the grid right after the control SalesTable_CustAccount. Open the
property sheet for the new control and select SalesTable as DataSource for the
control.

8. Go to the node Data Sources/SalesTable/Methods and override the init() method

with the following code:

public void init()
{
 super();

 this.cacheAddMethod(tablemethodstr(SalesTable, salesTotal));
}

9. Save the form, and create a menu item for the form.

Two different display methods were added to the form. The SalesTable method
customerName() is a display method returning the name of the customer for the current
selected sales order. Both display methods and edit methods can be added to table field
groups. This is a nice feature as in this case you will not have to modify the form to
have the name of the customer shown. Using display and edit methods in table fields
groups has a disadvantage. When adding or deleting a table method, the method ids are
renumbered. This means that you will have to check your table field groups using
display and edit methods, each time the number of table methods is changed, as your
field groups might be used a wrong display or edit method.

Note: If your display method is shown on the form without a label and a value, you might have forgotten
to set the data source name for the control. When dragging a display or edit method from a table method
this must be done manually.

The second display method used in the form, salesTotals() is doing a simple
summarization of the sales order total. When using a display method in a grid control,
you will have to put the current record as parameter. To use the current record as
parameter, the display method must be created as a table method or as a method for the
data source.

MORPHX IT Forms

 © 2006 Steen Andreasen

162

Display and edit methods cause an overhead, especially when used in a grid control, as
display methods are executed several time when using the form. To optimize
performance display methods can be cached. By overriding the init() methods of the
data source the data source method cacheAddMethod() can be used to cache table
display methods. Only table methods can be cached, and caching must the done after
super() in the init() method of the data source. Display methods are normally created as
table methods so this is normally not a problem. Edit methods cannot be cached,
however edit methods are not as common as display methods so caching of display
methods will surely improve performance.
In the example only the display method used in the grid were cached. There are not
much gain caching the display method showing the customer name, as this will result in
customer name will be lookup up for all records.

An edit method is an extension of display methods. Display methods are normally used
for displaying addition information, or to do calculations, where edit methods are used
where a join cannot be used and a value in a related table must be editable. Edit methods
has two parameters, the first will be true if the value of the control is changed, and the
second parameter contains the value of the control. You will have to add code to the edit
method to have the value in the related table updated. As you might guess this has an
extra cost and you should always consider whether your design ought to be changed
before using an edit method.

The extended data type used as return type in display and edit methods is used for
setting labels and formatting for the control. If you need another label for your control,
you should consider creating another extended data type to be used for your method,
rather than changing labels in the design.

Note: An alternative to edit methods if you only need to display a single record is to just specify an
extended data type in the property sheet for the control and set the AutoDeclaration property. You will
then be able to both set a get values for the control. The form KMAction makes use of this for filtering
in top of the form.

6.4 Methods on a Form
Basic forms can be written without adding any line of code. Even complex forms can be
written without writing any code in the form. In fact you should try keeping code out of
forms and instead put the logic to be used in tables or classes, as this will make it easier
using another user interface. If using an external system and executing the logic through
COM you will have to rewrite forms code as forms cannot be executed through COM.

You cannot avoid having code in your forms. Just have in mind when constructing
forms that if possible you should add your code elsewhere. Say you need to have certain
tasks done after the value of a control is changed. If the control is bound to data source

MORPHX IT Forms

 © 2006 Steen Andreasen

163

field it will be far more better to add the code to the table method modifiedField() rather
than to the data source field method modified().

In the following sections you will find an overview of methods which can be overridden
on forms.

Form Methods
When executing a form an instance of the system class FormRun is initiated. From the
node MyForm/Methods you can override the methods of the FormRun object. These
methods are normally referred to as the form methods. When right-clicking the form
methods node and select Override Method not all methods from the FormRun class are
shown. Only the methods which can be overridden are shown so methods qualified as
final will not show up in the list.
Form methods can be referenced using the keywords this and element. The keyword this
can only be used within another form method, whereas the keyword element is in scope
for the entire form object and can be used when reference form methods from data
sources or controls.

MORPHX IT Forms

 © 2006 Steen Andreasen

164

Name Parameters Description
activate

 Called each time a form is in focus. If
switching between two forms the method
will be called when selecting the form as
the active form. See form PBATable.

canClose

 Called by the methods closeCancel() or
closeOk(). Often used to validate whether
the form may be closed. See form
InventTransPick.

close

 This is the last method executed when a
form is closed. See form ProdParameters.

closeCancel

 When clicking a CommandButton control
with the Command property set to Cancel,
the method closeCancel() is called. If
closeCancel() is true, the method
canClose() is called. See form
AssetChangeGroup.

closed

 Closed() will return true after the super()
call in close() has been called. Can be used
to check whether close() has been called.
Not often used.

closedCancel

 Will return true if closeCancel() has been
called. Often used from close() to check
whether the form has been closed cancel or
closed ok. See form CustParameters.

closedOk

 Will return true if closeOk() has been
called. The return value can be used for
checking whether the data source method
write() should be executed. See form
SalesCreateOrder.

closeOk

 When clicking a CommandButton control
with the Command property set to OK, the
method closeOk() is called. If closeOk() is
true, the method canClose() is called. See
form AssetChangeGroup.

closeSelect

str _selectString Can be used to overrule the value returned
by the lookup form. Often this is not
necessary. Instead the method is used for
adding code to be executed before the
lookup form is closed. The FormRun
method selectMode() will set a form in
lookup mode and specify the form control
used as return value. See form
KMGamePlanLookup.

MORPHX IT Forms

 © 2006 Steen Andreasen

165

controlMethodOv
erloadObject

Object _val By overriding this method, the methods for
controls added to a form at runtime can be
created in a class rather than being created
on the form. See class BOMChangeItem.

copy

 Executed when the application user presses
ctrl+c to copy the content of a form control
or an entire record.

cut

 Executed when the application user presses
ctrl+x to cut the content of a form control.

doApply

 When clicking a CommandButton control
with the Command property set to Apply,
the method doApply() is called. Used to
commit changes made in the form. See
form ProdSetupRelease.

docCursor

 As Document handling relates documents
to the current active data source table, the
method docCursor() can be used to
determine which table to related
documents to, if a form uses more than one
data source. See form InventTable.

Finalize

 Called when the form is closed. Will
remove the form object from memory. This
method is normally not overridden.

firstField

int _flags = 1 Set focus to the first field in the form
design. Overridden if focus should be set to
another form control. See form
CustOpenTrans.

init This is the first method called which can be
overridden. The method is initializing the
form. Entities used in the form are
typically initialized here. Validation on
whether the form is intended to be called
by another form is also done using init().
See the form CustOpenBalance.

lastField

int _flags = 1 This method has no effect. Should set the
last field in the design in focus.

loadUserSettings

 Customization made by the application
user to a from is loaded by
loadUserSettings().

new Args _args = NULL New() is the first method called when

MORPHX IT Forms

 © 2006 Steen Andreasen

166

 executing a form. This method should
never be overridden as this will cause the
form to crash when opening.

nextField

 Executed when stepping to the next field
by pressing either tab or enter.

nextGroup

 Executed when stepping to the next field
group by pressing ctrl+pgdn.

paste

 Executed when the application user presses
ctrl+v to paste a value to a form control.

prevField

 Executed when stepping to the previous
field by pressing shift+tab.

prevGroup

 Executed when stepping to the previous
field group by pressing ctrl+pgup.

print

 Executed when printing a form. Will print
the fields from the table field group
AutoReport. See the form
ReqItemJournalSafetyStock.

printPreview

 PrintPreview() is called if File | Print
Preview is selected from the top menu. See
form SysLicenseAgreement.

reload

Args _args = NULL Not used.

resize

int _width, int _height If the size of the form is changed, the
method resize() is called.

run

 Run() is loading the form. The super() call
in the method will call the form data source
query. Initialization of the form should if
possible be done in the form init() method
and the data sources init() methods, rather
than using run(). See form ProdTable.

saveUserSettings

 Application users’ customization of the
form is saved by saveUserSetttings.

selectControl

FormControl _control Called when focus is moved to another
control. See form LedgerTransSettlement.

send

 Send() is called if File | Send is selected
from the top menu.

setApply Object _object, Object _parm Can be used in combination with a

MORPHX IT Forms

 © 2006 Steen Andreasen

167

 Command button control if calling the
form from a class. See the class
DocuActionTrans.

task

 Called when the application user hits a key.
Can be used to define hot keys. See form
JmgSelectJob.

Figure 28: Form methods

Form Data Source Method
The form data source methods are often overridden when making changes to the form
query or if you need to insert, update or delete records from a data source using X++. A
form data source is an instance of the system class FormDataSource.

MORPHX IT Forms

 © 2006 Steen Andreasen

168

Name Parameters Description
Active Active() is called each time a new

record is selected. The method is often
used for setting control access. See
form SalesTable.

create

boolean _append = false When pressing ctrl+n the method
create() is called. Initialization of field
values should be done using
initValue(). See form SalesTable.

cursorNotify

int _event Called when the cursor is set to another
record. The method is also called when
the data source cache is being updated.
Can be used for advanced caching. See
form projPeriodEmpl.

defaultMark

int _value Will return the value 1 if all records in
the grid is marked pressing ctrl+a. See
class ReqTransFormPO.

Delete

 If the application user press alt+F9, the
method delete() is called. Delete() will
call validateDelete() before trying to
delete the record. See form
ProjJournalTable.

deleteMarked

 The method is called if the application
user has marked more than one record
and presses alt+F9. DeleteMarked()
will call delete() for each record to be
deleted.

displayOption

 Used for coloring columns or rows. See
form EmplTable.

executeQuery

 Fetch data based on the settings in the
form query. The method is often
overridden to set values of ranges
added from X++. See form CustTrans.

filter

fieldId _field, str _value If right-clicking a field and select Filter,
the method executeQuery() is called.
Not often overridden as executeQuery()
is used instead.

findRecord

Common _record Can be used to set the cursor to a
specific record by using a Common
object. Notice, this is a very slow way
to position the cursor. See form
SalesTable.

MORPHX IT Forms

 © 2006 Steen Andreasen

169

findValue

fieldId _field, str _value Can be used to set the cursor to a record
matching the value of a specified field.
This is a very slow way to position the
cursor. See form LedgerJournalTrans.

first

 Called when pressing ctrl+home for
selecting the first record in a data
source. See form ContactPerson.

forceWrite

boolean _value Mark a record as “dirty”. If set to true
the current record will be saved before
leaving. Must be called from X++. See
form LedgerJournalTransApprove.

init

 Init() is the first data source method
called. Runtime changes made to the
query are normally added here. See the
form CustTrans.

initValue

 When creating a new record in a form
initValue() will be called. The method
is used for initializing field values. Use
the corresponding table method instead,
unless the settings are specific for the
form. See form
BankAccountStatement.

last

 Called when pressing ctrl+end for
selecting the last record in a data
source. See form HRMApplicantTable.

leave

 The method is called when the cursor is
moved from the current selected record.

leaveRecord

 Can be called from X++ to check
whether the cursor may be moved to
another record. See form InventPosting.

linkActive

 If calling a related sub form,
linkActive() will be called each time a
new record is selected in the main
form. LinkActive() will call
executeQuery(). See form
MarkupTrans.

mark

int _value Will return 1 if the current record is
marked. Can be used to mark a record
by calling the method with the value 1.

next Called when the next record is selected.

MORPHX IT Forms

 © 2006 Steen Andreasen

170

 See form EmplTable.

nextPage

int _pageSize When the application user press the
page down key in a grid control,
nextPage() is called. The parameter
_pageSize contains the number of
shown records in the grid.

prev

 Called when the previous record is
selected. See form EmplTable.

prevPage

int _pageSize When the application user press the
page up key in a grid control,
prevPage() is called. The parameter
_pageSize contains the number of
shown records in the grid.

print

PrintMedium _target Called if ctrl+p is pressed for printing
the auto report. Can be used to change
the behavior of an auto printed report
such as doing runtime changes to the
layout. See form CCCount.

prompt

 Activated when the application user
calls the form query dialog. Prompt() is
only called for the current data source.
Can be used to prevent calling the
query dialog on forms using a tree
control. See form HRMOrganization.

refresh

 Often used together with
reread().Where reread() update the
form data source for the current record
with the values from the table, refresh()
update the form design for the current
record with the values from the form
data source. See form WMSShipment.

refreshEx

anytype _pos Extended version of refresh(). If the
method is called with the parameter -1,
all records for the data source will be
updated. See form
CustOpenTransReverse.

removeFilter

 Called when a filter previous set is
removed. Normally overridden on data
sources which only contain a single
record such as parameter forms. See
from InventParameters.

reread

 Must be called from X++. Fetch the
current record from the data source

MORPHX IT Forms

 © 2006 Steen Andreasen

171

table. See form SalesCreateOrderForm.

research

 Must be called from X++. Fetch the
records specified by the query.
Similar to calling executeQuery(),
except that research() will keep settings
made to the query. See form
LedgerTable.

validateDelete

 Delete() will call validateDelete() to
check whether the record may be
deleted. See form ProdJournalTable.

validateWrite

 ValidateWrite is called by write(). Will
return true if the record may be inserted
or updated. See form InventTable.

write

 Called when pressing ctrl+s. Will call
insert() on a new record, otherwise
update() will be called. Validations
should if possible be made in
validateWrite(). See form
CustOpenTrans.

Figure 29: Form data source methods

Form Data Source Fields Methods
All form data source fields have the same set of methods as they are all declared using
the system class FormDataObject.

MORPHX IT Forms

 © 2006 Steen Andreasen

172

Name Parameters Description
context Called by the application user, when

right-clicking a field.

filter

str _filterStr, NoYes _clearPrev Called when the application user right-
click a field and select Filter. Notice,
that the super() call in filter() will not
work if the method is overridden.

find

 Called when the application user right-
click a field and select Find.

helpField

 Show the help text for the current field
in the bottom of the screen. The help
text shown is from the current control,
related table field or extended data type
or base enum.

jumpRef

 Is called when press ctrl+alt+F4 for
jumping to main table. The method can
be overridden to jump to another form
where no relation exists. See form
InventItemGroup.

lookup

FormControl _formControl,
str _filterStr

Used to build a customized lookup
form for controls which have no
lookup. See form InventTable.

modified

 If the value of field bounded to a data
source field is changed, modified() is
called. If validate() returns true
modified() is called. Typically
overridden if the value of another field
must be set. See form PriceDiscAdm.

performFormLookup

FormRun _form,
FormControl _formControl

Can be used to override an existing
lookup form. See form
HRMApplication.

restore

 The method seems not to be used.

toolTip

 Used to show the yellow tooltip when
position the cursor on a control. Can be
overridden to change the default
tooltip. See form BOMDesigner.

validate

 The method is called when the value is
changed in a control bounded to a data
source field. Used to add checks
whether the control must be changed.
See form InventTable.

MORPHX IT Forms

 © 2006 Steen Andreasen

173

Figure 30: Form data source fields methods

Validations specific for a single form is done using the form data source fields’
methods. If validations made to a control bound to a data source field are of general use,
you should use the table methods validateField() and modifiedField() rather than using
data source field methods validate() and modified().

Form Controls Methods
Some methods of a form control are similar to the methods of a form data source field.
Often you will have alternatives for overriding a form control, as you can either use the
methods at the data source level or auto declare a form control. Auto declaring a control
is done by setting the control property AutoDeclaration to Yes. This is a property in
common for all controls. Auto declaring a control will create an instance of the
corresponding system class for the form control. Auto declaring a string control will
create an instance of the system class FormStringControl which can be used from all
methods on a form.

Common Form Methods
Only few of the form methods are needed in daily use. Having a basic knowledge of the
execution order of these methods will help you a lot when starting making your
modifications. The following methods are executed in the listed order when a form is
opened and closed:

init() ► ds init() ► run() ► ds executeQuery() ► canClose() ► close()

1. FormRun.init() is the first method called. The super() call in
FormRun.init() will call FormDataSource.init() for each data source used
in the form query.

2. The super() call in FormRun.run() will call
FormDataSource.executeQuery() for every data sources.

3. When closing the form FormRun.canClose() will validate whether the
form may be closed, and if true FormRun.close() is called.

These are the most important methods executed when a form is opened and closed.
Other methods are executed in the opening and closing sequences such as loading
application user settings. However normally you will only need to override the listed
methods.

Note: To discover the execution order of the methods, you can set a break point at the super call in an
overridden method and check the stack trace in the debugger. Another option is to print a line to the
Infolog from each method overridden.

MORPHX IT Forms

 © 2006 Steen Andreasen

174

For each data source in your form query, the following sequence will be triggered by
executeQuery() when the form is opened:

ds executeQuery() ► refresh() ► active()

1. The data source method executeQuery() will fetch all records for the

current data source and afterwards call refresh().
2. Refresh() is updating records fetched, and is normally not overridden. If

you are inserting, updating of deleting records shown in a form from X++,
refresh() can be called to have the changed data shown.

3. When opening the form, active() is executed for the current record. You
can use active() for setting access restrictions for controls. Active() is
called each time a record is selected.

Example 6: Active

Elements used from MORPHXIT_Forms project

 Form, MyForm_Active
 Menu item display. MyForm_Active

The example shows how the data source method active() can be used to control access.

1. Duplicate MyForm and rename the new form “MyForm_Active”.

2. Expand the form and go to Data Sources/SalesTable/Methods. Right-click to

override the method active(). Add the following to active():

public int active()
{
 int ret;

 ret = super();

 salesTable_ds.allowEdit(salesTable.salesStatus == SalesStatus::Invoiced ? false : true);

 return ret;
}

3. Save the form and create a menu item.

Try executing the form MyForm_Active. You will not be able to modify sales orders
with status invoiced. If you go to the second tab page on the form you will notice that
the controls are grayed out for fields which may not be edited. Controls in a grid control
will not change the appearance. If you need to change the appearance of a control in a
grid, this can be accomplished by coloring rows. How to use colors in forms are
explained in the section Special Forms.

MORPHX IT Forms

 © 2006 Steen Andreasen

175

Data Source Methods
Adding a new record from a form will call the following sequence of data source
methods:

create() ► initValue() ► refresh() ► active() ► refresh()

1. The method create() is called when pressing ctrl+n to add a new record.
2. The data source initValue() is called by create(). You should initialize

fields which must have a specific value in initValue(). The table method
initValue() is called by super() in the data source initValue(). If the
initialized values are not form specific, you should use the corresponding
table method.

3. After initialization refresh() is called, and when entering a record active()
is called. Refresh is called again by active().

When saving a record the following methods are called:

validateWrite() ► write() ► refresh()

1. ValidateWrite() will call the table method validateWrite(). Again, always
use the corresponding table methods if possible.

2. The data source method write() will call either insert() or update() from the
table, depending on, whether the record is already created or not. Checks
to be made should be done before this point. If you have conditions to be
fulfilled these should be done at validateWrite().

3. Refresh() is called to update the form controls.

Deleting a record has a similar flow as insert and delete:

validateDelete() ► delete() ► active()

1. ValidateDelete() will call the corresponding table method. Condition
checks for deletion should be done at this point, either from the data
source or from the table.

2. The form data source delete() calls the table method delete().
3. Active() is called as the cursor will jump to another record after the current

record is deleted.

Control Methods
All form controls has methods which can be overridden. You should only in special
cases need to override the controls of a form. If a control is not bound to a data source
you will have to use the methods of the control. For bounded controls it is considered
good practice to use the data source field methods instead.

MORPHX IT Forms

 © 2006 Steen Andreasen

176

Some of the special controls such as the tree control and the list control require that
some of the control methods are overridden. For controls showing base types you will
hardly never have to use a form control method.

Overriding a Form Query
You will often have situations which require filtering data on a form. As forms usually
uses a query for fetching data this can be accomplished by adding ranges to the form
query. When using an AOT query or a report query you will be able to add ranges to the
query using the nodes in the AOT. A form query does not have the same options for
filtering using the AOT nodes. Instead you will have to use X++ for adding ranges.

Example 7: Adding range

Elements used from MORPHXIT_Forms project

 Form, MyForm_QueryFilter
 Menu item display. MyForm_QueryFilter

This example will show how to add a filter to a form query by using a form control.

1. Make a copy of MyFrom and rename the form to “MyForm_Query”.

2. Open the property sheet for the node Designs/Design and set the property

Columns to 1.

3. Right-click the node Designs/Design and select New Control/Group. Position the

new control above the tab control and rename the new control “rangeGroup”. Set
the property Caption for the new control to “Filter”.

4. Right-click the control rangeGroup and select a control of the type StringEdit.

Rename the control to “filterCurrencyCode”. Open the property sheet for the new
control and set AutoDeclaration to “Yes” and ExtendedDataType to
“CurrencyCode”.

5. Go to the forms ClassDeclaration and enter the following:

public class FormRun extends ObjectRun
{
 QueryBuildRange rangeCurrencyCode;
}

6. Now go to Data Sources/SalesTable/Methods and override init():

public void init()
{
 QueryBuildDatasource salesTableDS;
;

MORPHX IT Forms

 © 2006 Steen Andreasen

177

 super();

 salesTableDS = SalesTable_ds.query().dataSourceTable(tablenum(SalesTable));
 rangeCurrencyCode = salesTableDS.addRange(fieldNum(SalesTable, currencyCode));
}

7. Override the executeQuery() method on the data source SalesTable:

public void executeQuery()
{
 rangeCurrencyCode.value(queryValue(filterCurrencyCode.valueStr()));

 super();
}

8. Located the control filterCurrencyCode and override the modified() method:

public boolean modified()
{
 boolean ret;

 ret = super();

 SalesTable_ds.executeQuery();

 return ret;
}

9. Save the form and create a menu item for the form.

The form MyFrom_QueryFilter has a control above the grid control. This control can be
used for only showing sales order of a selected currency. The filter control is not
bounded to a data source. The extended data type CurrencyCode related to the control is
setting labels and adding the lookup. As the control is not bounded to a data source
values keyed in is not validated, so you would be able to key in a currency code not
listed in the lookup. A validation should be made to check whether a valid currency
code is keyed in. The validation is on purpose left out to simplify the example.

In the init() method on the data source SalesTable a new query range was created.
Ranges should always be created in the init() method as this method is only executed
once. The value used by the range is defined in the executeQuery() method as this
method is triggered each time the form query is changed. A form query can be executed
again if the application users enters the query dialog by clicking the query icon and
changes the query values. In the example the executeQuery() method is triggered when
the value of the control Currency is changed.
Notice if the application users click the query icon, the ranges for the currency code can
be changed. To prevent this the following line must be added to the query init() method:

 rangeCurrencyCode.status(RangeStatus::Locked);

MORPHX IT Forms

 © 2006 Steen Andreasen

178

Such a way of adding filter controls to the form design is commonly used in Axapta.
The application user could have achieved the same result by accessing the query dialog
directly. This example was simple so it would not have been difficult for the application
user doing so using the query dialog. If you had several filter controls, and several data
sources in your form query this would however not be an easy job for the application
users.

Modifying Data Sources from X++
Best practice is to never insert, update or delete records from the methods of a form.
Such operations should always be done from a table or a class method to keep data
operations out of forms.

A common mistake when inserting, updating or deleting a record from a table used as
data source in a form, is to refer directly to the table instead of using the data source.
You might have a run able class called from your form inserting a new record in a table
used as a form data source. To have the new record shown in your form you call
executeQuery(). Your new record will be shown alright, but the cursor will be
positioned at the first record in the form. This might be fine for your case, but often
there is a requirement that the cursor is positioned at the new record. A data source has a
method called findRecord() which can be used to position the cursor. This is not
recommend using findRecord() as this might result in that most of the records of your
form are traversed to positioning the cursor. Instead you should use the same data
source methods as the form would use when inserting new records.

Example 8: Adding records

Elements used from MORPHXIT_Forms project

 Class, MyForm_NewRecord
 Form, VendGroup
 Menu item action, MyForm_NewRecord

In this example you will learn how to add a new record to a form data source from X++
by using the same calls as if the records were created from the form user interface.

1. Create a new class, go to the ClassDeclaration and rename the class

“MyForm_CreateRecord”.

2. Make the class run able by adding a static main() method:

static void main(Args _args)
{
 MyForm_NewRecord newRecord;
;

 newRecord = new MyForm_NewRecord();
 newRecord.run(_args.record());

MORPHX IT Forms

 © 2006 Steen Andreasen

179

}

3. Create a method called run() and add the following code:

void run(VendGroup _vendGroup)
{
 VendGroup vendGroup;
 VendGroup callerVendGroup = _vendGroup;
 FormDataSource formDataSource;
;

 formDataSource = callerVendGroup.dataSource();
 vendGroup.data(callerVendGroup);

 formDataSource.create(true);
 callerVendGroup.data(vendGroup);
 callerVendGroup.recId = 0;
 callerVendGroup.vendGroup = "G1";
 callerVendGroup.name = "Group 1";
 callerVendGroup.write();

 formDataSource.reread();
 formDataSource.refresh();
}

4. Save the class and create a menu item for the class. Go to the property sheet for

the new menu item and set Label to “New record”.

5. Locate the form VendGroup and drill down the form design to

Designs/Design/[ButtonGroup:ButtonGroup]. Drag the menu item for the new
class to the button group control.

6. Save the form VendGroup.

When opening the form VendGroup you will have a new button called New Record. By
clicking the button a new record will be inserted into the table VendGroup, and the
cursor will be positioned on the new record. The record will be a copy of the current
selected record. Only account number and name is changed.

In the class a handle is created to the VendGroup data source. The current selected
record is passed on as a parameter in the main() method. A table variable has a method
called datasource() which is initialized when called from a form. This method is used to
call the data sources methods create() and write() for adding a new record and inserting
the new record. As the current record is copied the system field recId is set to 0 to force
a new record to be inserted.
The call of the data source methods refresh() and reread() is very important as they will
update the record in the form and read the new record from the table. Forgetting these
calls will result in an error if using AOS since the cache will not be updated.

MORPHX IT Forms

 © 2006 Steen Andreasen

180

Using the form data source methods for inserting, updating and deleting records makes
your form more users friendly. This is a preferable solution when adding single records.
However if your have to insert a lot of records in a form you would be better of using
the table methods instead as calling the form data source method for inserting a large
number of records will be very slow.

The system class Args was in this example use to get a handle to the calling object.
Args is often used for validating the calling object. Some forms require to be called
from another form or class. In such a case Args can be used to validate the calling
object, and depended on the calling object different ranges could be added, or
restrictions on controls could be set. You will find plenty example on the use of Args in
forms by checking the forms in the standard package.

Building Lookups
Adding a relation to an extended data type will cause a lookup button automatically to
be added to form controls using the extended data. Often this will be just fine. However
you might have cases where no relations exists and a lookup is required. The case could
also be that you need to filter the records listed in the lookup, or you might need a more
advanced layout such as several tab pages in the lookup which different records listed.
A lookup form can be overridden either by building a new lookup from X++ or by
replacing the default lookup with a customized lookup created using a form.

Take a look at the following code which is taken from the form HRMApplication. This
is the method performFormLookup() overridden for the data source field
hrmRecruitingId:

public void performFormLookup(FormRun _p1, FormControl _formControl)
{
 super(hrmApplication::hrmRecruitingIdLookup(_p1), _formControl);
}

To override an existing lookup from X++, you can use the method
performFormLookup() from the data source field. Both data fields and form controls
have a method called lookup(). These should only be used if your control does not
already have a lookup, or if your need a lookup for a control which is not bounded to a
data source field. As the method performFromLookup() was first introduced by Axapta
3.0 you might not be able to find many example on the use of this method in the
standard package. PerformFormLookup() has the FormRun object used by the lookup as
the first parameter and the control for the lookup field as the second parameter. Here the
method hrmRecruitingIdLookup() on the table HRMApplication is called to override
the FormRun object passed on the super() call.

static formRun hrmRecruitingIdLookup(FormRun lookupFormRun)
{
 formDataSource formDataSource;
 query formquery;

MORPHX IT Forms

 © 2006 Steen Andreasen

181

;
 formDataSource = lookupFormRun.objectSet();
 formQuery = formDataSource.query();

 formQuery.dataSourceNo(1).addRange(fieldNum(HRMRecruitingTable,
 status)).value(queryValue(HRMRecruitingStatus::Started));

 return lookupFormRun;
}

If looking up the table method hrmRecruitingIdLookup() you will see that the FormRun
objects is used to get a handle on the default lookup form. In that way you can access
the query used by the lookup. A new range is here added for filtering the records listed
in the lookup. The query used in the lookup is an ordinary query, which can be joined
with any data sources.

If you need to create a lookup for a control which has no lookup, you will not be able to
use the method performFormLookup. Instead the class SysTableLookup is used to build
a query for your lookup. The form InventTable makes use of this class in several
methods located in the table InventTable. The lookup methods on the table InventTable
are prefixed with lookup*.

A form created in the AOT can also be used as a lookup. Forms used as lookup forms
are easily recognized in the AOT as they have the suffix *lookup. To have a form look
like a default lookup form generated by the kernel, you should create the form without
tab pages. Just add a grid control with the fields to be listed. By setting the property
Frame on the node Design to “Border” the form will appear as a default lookup form.
The init() method on the lookup form should return the control to be selected:

void init()
{
 super();
 element.selectMode(CustTable_AccountNum);
}

The above code is taken from the form CustTableLookup. The form method
selectMode() will set the form in ‘lookup mode’. When the application user press enter
or click on a record, the form is closed and the value of the form control specified as
parameter is returned.

client static void lookupCustomer(FormStringControl _formStringControl,
 CompanyId _companyId = curExt())
{
 Args args;
 FormRun formRun;

 if (! CompanyTmpCheck::exist(_companyId))
 {
 throw error(strFmt("@SYS10666", _companyId));
 }

MORPHX IT Forms

 © 2006 Steen Andreasen

182

 changecompany(_companyId)
 {
 args = new Args();
 args.name(formstr(CustTableLookup));
 formRun = classFactory.formRunClass(args);
 formRun.init();
 _formStringControl.performFormLookup(formRun);
 }
}

Here the form CustTableLookup is called from the method lookupCustomer on the table
CustTable. Notice that the data source method performFormLookup is used to link the
lookup form with the calling form. A better solution than calling your lookup method
directly from X++ is to relate your lookup form directly to an extended data type. Just
enter the form name at the property FormHelp on extended data type and your lookup
form will automatically be used when using the extended data type in a form. This is
really neat, as this does not require any line of code to be written from the calling form.
If necessary you can make restrictions in your lookup form on how the lookup form
should behave depending on the caller. The extended data type ProjId is using a
customized lookup form. A lot of the extended data types using special lookups are also
using customized lookup forms such as the extended data type TransDate.

Note: If you need to create a lookup on AOT objects such as tables or classes, take a look at the Global
classes prefixed with pick*. Check the form sysDatabaseLogTableSetup for an example on how to use the
Global class method pickTable().

Form Dialog
A common way to create a dialog for a runbase class is using the Dialog* classes. A
dialog is often simple and you will just have to add a few controls and categorized the
controls in field groups.
However if your have created a complex dialog with several controls, where controls
are being enabled based on runtime settings, you will soon realize that the dialog will be
time consuming to maintain. Before coming so far, you should consider using a form as
dialog instead. The runbase framework supports using an ordinary form as a dialog. All
needed is to follow a few rules when constructing the dialog form.

MORPHX IT Forms

 © 2006 Steen Andreasen

183

Figure 31: Form dialog

Take a look at figure 31: Form dialog. The form is an example of a dialog form used
by a report in the Project module. The runbase framework will check that certain
controls are created and named correctly in the design. These mandatory controls are
used by the runbase framework to locate the different part of the design. If you have
decided on using a form dialog you will still be able to added additional controls to your
form dialog from the runbase class using the dialog classes. The mandatory controls in
the form dialog is used to positioning controls added from the class.

When creating a form dialog it is much faster to copy and existing form dialog rather
than creating your own from scratch. By using a form dialog as the one shown here you
will be certain that you have all the required controls needed. Just replace the controls in
the field group named GroupLeft with the controls needed for your dialog. All controls
used for keying in data in your form dialog should be created using edit methods. This
will make it easier to transfer the values to the runbase class.

The above mention form dialog is called from the class ProjReport_EstimateCheck. The
dialog() method in the class looks like the following:

public Object dialog()
{

 DialogRunbase dialog = Dialog::newFormnameRunbase(formstr(ProjEstimatelistDialog),this);
 ;
 dialog = super(dialog);

 // Add extra fields below

 return dialog;
}

MORPHX IT Forms

 © 2006 Steen Andreasen

184

Notice that additional dialog fields are also added in the dialog method. A parameter
method is created for each field in the dialog to get and set the values for the dialog. The
method getFromDialog() will only be used if you have added additional fields to the
form dialog from your class.

6.5 Special Forms
This section shows examples on how to create more advanced forms. The examples
should give you an idea of the opportunities with Axapta forms. Even though forms are
standardized and the layout is normally auto positioned you still have several options
for making your forms more user friendly without making you code more complex.

Calling User Defined Method
You might have noticed when executing a form from X++, you will not be able to call
your own methods created on the form. If you have created a new method on a form,
your method will not be know when declaring a FormRun object outside the form as
only members of the FormRun object are known.

Sometime it can be useful to call your own methods from outside a form. This can be
achieved by using the super class for the system class FormRun.

Elements used from MORPHXIT_Forms project

 Form, MyForm_CallingUserMethod
 Menu item display, MyForm_CallingUserMethod
 Job, Forms_CallingUserMethod

Duplicate MyForm, rename the form to “MyForm_CallingUserMethod” and create a
menu item for the new form.

void setReadOnly()
{
 salesTable_ds.allowEdit(false);
 salesTable_ds.allowCreate(false);
 salesTable_ds.allowDelete(false);
 salesTable_ds.insertAtEnd(false);
 salesTable_ds.insertIfEmpty(false);

 element.design().caption(strfmt("READ ONLY - %1", element.design().caption()));
}

Add the above method to MyForm_CallingUserMethod. Calling this method will
prevent modifying data in the form and prefix the caption text of the form with a read
only message. The method will be used to show how to call a new form method from
outside a form.

MORPHX IT Forms

 © 2006 Steen Andreasen

185

static void Forms_CallingUserMethod(Args _args)
{
 Args args;
 Object formRun;
;

 args = new Args();

 formRun = new menuFunction(menuItemDisplayStr(MyForm_CallingUserMethod),
 MenuItemType::Display).create(args);
 formRun.init();
 formRun.setReadOnly();
 formRun.run();
}

Create a new job with the above code. The form MyForm_CallingUserMethod will be
called when executing the job. Instead of using the system class FormRun, the system
class Object is used for declaring a FormRun object. Object will not validate for valid
FormRun methods. This gives the options for calling any new methods added to the
form. You must assure that the method exists, as no validation is made until runtime and
no lookup information will be shown when entering a dot after a instance of the class
Object.

The method added to the form MyForm_CallingUserMethod did not have any
functionality which could not be called by referring the form and form data source
methods. Still using such a method can be useful as you would only have to add a single
line of code to the job calling the form. As the form might be called from several places
you be able to have the code in one place.

Overload Methods
If you have added controls at runtime to your forms, you might have situations where it
would be useful to override the methods of the runtime control. Overriding the methods
of a dynamic control is possible, you will just have to enable this feature on the form
and create a method on the form for each method to be overridden.

Elements used from MORPHXIT_Forms project

 Form, MyForm_OverloadMethod
 Menu item display, MyForm_OverloadMethod
 Job, Forms_OverloadMethod

Duplicate MyForm, rename the form to “MyForm_OverloadMethod” and create a menu
item for the new form.

public void init()
{
 super();

 element.controlMethodOverload(true);

MORPHX IT Forms

 © 2006 Steen Andreasen

186

}

In the init() method of the new form you must enable the option to override methods for
runtime added controls. The code for the overridden methods must be added to the
form. The syntax is: <controlname>_<controlmethod to be overriden>. This means that
you must know the name of the new control added before runtime. In this case the
modified method of a new control called showOnlyOpenOrders will be overridden:

Boolean showOnlyOpenOrders_modified()
{
 FormCheckBoxControl checkBoxControl = this.controlCallingMethod();
 QueryBuildRange rangeSalesStatus;
 Boolean ret;
;

 ret = checkBoxControl.modified();

 rangeSalesStatus =
SalesTable_ds.query().dataSourceTable(tablenum(SalesTable)).findRange(fieldnum(SalesTable,
salesStatus));

 if (!rangeSalesStatus)
 {
 rangeSalesStatus =
SalesTable_ds.query().dataSourceTable(tablenum(SalesTable)).addRange(fieldnum(SalesTable,
salesStatus));
 }

 if (checkBoxControl.value() == NoYes::Yes)
 {
 rangeSalesStatus.enabled(true);
 rangeSalesStatus.value(queryValue(SalesStatus::Backorder));
 }
 else
 {
 rangeSalesStatus.enabled(false);
 }

 SalesTable_ds.executeQuery();

 return ret;
}

A new check box control is going to be added to the form. The new control will be used
to show only open sales orders. The code in this method will be executed when the
value of the new control is modified. By calling this.controlCallingMethod() a handle to
the new control is made. This is important as you will have to make the super() call of
the modified method manually. Also your method must have the same return value as
the overridden method.

Note: You can put the methods for the controls added runtime in a class by using the FormRun method
controlMethodOverloadObject().

MORPHX IT Forms

 © 2006 Steen Andreasen

187

In the method a new range is added to filter the sales order status. As this method might
be called several times the rangeSalesStatus object is first tried initialize by searching
the query for an existing range on the field salesStatus. If no range is found the method
is executed for the first time, and a new range is added. By marking the check box, the
range will be enabled and filtering on open sales orders. If unmarking the check box, the
range will be disabled.

static void Forms_OverloadMethod(Args _args)
{
 Args args;
 FormRun formRun;
 FormCheckBoxControl ctrlShowOnlyOpenOrders;
;

 args = new Args();

 formRun = new menuFunction(menuItemDisplayStr(MyForm_OverloadMethod),
 MenuItemType::Display).create(args);
 formRun.init();
 formRun.design().columns(1);

 ctrlShowOnlyOpenOrders = formRun.design().addControl(FormControlType::CheckBox,
 "showOnlyOpenOrders");
 ctrlShowOnlyOpenOrders.label("Only open orders");
 formRun.design().moveControl(ctrlShowOnlyOpenOrders.id());

 formRun.run();
}

The form is called using a job. After initializing the form and activating the option to
override the methods, the check box control is added. Remember that the name of the
new control must match the prefix for the form method used to override modified(). A
label is added for the control. The label system is not use to simplify the case.
To have the new control appear in top of the form the columns number on the form
design has be set to 1. As a new control will always be appended as the last control, the
design method moveControl() is used to set the check box control as the first control.
MoveControl() takes two parameters, the second parameter specifies which control to
insert right after. As the check box should be the first control, the second parameter is
just left blank.

Overriding methods of a dynamic control is not optimal as you will have to create a
method on the form for each method to be overridden. Often when adding dynamic
controls you might not be aware of the number of controls to be added till runtime, or
you might need to have a certain number of controls added to several forms. An
alternative is adding a menu item at runtime instead. By adding a menu item calling a
run able class, you will be able to add all your logic in the calling class. This will not
give you the exact same options as overriding methods of a form control, but in most
cases this should fulfill your requirements.

MORPHX IT Forms

 © 2006 Steen Andreasen

188

General Form Changes
Each time a form is executed the class SysSetupFromRun is called by the ClassFactory
class. SysSetupFormRun is a sub class of the system class FormRun. This means that
you have the option to get a handle on FormRun when a form is executed. By
modifying SysSetupFormRun you will be able to make runtime changes to any form
without having to modify the form. This is an awesome feature which really can save a
lot of coding.

Keep in mind that such modifications will cause an overhead as the code is called each
time a form is loaded. You should be caution when modifying SysSetupFormRun.
Always try out you changes in a local installation of Axapta. If you make any mistakes
in you code, you might have the entire application to crash, and this might not be
appreciated if other people are using the application. Not just normal application forms
will be affected. All MorphX tools created by the AOT such as the compiler form and
the search form will be affected.

Elements used from MORPHXIT_Forms project

 Class, SysSetupFormRun

Add a new method called showDatasourceInfo to the class SysSetupFormRun:

void showDatasourceInfo()
{
 FormDatasource formDatasource;
 FormGroupControl formGroupControl;
 FormStaticTextControl formStaticTextControl;
 Counter counter;
 Counter noOfDatasources;
;

 noOfDatasources = this.form().dataSourceCount();

 if (noOfDatasources)
 {
 formGroupControl = this.form().design().addControl(FormControlType::Group,
 "formGroupControl");
 formGroupControl.caption("Tables used by form");
 formGroupControl.frameType(3);
 }

 for (counter=1; counter <= noOfDatasources; counter++)
 {
 formStaticTextControl = formGroupControl.addControl(FormControlType::StaticText,
 "formStaticTextControl" + int2str(counter));
 formStaticTextControl.text(tableid2name(this.form().dataSource(counter).table()));
 }
}

MORPHX IT Forms

 © 2006 Steen Andreasen

189

The method will print the names of tables used as data source by the form. A field
group will be added to the form, and for each data source a static text control will show
the data source table names. The field group will only be added if the form has any data
sources.

void new(Args args)
{
 KMActionMenuButtonAuto KMActionMenuButtonAuto;
 CCDatalinkMenuButtonAuto CCDatalinkMenuButtonAuto;
 KMKnowledgeCollectorMenuButtonAuto KMKnowledgeCollectorMenuButtonAuto;
 ;

 super(Args);
 // CC Start
 if (this.name() != formStr(SysLicenseCode))
 {
 KMActionMenuButtonAuto = new KMActionMenuButtonAuto(this);
 if (KMActionMenuButtonAuto.check())
 KMActionMenuButtonAuto.create();

 CCDatalinkMenuButtonAuto= new CCDatalinkMenuButtonAuto(this);
 if (CCDatalinkMenuButtonAuto.check())
 CCDatalinkMenuButtonAuto.create();

 KMKnowledgeCollectorMenuButtonAuto= new KMKnowledgeCollectorMenuButtonAuto(this);
 if (KMKnowledgeCollectorMenuButtonAuto.check())
 KMKnowledgeCollectorMenuButtonAuto.create();
 }
 // CC End

 this.showDatasourceInfo();
}

The methods is called from the new() method in the class SysSetupFormRun. When
executing a form, a field group with a frame will automatically be added showing tables
used by the form.

This is just a simple example on how to make general changes to forms. Try take a look
at the other code in the new() method. The code is used by the HRM modules to add
buttons dynamically to forms. The class CCDataLinkMenuButtonAuto is used to add
buttons to a form at runtime. This HRM feature is called Data links and is used to link
an Axapta record to an external database. If a form uses a data source configured as a
data link, a button to call a form showing the related records from the external database
is added at runtime to the form.

Colors
A typical form in Axapta uses a standard set of form colors. Only a few places in the
standard package form controls are colored in other colors. By changing the default
colors of a form you will in a simple way make a form more user friendly. Coloring a

MORPHX IT Forms

 © 2006 Steen Andreasen

190

control is an alternative to sort or filter data as it makes it easier to spot a control with a
certain value.

Elements used from MORPHXIT_Forms project

 Form, MyForm_ColorRow
 Form, MyForm_ColorColumn
 Menu item display, MyForm_ColorRow
 Menu item display, MyForm_ColorColumn

Make two duplicates of MyForm called “MyForm_ColorRow” and
“MyForm_ColorColumn”.

Go to the form MyForm_ColorRow and override the SalesTable data source method
displayOption() with the following code:

public void displayOption(Common _record, FormRowDisplayOption _options)
{
 SalesTable salesTableLocal = _record;
;

 if (salesTableLocal.currencyCode == CompanyInfo::find().currencyCode)
 {
 _options.backColor(WinApi::RGB2Int(255, 255 , 255)); // White
 }
 else
 {
 _options.backColor(WinApi::RGB2Int(255, 0, 0)); // Red
 }

 super(_record, _options);
}

The method displayOption is executed for each record in the form when the form is
loaded. You use the method for changing the default colors of a control. In this example
records where the currency of the sales order is different than the company currency
will be colored red. Notice, colors must be set for all records and not only the records to
be colored red.

The example just shown was coloring all controls of a record. Try changing the
displayOption() method in the form MyForm_ColorRow to look as the following:

public void displayOption(Common _record, FormRowDisplayOption _options)
{
 SalesTable salesTableLocal = _record;
;

 if (salesTableLocal.currencyCode == CompanyInfo::find().currencyCode)
 {
 _options.backColor(WinApi::RGB2Int(255, 255 , 255)); // White
 }

MORPHX IT Forms

 © 2006 Steen Andreasen

191

 else
 {
 _options.backColor(WinApi::RGB2Int(255, 0, 0)); // Red
 _options.affectedElementsByControl(SalesTable_SalesId.id(), SalesTable_CurrencyCode.id());
 }

 super(_record, _options);
}

The only changes compared to the previous example is that the method
affetedElementsByControl() is called. This will cause only the controls listed as
parameters for affetedElementsByControl() will have the color changed. You can add
any number of controls to be colored. Just remember to set the controls added to be auto
declared.

The examples showed where hard coding the criteria’s and the colors used. In a real
case you should let such options be available for the application users. When using the
HRM modules the form EmplTable make uses of coloring rows. The colors used by
EmplTable are defined by the application user in the parameter form HRMParamters.

6.6 Summary
This chapter has shown how to use the single parts of a form such as data sources and
the controls in the form design. You should know be aware of how to get data from
database and have the data maintained in a form. Also you should have acquired
knowledge of how to create forms with a standardized look. As forms make out the
main part of the user interface, having a standardized look and feel of your forms is
essential as this makes the user experience better.

MORPHX IT Reports

 © 2006 Steen Andreasen

193

7 Reports
Reports in Axapta are based on a query and a design stored in the AOT. A report is just
a definition, it contains no data, and when run, will fetch the data it needs from the
database. When executing the report, you have the option of printing the report
immediately, or defining a batch job for executing the report at a later time on a separate
batch server. Batch processing is normally used for lengthy reports such as printing
monthly customer balance lists.

Axapta reports are very flexible since MorphX provides tools to override a report’s
definition without the need for complex programming. By using the MorphX
environment, you can filter data, or even modify the layout of the printed job at runtime.

There are two ways of creating reports in Axapta. You can use the built-in report
wizard, or the report generator, located in the AOT under Reports.

This chapter focuses on the technical aspects of creating reports, and is not intended to
provide an explanation of the various options contained in the report dialog. While it is
always helpful to understand Axapta’s user interface, you do not need to understand the
report user interface to benefit from the information contained this chapter. If you are
not familiar with the end user interface for reports, you can get more detailed
information by checking the manuals in the standard package.

7.1 Report Wizard
The Report wizard is a tool designed so that non-technical persons can create reports.
The wizard can be accessed in the toolbar menu Tools | Development tools | Wizards |
Report Wizard. This is a good place to start learning about Axapta reports. The Report
wizard is an end user tool, which guides you through the steps of creating reports. You
have the option of storing a report created by the wizard in the AOT. It is a good idea
for new Axapta programmers to review these wizard-generated objects in order to
become familiar with the standard elements contained in a report. The Report Wizard is
also helpful for experienced Axapta programmers who can use it to create the basic
structure of a report and then use the report generator for final modifications.

For a step-by-step guide showing how to use the Report wizard, see the Appendix:
Reports Wizard.

7.2 Creating Reports
By reviewing the output generated by the report wizard, you can see what will be
required to create reports from scratch using the report generator. When you are first
learning how to create a new report, it is useful to begin by looking at some of the
standard reports in the AOT to see if you can find an existing report that already meets

MORPHX IT Reports

 © 2006 Steen Andreasen

194

some of your needs. Duplicate this report and start making modifications to your copy.
For help in locating a report from the menu, see the chapter Menus and Menu Items.

When starting out with the report generator, the tutorial reports in the standard package
can also be useful. Take a look in the AOT at the reports prefixed with tutorial_.

Axapta reports are divided into two parts, the Data Sources node which defines the data
to be fetched and the Designs node which is used to define the report’s layout and
presentation. Figure 32: Report overview shows an overview of a typical report.

Figure 32: Report overview

Example 1: My first report

Elements used from MORPHXIT_Reports project

 Report, MyReport
 Menu item output, MyReport

MORPHX IT Reports

 © 2006 Steen Andreasen

195

As a preliminary exercise, start creating a report as shown in figure 32: Report
overview. The report prints customer transactions grouped by customer. The example is
kept simple since the purpose is to learn the basic steps required to create a report. Later
in this chapter, the details will be explained and more features will be added to the
example.

1. Create a new report by right-clicking the Reports node in the AOT and selecting

New Report. A new report called "Report1" will be created. Open the property sheet
and rename the report "MyReport".

2. For this report, you will be retrieving information from the Customer main table

along with each customer’s related transaction data. This is accomplished by
specifying two levels of data sources for the query. For this example, the customer
tables are the first level and the customer transaction table is the second level.
MorphX development often involves dragging and dropping elements. In this case
you will drag tables from one section of the AOT to the data source of the report
you are developing. To make the task of dragging and dropping as simple as
possible, Axapta allows you open multiple instances of the AOT. In this case, you
will open another instance of the AOT and drill down the Data Dictionary/Tables
node. Select the table CustTable. Expand the Data Sources/Query node in your
report, and drag CustTable to the Data Sources/Query/Data Sources node. Now the
first level of the query has been added. Expand the CustTable data sources node in
your report. Drag the table CustTrans to the CustTable/Data Sources node.

3. The two data sources of the query must be linked, otherwise all of the transactions

contained in the Customer Transaction table will be printed repeatedly for each
customer. Go to the CustTrans node in the Query and set the property Relations to
“Yes”. The node CustTrans/Relations will now contain an entry linking the two
tables. Now the report will only print the transactions that belong to the customer
being processed.

4. The query part is now ready to fetch data for the report, and the presentation of data

must now be done. Navigate to the Designs node, right-click and choose New
Report Design. A new design called "ReportDesign1" will be created. Navigate to
the ReportDesign1 node and enter the text "Customer transactions list" in the
Caption property.

5. Go to the ReportDesign1/AutoDesignSpecs node. Right-click the node and select

Generate Specs From Query. Your design will now contain two body sections, one
for each table in the query.

6. The last step is to select the fields to be printed. Right-click the Query node of your

report, and choose Open New Window. This will ease up dragging the fields to be
printed to the design. Pick the fields AccountNum and Name from the CustTable
data source and drag the fields one at the time to the body section node

MORPHX IT Reports

 © 2006 Steen Andreasen

196

CustTable_Body. Go to the CustTrans data source and drag the fields Voucher,
TransDate and AmountMST to the body section CustTrans_Body.

7. You now have a report as shown in figure 32. Execute the report by right-clicking

the report name and selecting Open. Axapta will display a dialog for filtering,
sorting and other print options. For now just click OK. The next dialog is the printer
dialog. Check to ensure that the printout is set to “Screen” and click OK. Your
report will now be printed to the screen.

8. As you might have noticed, the layout leaves something to be desired. Much of the

formatting tasks may be left to MorphX by specifying that the report should use a
predefined report template. Templates instruct MorphX to create standard report
features such as headings. To add a template to your report go to the
Designs/reportDesign1 node and locate the property ReportTemplate. Click the
arrow and choose the template InternalList.

9. Run the report again by following step 7. Now the report has heading information

like name of the report, page number, date and time. You have created your first
report!

In the MyReport example, you did not have to write a single line of code. When
creating reports in Axapta, you will not have to worry about writing code for data
connections and position controls in the layout. MorphX will handle this for you.
Simply create a query and select the column order of your controls in the design. You
should only have to use X++ when creating more advanced reports where fetching data
is too complex for query, or when you need a special layout.

When you executed the report, two dialog windows were shown. Try creating a menu
item for MyReport by dragging MyReport to Menu Items/Output node. You can now
execute your report by right clicking the new menu items and selecting Open. The
information that was previously contained in the two separate dialog windows is now
presented in a single window. Running the report using a menu item automatically
activates a more sophisticated runtime report framework. This is the dialog that users
will see. Additional details can be found later in the chapter.

7.3 Report Query
While there are situations where a query cannot fulfill your needs and you have to fetch
your data using X++, most of the time you will fetch data for a report using a query that
specifies the data sources used for the report and how they are related. The report
generator uses a standard Axapta query. For more information on building a query, see
the chapter Queries.

Before building your query, you will have to decide which tables are needed. It is often
the case, as in the MyReport example, that you need to print data from a single form or

MORPHX IT Reports

 © 2006 Steen Andreasen

197

a set of related forms. In this case, you can examine the forms themselves to determine
the names of the required tables. For help on how to locate tables and fields from the
forms, see the chapter Menus and Menu Items.

After you have identified the required tables, you need to determine how the data should
be sorted and how it needs to be filtered in order to exclude any records that should not
appear on the report. The decision made here can have a significant impact on system
performance. A little additional planning at this stage can significantly reduce the
report’s execution time. For example, query selection criteria are more efficient when
placed on the highest level table defined in the data source. As a general rule, you
should attempt to limit the use of selection criteria to the tables in the first two levels of
your data source. If your report is filtering data at the third level of the query, you
should revisit your design and attempt to identify a more efficient approach. Can the
same result be achieved using two separate reports? If not, can a temporary table be
used to achieve the desired result?

For most reports, you will add all of the required tables to the report’s Query node. If
data from related tables are used, the tables must be joined in the query as you did with
CustTable and CustTrans in the MyReport example. Sometimes it is necessary to fetch
data from two tables that have no relation set up between them that can serve as a link.
In this case it may be possible to use another table that shares a relationship with each of
the tables from which you want to report. For example, if you want to print sales
invoice lines grouped by customer, there is no direct relation between the Customer
table and the Sales Invoice Lines table. Therefore, the Customer Invoice Journal table
must be used to create the report. See figure 33: Relation between CustTable and
CustInvoiceTrans. You will either have to add all three tables to the query, or just add
the first level table, CustTable, as a data source and use X++ to fetch the other two
tables. In general, the preferred approach is to use a query instead of X++ since this will
give the user the full benefit of the report dialog.

C ustTable

C ustomers

77 dat

InvoiceAccount C ustInvoiceJour

Customer invoice journal

62 dat

+CustInvoiceJour ���������	
��
��

���������	
��	���
 	
��

64 dat
Figure 33: Relation between CustTable and CustInvoiceTrans

Joining data sources can be done in two ways. If the data sources already have a
relation, the property Relation on the lower level data source must be set to True, just
as in the MyReport example. The relation will then be visible under the Relations node
for the joined data source. If no relation shows up, you must manually create the
relation under the Relations node, and the property Relation must then be set to False.
The best practice is to use an already existing relation, rather than manually creating
your own, as changes to the data dictionary would then automatically be reflected in the
report. By default, the data sources will be joined using an inner join, but the join mode
can be changed on the properties for the joined data source. Inner joins are often used in
business reporting where you have data in a main table and want to print the related
transactions. However, if you want to print all records from the main table even if there

MORPHX IT Reports

 © 2006 Steen Andreasen

198

are no transactions, you will have to change the join mode to OuterJoin on the
transaction table.

By right-clicking the Fields node, you can choose to add a field or an aggregation
function. By default, all of the fields from the current table are listed and so it makes no
sense to add additional fields from the table. If you add an aggregate function, all of the
fields will be removed because you cannot use both. To remove the aggregate functions
and restore the field list, change the Fields node Dynamic property to Yes. The
aggregate functions can be used if you want to count the number of customers by
customer group. You will have to select a table, choose an aggregate function and the
fields to be used.

Example 2: Aggregate function

Elements used from MORPHXIT_Reports project

 Report, MyReport_aggregate
 Menu item output, MyReport_aggregate

The following example will produce a count of customers by customer group. The
design has been simplified to focus on the aggregate functions.

1. Add the Customer table to the report query. Then, navigate to the Fields node, right-

click it and select the aggregate function Count. The count field must be
AccountNum.

2. On the CustTable data source, set the property OrderMode to Group by. The last

step is to specify how the information should be sorted. Go to the Sorting node and
add the field CustGroup. You will now have a query as shown in figure 34:
Aggregate function.

Figure 34: Aggregate function

3. The next step is to create a design to print the result. Create an auto design and

choose Generate Specs From Query as done in the MyReport example. You will
now have a body section for CustTable with one control printing the field
CustGroup. Add the field AccountNum.

4. Run the report. A row will be printed for each customer group. The AccountNum

field will count the number of customers in each customer group.

MORPHX IT Reports

 © 2006 Steen Andreasen

199

When using aggregate functions data must be selected with the group by parameter set
to OrderMode. The compiler will give an error if trying to select order by. This makes
sense as information is retrieved record by record when using order by. When the
OrderMode is set the group by MorphX will retrieve a single record for each group
based on the sorting fields. This means only fields added as sorting fields will contain a
value when using group by. You can add as many aggregate functions as needed. The
case could be that you want to print a transaction list with an aggregation for min, max
and average amounts.

The Sorting node under the Data Sources node is used for specifying how the output of
the report should be sorted. This can be done either by using indexes or choosing fields.
At least one index or sorting field should be defined. At runtime, the user may change
the fields chosen for sorting. Keep in mind that the use of a field for sorting rather than
an index may slow down your report.

The sorting fields added, have a property called AutoSum, this is used if you want
MorphX to print subtotals when the value of the field changes. Auto Sums are explained
in greater detail during the discussion of Auto design.

Ranges are used to filter the records processed by the report. The default ranges are
specified using the Range node under the data source node. At runtime, the user may be
allowed to add additional ranges or remove the default ranges depending on the
property settings for the range. You can specify a default value for a range, and whether
the user may change the specified values. Properties are may be set which specify that
the range should be locked or hidden. If no ranges have been specified, the first element
of each index for the table will be used as default ranges at runtime. Try executing the
report MyReport. You will see a default set of ranges has been added. Now go back and
add the fields AccountNum to Data sources/CustTable/Ranges node. When executing
MyReport only the range AccountNum will be listed.

7.4 Templates
In Axapta you have two different types of templates, report templates and section
templates. The templates are located as the two first entries under the Report node in the
AOT.

Report template
Report templates are used to specify a report’s basic formatting such as header and
footer information. You can create templates for more advanced cases like using data
from specific tables, but this will tend to limit where the template can be used. Report
templates are usually used for information not related to a specific table, like caption,
page numbering and lines. The template InternalList used in the MyReport example is
a commonly used report template, which is formatting the caption name, setting

MORPHX IT Reports

 © 2006 Steen Andreasen

200

company name, page number, initials, date and time. To view the template, locate the
template in the AOT, open the visual editor by right-clicking the template node and
choose Edit. Should you decide to create a report template with controls from a specific
table then any report using the template still must explicitly declare the table and fetch
the required records.

Example 3: Report template

Elements used from MORPHXIT_Reports project

 Report template, MyInternalList
 Report, MyReport_MyInternalList

In this example you will create a new template based on the InternalList template.
InternalList contains basic header formatting. A prolog and an epilog section will be
added to the new template. The new report template will be used to extend the
MyReport example.

1. Start duplicating MyReport and rename the new report to

“MyReport_MyInternalList”.

2. Go and locate the report template InternalList in the AOT. Right-click the report

template and choose Duplicate. Rename the new report template to
”MyInternalList”. To compile MyInternalList without any errors, Right-click
MyInternalList and choose Restore.

3. Right-click the report template name, choose New and select the report section

Prolog. The prolog will contain a text and a new page feed. First the text to be
printed must be defined. Go to Prolog/Methods, right-click and choose New
Method. Open the new method and enter the following:

display description prologDescription()
{
 return strfmt("Start of report: %1", element.design().lookupCaption());
}

This method will return a “Start of report” string that contains the value of the report
design’s caption property. This method must then be referenced in the prolog’s
design. Close the editor and drag the method to the Prolog node. Axapta will create
a string control which will print the value returned by the display method.

4. Right-click the report template name, choose New and select the report section

Epilog. Now created the following method, and drag the method to the Epilog node.

display description epilogDescription()
{
 return strfmt("End of report: %1", element.design().lookupCaption());
}

MORPHX IT Reports

 © 2006 Steen Andreasen

201

5. To have the prolog and epilog sections printed on new pages a new page feed must

be added. Go to Prolog/Methods, right-click and choose Override Method and select
executeSection().Note that the call to the newPage method is placed after the call to
super(). As a result the page-break will occur after the prolog section has printed:

public void executeSection()
{
 super();

 element.newPage();
}

6. Add a new page feed to the epilog section. The new page feed must be executed

before super() in the epilog section, as the epilog must be printed on a new page.
You will now have a report template as seen in figure 35: report template.

Figure 35: Report template

7. The next step is to use the new report template in MyReport_MyInternalList. Go to

the node Designs/ReportDesign1, open the property sheet and select
MyInternalTemplate as the report template.

8. Create a new menu item for the report. When the report is executed a page for the

prolog will be printed before the report, and a page for the epilog will be printed
after the report.

The MyInternalList template uses display methods for returning the values for the
controls. Like with forms, you frequently use display methods when creating or
modifying reports. This is one of the ways that you can print data which is not easily
accessed through a query. In this example you use a display method to return a text

MORPHX IT Reports

 © 2006 Steen Andreasen

202

string, in other cases, it could be the result of a calculation. Simple create your display
method and drag the method to the design. You do not have to worry about the type of
the control to display the value appropriate. MorphX will handle this for you by
checking the methods return type.

You ought to consider having one or two report templates, to be used for most of your
reports. The advantage of using a report template is that is allows you to easily
standardize the basic formatting of your reports. If you later on decide to change a
report template, all reports with auto designs using the report template will
automatically be changed.

Note: It is often an requirement to print both page number and the total number of pages printed. The
template InternalList uses element.page() to print the current page number. The method
element.pagesTotal() will return the total number of pages to be printed. Element.pagesTotal() can only
be used as a return value for a display method with the return type integer. The total number of pages is
calculated as runtime so you cannot use the method for any validations. To print something like: <page>
of <page total> you will have to use 3 report controls.

Section template
The section templates were introduced in version 3.0. This could be the reason why they
are rarely used and that you might not find any examples of their use in the standard
package. A section template must be based on a table map. Table maps are explained in
the chapter Data Dictionary. Fields from the map can then be added as controls. In
cases where you have reports with similar section blocks, a section template may allow
you to reuse the same piece of code, rather than rebuilding the same block section in
multiple reports. However, in practice it may be easier to create one report and use X++
to modify the output, rather than having two reports and using a section template. The
SalesInvoice report provides an excellent example.

7.5 Designs
Positioning fields and controls in your design is normally handled by MorphX. All
controls will by default be auto adjusted as required. This means that the controls will
be set to auto positioning and fonts and font size is defaulted from the user options in
the toolbar menu Tools | Options in the tab page Fonts.

When you have chosen the row order MorphX will position the controls based on the
information from the extended data types. This is very helpful, if you ever need to add a
control in the middle of a row, or you want to hide a control, the following controls will
be repositioned accordingly. For most reports, you should allow MorphX to auto
position the controls, however in situations where your controls must always have a
fixed position you can override the default settings. The disadvantage is that if you set a
single control in a row to a fix position, you will have to define fixed positions for all

MORPHX IT Reports

 © 2006 Steen Andreasen

203

controls. This is generally not recommended unless your controls must fit the layout of
a preprinted form or adhere to customer/vendor/government specifications.
If you need to print controls which must be positioned below each other in the same
column you should consider using the property ModelFieldname (all report controls
have this property). The position of the current control will adjust to the position of the
control specified in ModelFieldName, if the current controls positioning is set to auto.

Creating design
A report can have more than one design. Under the Design node, you can create as
many designs as needed. This can be useful if you have a form you want to print with
different layout for each language or group of customers. Multiple designs within one
report are not often used in the standard package. Instead of having several designs the
need for different layouts is handled by X++, see the report SalesInvoice. In the
SalesInvoice report, the method element.changeDesign() handles whether or not a
control should be printed. It is often more time consuming to maintain differences in
multiple designs than manipulating a single design using X++. Maintaining header
sections across several designs is tedious work as it will take time to locate and verify
that your changes are identical in all designs.

Note: If you are creating a report such as a form which must fit in a preprinted layout it may be necessary
to do the final adjustment using the specific printer driver that will be used to produce the production
output. Variations in printers can cause changes in location of where fields are located on the printed
page. Often the layout will be adjusted according to the individual printer driver.

Designs can be created either as auto design or as a generated design. A design can also
consist of both an auto design and a generated design. In this case only the generated
design will be used. The main differences between auto designs and generated designs
are that auto designs take full advantage of MorphX, they allow for dynamic templates,
auto headers and auto sums based on criteria established in the query. Generated designs
are static, and will not automatically adjust to changes made in the query or report
template. It is recommended using auto designs. You should only consider using
generated designs in special cases where a fixed layout is needed. Generated designs are
generally only required where the layout is fixed by contract or statute, or when you
need to use pre-printed forms such as checks and purchase orders.

Generated designs have some extra sections for adding headers and footers to body
sections. Beside that auto designs and generated designs use the same type of sections.
See figure 36: Report design sections for an overview of sections in a report design.

MORPHX IT Reports

 © 2006 Steen Andreasen

204

Type Description
Prolog

This is the first section printed. The prolog is
typically used for printing a logo or a title on the
first page.

Page Header The page header is printed at the top of each page.
A report can have more than one page header.

Body The body section is printed after the page header.
This is the data section. The report will normally
contain a body section for each data source.

Page Footer Page footer is printed at the bottom of each page. A
report can have more than one page footer.

Epilog This is the last page printed.

Programmable Section Programmable sections are executed from code.
This type of sections can be used in cases, where
you need to print data which is not part of the
query.

Section Template Section Templates is used for defining common
used data, typically used in body sections. A
section is based on a Map.

Header Header is used in Generated Designs as body
header.

Section Group In Generated Designs, the Body section is added to
a Section Group.

Footer Footer is used in Generated Designs as footer for a
body section.

Figure 36: Report design sections

You can also see an approximate image of the report by selecting view. The view option
can be close to the printed result, however, if a report has a complex design like the
SalesInvoice report, it can be difficult to figure out how the result will look when
printed.

You have two options for adding controls to your design, either by using the nodes in
the report tree as shown in previous examples, or by using the visual editor. The visual
editor gives the option of either viewing or editing the controls in your design. To edit a
report using the report tree, double-click the design node; if you want to use the visual
editor right-click the design node and choose edit. Like the report view option, the
visual editor can be difficult to use for complex reports, but it can be used when

MORPHX IT Reports

 © 2006 Steen Andreasen

205

building reports with relatively simple layouts. For creating a design the visual editor
offers the same features as the AOT. From the visual editor you can change the
properties for an element of the report and add or delete controls. To modify the report
from the visual editor, simple position the cursor and right-click for the menu to edit,
delete or add an element. To change the unit for the ruler right-click and choose
between centimeters, inches or chars.

Figure 37: The visual editor

In practice, however, the visual editor is best for getting an overview of your design or
to locate and change the properties for a specific control. The visual editor is relatively
slow and most things can be done faster when working with the report tree.

Auto design
The most common way of creating the layout for your reports is by using auto designs.
When using auto designs, you will only have to choose a report template and the fields
to be printed from the query. MorphX will handle formatting the layout. If your report
contains integer or real fields, the user will have the option of choosing summarization
at runtime.

For a quick start creating your auto design, you can right-click on the auto design node
and choose Generate Specs From Query, a body section will then be created for each
data source in the query, and the sorting fields will be added as controls to the design.
To get a visual view of your report, right click the auto design node and select View.
Try opening MyReport in the visual editor. Notice that the visual editor will show the
sections from the report template, even though the template sections are not a part of the
reports nodes. This provides a useful overview of the report. To edit the report right
click and choose edit. In edit mode only the nodes which are part of the report are
accessible.

MORPHX IT Reports

 © 2006 Steen Andreasen

206

Auto sums is a useful feature in auto designs, it allows the user to specify at runtime
where subtotals should be calculated. From the report dialog you can set break levels for
subtotals for any field or body section as well as set a total for the whole report. From
an application users point of view it might be the most important reason for using auto
designs. It both makes your report more flexible, and eliminates most of the
programming effort that might otherwise be necessary to hardcode these sums.

Example 4: Auto sum

Elements used from MORPHXIT_Reports project

 Report, MyReport_Sums
 Menu item output, MyReport_Sums

Extend MyReport with totals for the transaction amounts. A subtotal for each customer
and a total for all customers will be added.

1. Start duplicating MyReport and rename the new report to “MyReport_Sums”.

2. As an index does not have an option setting breaks when the value of an index field

changes, the index AccountIdx will be removed from the sorting node of the
CustTable data source, and instead specify the AccountNum field. Set the property
AutoSum to Yes for the field AccountNum. You have now defined that each time
the value of a customer account changes a subtotal will be printed.

3. The fields to sum up must be defined. In this example only the fields AmountMST

from the table CustTrans will be used. Find the control printing AmountMST in the
CustTrans body section, open the property sheet and set SumAll to Yes.

4. Create a new menu item for the report, and run the report. For each customer a

subtotal will be printed.

5. In this case only a subtotal was printed. To add a total for the whole report, close the

report and go to the AOT again. Go to body section for CustTable and set the
property GrandTotal to Yes. The body section CustTrans does not have this
property, only CustTable have the property as it is the primary data source.

Step 2 specified the control that defined the report’s subtotals, but not which fields
would be summed. The design specified which fields should be totaled, here
AmountMST. These are the only required settings. The user will be able to do the rest at
runtime. The sorting field for breaking the subtotal and the settings for the grand total
only specify the report’s default settings and may be changed at runtime.

The AutoDesignSpecs node has a property called GrandTotal. This property will print
a total for the report with the default label ”Super Grand Total” if set to Yes. Super
Grand Total and the grand total set from either the report dialog or the body section will
always give the same result. Both will print a total for the whole report. So if the user

MORPHX IT Reports

 © 2006 Steen Andreasen

207

has the option of setting the grand total from the report dialog, you should not use the
super grand total.

The value of an auto sum can be accessed by using the method element.sumControl().
To access the auto sum control for CustTrans.AmounMST in the above example your
code should look like the following:

 element.sumControl(identifierstr(CustTrans_AmountMST), element.indent());

Element.sumControl will return the summed value. The first parameter is the control
name of the field summed. The system function indentifierstr() is used to prevent the
best practice check from giving a warning. Always use element.indent() as the second
parameter to set the correct indent level.

As you might have noticed there is a property called auto header. This is used in the
same way as auto sum. Instead of printing totals, a header will be printed each time a
sorting field breaks. The user can control auto header at runtime, but if needed you can
default auto headers to be visible. Both auto sums and auto headers are features only
available in auto designs.

All sections mentioned so far are triggered by either the reports framework or the
reports query. You will have situations where you need to trigger a report section
manually. In this situation, programmable sections which are executed from X++ are
used.

Example 5: Programmable section

Elements used from MORPHXIT_Reports project

 Report, MyReport_ProgSec
 Menu item output, MyReport_ProgSec

You will add a programmable section to MyReport. For simplicity the section will just
print a text control.

1. Start duplicating MyReport, and rename the new report “MyReport_ProgSec”. Go

to the report design node AutoDesignSpecs, right-click the node and choose new
ProgrammableSection.

2. Open the property sheet for the new programmable section and locate the property

ControlNumber. The control number is used to reference the section from X++.
Set the ControlNumber to 10.

3. Now add a control to the programmable section. Right click the programmable

section and choose New Control to add a text control. Go to the new text control,
located the property Text and enter ”Header for customers”.

MORPHX IT Reports

 © 2006 Steen Andreasen

208

4. Now define the execution of the programmable section. Go to
MyReport_ProgSec/Methods, right-click and choose Override Method and select
init(). The init() method must look like:

Public void init()
{
 super();

 element.execute(10);
}

5. Create a menu item for the report MyReport_ProgSec. When executing

MyReport_ProgSec the text 'Header for customers' will be printed before the query
is traversed.

In the example you changed the programmable section’s number to 10. It is
recommended to leave gaps in the sequence of numbers that you assigned to
programmable sections. This way, if at a later time, you need to add a new
programmable section you will be able to preserve a logical numbering sequence.

The execution of a programmable section can be called from X++ where needed.
However when used in combination with auto sums there are some things that you need
to be aware of: Say you want to print a programmable section before a body section is
printed, then the logical place to add your code will be in the executeSection() method
just before super() in the body section. This will print your programmable section
before the body section is printed, but the programmable section will also be executed
before each auto sum. At runtime MorphX treats an auto sums as a footer, and this
causes the body section to be executed again. The solution is to use the report methods
header() or footer() instead. From here you can control which body section is being
executed. When a body section is executed, the parameters _tableId and _fieldId will
contain a value.

public void header(ReportSection _headerSection, tableId _tableId, fieldId _fieldId)
{
 if (_tableId == tableNum(custTable) && _fieldId)
 element.execute(10);

 super(_headerSection, _tableId, _fieldId);
}

Here the header() method is used. A check is made to ensure that it is the body section
for the customer table which is printed. If so the programmable section is executed.
Another way of using the header() and footer() method could be to add a new page after
a sum if you are printing a batch of vendor or customer transactions.

Note: Programmable sections are often used to insert separators like blank rows or lines. Doing so can be
done by setting the properties of the programmable section. You will need to add a "dummy" control to
your programmable section as if the programmable section does not have any controls the section will not
be printed.

MORPHX IT Reports

 © 2006 Steen Andreasen

209

Generated design
Using generated designs can at first glance seem easier to use than auto designs, as you
have more sections which you can use to construct your report and all sections are
visible. However generated designs are more static, the design is based on the settings
from the query and property settings from the design node. The disadvantage is that if
you have chosen a report template for your report and later on decide to change the
report template or simply choose another template, it will not automatically update your
design. Furthermore, the user will not be able to choose summarization when executing
the report.

To have a closer look at a generated design MyReport will be used to create a generated
design. Right click on the Designs/AutoDesign1 node in MyReport and choose Generate
Design. A new node called Generated Design has now been created below
Designs/AutoDesign1. If you unfold the generated design you will notice that a design
similar to the auto design is created. The difference is that the sections from the report
template and the sections calculating totals have been added.

If you need to see an overview of your report when using auto designs, the option to
create a generated design based on your auto design can come in handy, as all sections
based on your templates and auto sums will be populated.

Controls in design
The most common way to add controls to your design is by dragging fields or display
methods from a data source or direct from a table. When dragging a basic type field or
display method such as string, enum, integer, real date and time, MorphX will
automatically create a control of the same type. Controls like prompt, shape, sum and
field group are used for more special purposes and must be added manually. You can of
course add all type of controls manually, but it speeds up just dragging the controls as
MorphX will auto position the control and fill out the properties with reference to either
the field or the display method.

Auto designs and generated designs have the same controls. For an overview of the
available controls see figure 38: Report controls.

MORPHX IT Reports

 © 2006 Steen Andreasen

210

Name Description
String

Used for string values. If printing memo fields, the property
DynamicHeight auto adjust the height of the control according
to the number of lines printed.

Enum

Used to print the value of base enums.

Integer

Used for integer values.

Real Used for real values.

Date Used for printing dates. Dates will be formatted accordingly to
the Windows regional settings.

Time Used for printing the time. Time will be formatted accordingly
to the Windows regional settings.

Text Used for printing fixed text values. If the text must contain a
dynamic value, display methods returning a string is normally
used.

Prompt Prompt will add text with following dots and a colon to the
text.

Shape Will draw a box. Size and position is specified by the
properties. Can be used to build the layout for a formula.

Bitmap Used for printing graphic. Enter path to the bitmap, refer to a
container or use resources. For an example of using a resource
as a bitmap, see the report HRMApplicantStatus.

Sum Used for printing sums with generated designs. With auto
designs sums can be used for printing a sum in a
programmable section. For an example of the use in auto
design, see the report SalesLinesExtended.

Field group Used for adding a field group from the data dictionary. The
field group on the report will automatically be updated if
changes are made to the field group in the data dictionary.

Figure 38: Report controls

Bitmap controls can be at bit tricky to use. There are several ways that bitmaps may be
configured. You can use icons from Axapta resources. Either you key-in the resource id
in the property sheet or you can make a display method returning the resource id. To get
an overview of the available resource use the report tutorial_Resources, the report prints
the resource id and the corresponding icon. Other options are to enter a path to a bitmap
or refer to a bitmap stored in a container. When referring to a path remember to use a
double backslash.

MORPHX IT Reports

 © 2006 Steen Andreasen

211

The sum control in generated designs is used in footer sections. When used in auto
designs the sum control must be put in a programmable section.

Note: When printing a report the infolog may say that the report is scaled to fit the page. This is caused
by too many columns in your design. Set the property FitToPage to No on the design node to disable
scaling.

When adding controls to your design you must assure that controls referring to a data
source are fetched at the time the section is printed. For the MyReport example, you
cannot print a control from the body sections CustTable and CustTrans in a page header
section, because when the page header is processed MorphX has not fetched the
information associated with the body sections. The same goes for adding a control to the
body section CustTable with reference to a field from CustTrans. This will also give an
error as CustTable is fetched before CustTrans.

7.6 Methods on a Report
You can create simple reports, such as a list of inventory items, without having to write
X++ code by simply using the facilities provide by the report generator. For more
advanced reports like those that filter data based on a caller or which require specific
sorting, you will need to override the report methods with your own X++ code. For an
overview of the methods on a report see figure 39: Report methods. The query
methods are described in the query chapter, see Queries.

The report system classes are often used when modifying reports at runtime. They are
the fundamental reports components and they allow the programmer to redefine all
aspects of a report during execution. In fact, you can create a report from scratch using
the system classes. For more information about the system classes, see the chapter
Classes.

MORPHX IT Reports

 © 2006 Steen Andreasen

212

Name Parameters Description
CallMenuFunction

MenuFunction _menuFunction Web method.

Caption

str _reportSpelling,
str _reportName,
str _designCaption,
str _designName

Used for setting the caption for the
report. The parameters _reportSpelling
and _designCaption set the captions in
the Print to Screen window.

CreateProgressForm

 Overrides the standard progress form
executed when the report pages are
created. The method provides the
option to create your own progress
form.

Dialog

Object _dialog Dialog() is used when adding fields to
the reports dialog. The report runbase
framework will call the dialog when
the report is executed. See the report
KMAction.

Fetch

 This method is the engine of the
report. Fetch() opens the user dialog,
selects the records from the database
by processing the query and sending
the records to be printed.
This method is generally overridden,
when an expression cannot be
specified in a query. An example
could be printing detail information as
in the report HRMCourseSkills.

Footer

ReportSection _footerSection,
tableId _tableId,
fielded _fieldId

The method is triggered each time a
section in the design is executed. Since
auto sums is not a part of the design,
this gives the option to execute code
before or after auto sums is printed.

GetTarget

 Returns the selected print medium.

Header

ReportSection _headerSection,
tableId _tableId,
fieldId _fieldId

The method is triggered each time a
section in the design is executed. As
auto sums is not a part of the design,
this gives the option to execute code
before or after auto sums is printed.

Init

 This is the first method called. The
method is initializing the report.
Entities used in the report are typically
initialized here. See the report
salesFreightSlip.

MORPHX IT Reports

 © 2006 Steen Andreasen

213

New

anytype _argsOrReportOrContainer,
str _designName,
boolean _isWebReport=FALSE

Used to initialize a reportRun object.
This is normally not done from the
report generator. The common case
would be if a report is initialized from
X++.

Pack

 This method is used for storing last
values. It is used in conjunction with
unpack(), which loads the last value
stored. However unpack() is not a base
method. If a new dialog field has been
added, pack() is overridden to store the
values from the dialog. See the report
KMAction.

PageFormatting

 The method is not used anymore. As
of version 3.0 the method
PrintJobSetttings.PageFormatting() is
used instead.

Print

 Print() returns the number of pages to
be printed. The method can be used to
check whether or not there are any
pages to print. See the report
projTimeSheetEmpl.

PrinterSettings

int _showWhat=-1 Used to activate the different parts of
the printer dialog. The method is only
called if the report runbase framework
is not in use, as it is called from the
prompt() method.

ProgressInfo

int _pageNo,
int _lineNo

ProgressInfo is executed for each line
printed on the report.

Prompt

boolean _enableCopy=TRUE,
boolean _enablePages=TRUE,
boolean _enableDevice=TRUE,
boolean _enableProperties=TRUE,
boolean _enablePrintTo=TRUE

Prior to version 3.0 prompt() handled
the report dialog. Now the dialog()
method is used instead. The method
cannot be used in combination with
the report runbase framework since the
framework will overrule the settings.
The class PrintJobSettings must be
used instead.

Run

 Run() is called when the OK button is
pressed in the dialog. Run() performs
the following steps:
If no generated design exists, a design
is created on the fly based on the auto
design.
Call fetch()
Call print()

MORPHX IT Reports

 © 2006 Steen Andreasen

214

The method can be used for adding
ranges to the query after the Based On
settings in the dialog. See the report
ReqPO.

Send

 Send() is related to fetch(). Fetch()
iterates through the query records, and
send() sends the records to the design.
The method can be overridden to
validate whether or not the record
should be printed. See the report
CustTransList.

SetTarget

PrintMedium _target Sets the target media for the report

ShowMenuFunction

MenuFunction _menuFunction Web method.

ShowMenuReference

WebMenu _menuReference Web method.

Title

str _title="" Not of much use anymore. It can
override the caption bar when printed
to screen, if executed from fetch().

ExecuteSection

 Each section in the design has the
executeSection method, which is used
to print the section. The method can be
used to validate whether or not the
section must be printed. See the report
CustCollectionJour.

Figure 39: Report methods

The previous parts of this chapter have focused on the individual elements that make up
reports. Now it is time to dig into how to use X++ to modify your reports.

Report Runbase Framework
You might have wondered why you sometimes get different dialogs when executing
reports within Axapta. If a report is executed from the AOT, you will first get the query
dialog and then the printer dialog. When a report is executed from a menu item you will
get only one dialog. In version 3.0 of Axapta a new runbase class RunbaseReportStd
was introduced. If a report is called from a menu item RunbaseReportStd will be called
from the class SysReportRun.

This Report Runbase Framework is often a source of confusion for new Axapta
programmers. It is important to understand that a report may be invoked in any of four
ways:

1. Directly from the reports node in the AOT.

MORPHX IT Reports

 © 2006 Steen Andreasen

215

2. Through a menu item either on a user menu or directly from the AOT.
3. Invoked through a class that inherits from RunBaseReport.
4. Called directly though X++.

The class RunbaseReportStd is called by the Report Runbase Framework only if your
report is not called from a class inherited from the RunBaseReport class. However when
a report is executed directly from the Reports node, the Runbase Report Framework is
not executed, and the two dialogs are shown.

Note: Reports are often used to check the integrity of data in the system. While it might be useful to have
the report update data, the best practice is not to have reports write to the database. If your report must
update or insert records, you should consider creating a class to perform the data manipulation and have
the class called from a class inherited from RunBaseReport .

It is good practice to always create a menu item that executes your report so that you
will have the same dialog shown as that shown to users when they launch the report
from one of their menus. Keep in mind that a report executed from a class must always
be inherited from the class RunBaseReport. The class RunbaseReportStd is only used
internally by the runbase framework. For more information about the runbase classes,
see the Classes chapter.

Figure 40: Runbase report classes

When creating a report in prior versions of Axapta, it was a common rule that the report
had to be called from an inherited RunBaseReport class. This was done to wrap the two
above mentioned report dialogs, and make the report capable of running in batch. It also
facilitated better performance since the class could be set to run on the server. With the
introduction of the RunBaseReportStd class, only reports with a heavy database load
should be inherited from the RunBaseReport class.

Example 6: Report runbase

Elements used from MORPHXIT_Reports project

 Class, SalesReport_DailyEntries
 Report, SalesDailyEntries
 Menu item output, SalesReport_DailyEntries

To explore the Report Runbase Framework, navigate to the Classes node and locate the
class SalesReport_DailyEntries. This class is inherited from the RunBaseReport class
and is therefore used to invoke a report. This is a common report class named with a
prefix for the module. You will see many similar report classes when traversing the
application classes.

MORPHX IT Reports

 © 2006 Steen Andreasen

216

SalesReport_DailyEntries calls the report SalesDailyEntries. Actually this class is not
needed since the introduction of Axapta 3.0, since the logic of the class can be handled
by the RunBaseReportStd class. However, the class SalesReport_DailyEntries is a good
example of how to construct a report class. The class has the following methods:

public identifiername lastValueElementName()
{
 return reportstr(SalesDailyEntries);
}
Here, the name of the report is specified so that the method must be overridden. The
function reportstr() ensures that the report name entered is a valid report name.

client server public static ClassDescription description()
{
 return "@SYS77491";
}
This optional method defines the caption name for the report dialog.

static void main(Args args)
{
 SalesReport_DailyEntries salesReport_DailyEntries;
 ;
 salesReport_DailyEntries = new salesReport_DailyEntries();

 if (salesReport_DailyEntries.prompt())
 {
 salesReport_DailyEntries.run();
 }
}
The main() method is a static method which initializes the class. This allows the class to
be run so it can be executed from a menu item. A check is made to validate whether the
dialog is called. If OK is pressed in the dialog, the report is executed.

In order to use the class in the report, a variable for the salesReport_DailyEntries class
is declared in the class declaration for the SalesDailyEntries report:

public class ReportRun extends ObjectRun
{
 SalesReport_DailyEntries salesReport_DailyEntries;
}

public void init()
{
 super();

 salesReport_DailyEntries = element.args().caller();

 if (!salesReport_DailyEntries)
 {

MORPHX IT Reports

 © 2006 Steen Andreasen

217

 throw error(Error::missingRecord(funcName()));
 }
}
An instance of the SalesReport_DailyEntries class is passed through args().caller() into
the report. A check is made to validate whether the report is called from a class. This is
done to prevent the report being executed directly from X++ or the AOT. In this
example, it would not matter which report source was called, but in some cases the class
may be filtering the data to be printed.

As mentioned earlier, the SalesReport_DailyEntries class is not needed since the
internal RunBaseReportStd class will handle the logic required to display the
query/print dialog and automatically facilitate batch processing. To change the report so
that it does not use the SalesReport_DailyEntries class, modify the init() method of the
report. In this case you can simply delete init(). The menu item still refers to the class,
so you will have to go to the output menu item SalesReport_DailyEntries and change
the properties for the menu item so it calls the report instead. When executing the report
directly from the AOT, you will get the same result as if you were using the class
SalesReport_DailyEntries. If you executed the report from a menu, you will see the
consolidated dialog screen.

Example 7: Report dialog

Elements used from MORPHXIT_Reports project

 Report, SalesDailyEntries
 Menu item output, SalesDailyEntries_Without_Class

Now it is time to add some more features to the SalesDailyEntries report. A dialog field
for specifying whether details must be printed will be added. The value of the new field
will be stored so that the last value is loaded when executing the report. The following
must be added to the ClassDeclaration of the report:

public class ReportRun extends ObjectRun
{
 DialogField dialogPrintDetails;

 Boolean printDetails;

 #DEFINE.CurrentVersion(1)
 #LOCALMACRO.CurrentList
 printDetails
 #ENDMACRO
}

DialogPrintDetails is a variable of the class DialogField and is used for the new dialog
field that will be displayed to the user when the report is run. The variable printDetails
stores the value of the dialog field. The macro CurrentList is a list of variables to be
stored. The list will typically contain a variable for each field in the dialog. In this
example CurrentList only contains a single variable. To add more, simply separate the

MORPHX IT Reports

 © 2006 Steen Andreasen

218

variables by a comma. CurrentVersion keeps track of the stored version of CurrentList.
Axapta allows the parameters of batch jobs and reports to be saved from one execution
to the next. The system will then preload the parameters that the user last used to run
this job. If changes are made to CurrentList, then CurrentVersion must be incremented
by one. It is also possible to reset the usage data which will have the effect of the stored
values pertaining to prior job executions, but this will also reset other values such as any
selection ranges that set up by the user.

public Object dialog(DialogRunbase _dialog = null)
{
 DialogRunBase dialog;
;

 dialog = super(_dialog);
 dialogPrintDetails = dialog.addFieldValue(typeId(NoYesId), printDetails, "Print details",

 "Print additional information for the transactions.");

 return dialog;
}
The dialog is initiated from super() and contains the default dialog for the report. The
only thing needed is to add the new field for printing details. The new field will
automatically be put in a default field group called Parameters.

public boolean getFromDialog()
{
 boolean ret;

 printDetails = dialogPrintDetails.value();
 ret = true;

 return ret;
}
When OK is pressed in the dialog screen, the system calls the getFromDialog method.
The value from the new dialog field is stored in the printDetails variable.

public container pack()
{
 return [#CurrentVersion, #CurrentList];
}
As shown here, the last value from the new dialog field is stored. Pack() saves the
current value of CurrentVersion and CurrentList specified in the ClassDesclaration.

public boolean unpack(container packedClass)
{
 boolean ret;
 Integer version = conpeek(packedClass,1);

 switch (version)
 {
 case #CurrentVersion:
 [version, #CurrentList] = packedClass;
 ret = true;

MORPHX IT Reports

 © 2006 Steen Andreasen

219

 break;
 default:
 ret = false;
 }
 return ret;
}
This method loads the last value stored using CurrentVersion and CurrentList.

public void run()
{
 if (printDetails)
 {
 SalesLine_Name.visible(true);
 }
 else
 {
 SalesLine_Name.visible(false);
 }

 super();
}
The final step is to check whether or not details must be printed. In this example, the
difference is whether the SalesLine.name is printed or not. All report controls must be
declared before they can be referenced through X++. You have the ability to change
properties at runtime. A report control is declared by setting its AutoDeclaration
property to Yes. In the above example you must first set the AutoDeclaration property
for the SalesLine_Name control to Yes.

In the report dialog example, the methods pack() and unpack() were used. These are the
methods used to store the last value of a dialog and transfer the user parameters
specified in the dialog from the client to the server when the report will executed in
batch mode. If you need this functionality for your dialog, you can just copy the two
methods from an existing class and add CurrentVersion and CurrentList to the
ClassDeclaration.

Dynamic Reports
The ability to make changes at runtime is very useful, since it provides the option of
changing properties or adding new elements at runtime. Thus, you can create one report,
instead of having several reports with similar designs. The report SalesInvoice is an
example of this. Depending upon the sales parameter settings, SalesInvoice is printed
with different controls visible.

As Axapta is a multi-language system, it has to be able to print reports in multiple
languages. In most cases, Axapta will handle this correctly without the need for
additional programming. By default, the report will be printed in the language of the
Axapta user. However exceptions may occur in certain circumstances. For example, a
sales invoice report must be printed in the customer’s preferred language. This is done
by setting the Language property on the ReportDesign node. You can set the property

MORPHX IT Reports

 © 2006 Steen Andreasen

220

to a fixed value, but the best way would be to set the language from X++. Here
myTable.languageId is used to set the language for the design:

public void init()
{
 super();

 element.design().laguageId(myTable.languageId);

}

The keyword element is used within the report to reference all of the report’s objects.
Here, the element is referring to the method languageId() in the object design. In this
way, you can get a handle on each element of the report. Using element to reference a
report object might result in a long path,as shown here:

element.design().sectionGroup(tablenum(CustInterestTrans)).section(ReportBlockType::BODY).control
Name('custInterestTrans_custInterestJourInterestAmount');

The above line is from the method init() in the report CustInterestNote. A better way to
handle this stuation is to use the property AutoDeclaration. When using the
AutoDeclaration property you are actually declaring an instance of a system class.
SalesLine_Name used in the report dialog example is an instance of the system class
ReportStringControl.

Note: When browsing the standard reports in the AOT, you may see reports where system classes for
sections and controls have been declared manually from code, rather than using the AutoDeclaration
property. This is because the AutoDeclaration property for report controls was only added in v3.0 of
Axapta.

The system classes are meant to be used when you need to add elements such as
sections and controls to a report at runtime. For example, based on where your report is
called from, you could decide to print additional detailed information or even print an
extra section from a different table.
Instead of using the system classes to create the controls at runtime, another approach is
to add all of the sections and controls needed for the different combinations and then
use the Visible property to determine whether the control should be displayed or
hidden. In some cases using the system classes is preferable. By using system classes
for creating controls, you can wait until runtime to decide the type of control needed.
This is especially useful if the controls you need to add are dependent on the user
settings or parameters.

Example 8: Report system classes

Elements used from MORPHXIT_Reports project

 Report, MyReport_SystemClasses
 Menu item output, MyReport_SystemClasses

MORPHX IT Reports

 © 2006 Steen Andreasen

221

To try out the report system classes, create a new report as shown in figure 41: Test of
report system classes. At runtime, the report will create a body section for CustTable.
The body section will have 10 controls, printing the value of the first 10 fields from
CustTable. The table CustTable is added a as data source and the node for the auto
design has been created.

Figure 41: Test of report system classes

Override the init() method of the report as shown here. No other code will be required:

public void init()
{
 ReportSection reportSection;
 DictTable dictTable;
 DictField dictField;
 Counter fieldCounter;

 super();

 reportSection = element.design().autoDesignSpecs().addSection(ReportBlockType::Body);
 reportSection.table(tableNum(custTable));

 dictTable = new DictTable(tableNum(custTable));

 while (fieldCounter < 10)
 {
 fieldCounter++;
 dictField = new DictField(dictTable.id(), dictTable.fieldCnt2Id(fieldCounter));
 reportSection.addControl(dictTable.id(), dictTable.fieldCnt2Id(fieldCounter));
 }
}

The instance of the system classes reportSection and reportControl is used to create the
body section and its associated controls. A new report section of the type Body Section
is added to the AutoDesignSpecs node and specified to use the table CustTable.
DictTable is also an instance of a system class. DictTable is often used when a handle is
needed for table and field properties. Similarly, DictField is a system class that provides
a handle to a specific field within a specified table. Here dictField and DictTable are
used to loop the first 10 fields in CustTable. For each loop, a control is added to the
body section.

MORPHX IT Reports

 © 2006 Steen Andreasen

222

MorphX will handle adding the proper control type and auto adjust the controls, so that
when you run the report, you will have the first 10 fields of the table CustTable printed
in a row. If you are creating a module where the user must have the option of defining
his/her own layout of a report, system classes could be the answer.

Common Report Methods
When making modifications to a report, you are either overriding existing methods, or
adding new methods which are called from the overridden methods. The following
methods are executed in listed order when a report is loaded as shown here:

init() ► dialog() ► run() ► fetch() ► send() ► print()

1. Init() and dialog() are triggered when the report is loaded.
2. Run() is triggered when the OK button is pressed in the dialog.
3. Fetch() is looping through the query and for each record found send() is

triggered.
4. Finally, print() is triggered.

These methods are the most important within a report, and are the ones you will
override most often. Typical customizations include adding controls to a dialog,
manipulating the output from the query before it is printed, or adjusting the output by
executing a programmable section which must be printed within the report body section.

The above listed execution order is used when the report runbase framework is in effect.
If you call your report directly from the AOT without using a menu item, the execution
order of the methods is slightly different as shown here:

init() ► run() ► prompt() ► fetch() ► send() ► print()

Notice that dialog() will not be triggered. RunBaseReportStd controls the dialogs of the
report and when the “runbase framework is not active” prompt() is used.

Example 9: Overriding fetch()

Elements used from MORPHXIT_Reports project

 Report, MyReport_Fetch
 Menu item output, MyReport_Fetch

A new report will be created printing customer transactions for each customer, filtered
from n-days until the current system date. The report will have a dialog where the n-
days number is keyed in by the user. Start by duplicating the MyReport example. The
report will end up as shown in figure 42: Report for overriding fetch(). The example
will focus on overriding the methods.

MORPHX IT Reports

 © 2006 Steen Andreasen

223

Figure 42: Report for overriding fetch()

Now that you have created the query and the design for the report, you are ready to
create the methods for the report.

public class ReportRun extends ObjectRun
{
 DialogField dialogDaysBack;
 NumberOf daysBack;
}
The variable dialogDaysBack is needed for the dialog. The value will be stored in the
variable daysBack.

public Object dialog(Object _dialog)
{
 DialogRunBase dialog;
;

 dialog = super(_dialog);
 dialogDaysBack = dialog.addFieldValue(typeId(NumberOf), daysBack, "Number of days",

 "Number of days back to be printed.");

 return dialog;
}

MORPHX IT Reports

 © 2006 Steen Andreasen

224

A field is added to the dialog to enter the n-1 days.

public boolean getFromDialog()
{
 boolean ret;

 daysBack = dialogDaysBack.value();
 ret = true;

 return ret;
}
The variable daysBack is set to store the value from the dialog.

public boolean fetch()
{
 QueryRun qr;
 QueryBuildRange rangeTransDate;
 Boolean ret;

 qr = new QueryRun(element);

 rangeTransDate =

element.query().dataSourceTable(tablenum(CustTrans)).addRange(fieldnum(CustTrans, transDate));
 rangeTransDate.value(queryRange(systemdateGet()-daysBack, systemDateGet()));
 rangeTransDate.status(RangeStatus::LOCKED);

 element.design().caption(strfmt("%1, %2", element.design().caption(), rangeTransDate.value()));

 if (qr.prompt() && element.prompt())
 {
 while (qr.next())
 {
 custTable = qr.get(tableNum(CustTable));
 custTrans = qr.get(tableNum(CustTrans));

 if (!custTable)
 {
 ret = false;
 break;
 }

 if (qr.changed(tableNum(custTable)))
 {
 element.send(custTable, 1);
 }

 if (qr.changed(tableNum(custTrans)))
 {
 element.send(custTrans, 2);
 }
 }
 ret = true;
 }
 else

MORPHX IT Reports

 © 2006 Steen Andreasen

225

 ret = false;

 return ret;
}
The variable daysBack contains the value that the user has keyed in. A range must be
added to the query to filter the transaction date with n-1 days to system date. A
QueryRun object called qr is initialized with the active query of the report, and then a
range for the customer transaction date is added to qr. The range is locked, so the user
cannot change it. The transaction date range is added to the caption of the report.

At this point, the query is looped. The standard loop of the query and the printout of the
record is what the super() call in fetch() handles. Before the query is looped, there is a
check to see whether the dialogs for the query and the report are called. These are the
two dialogs which are wrapped by RunBaseReportStd. Within each loop, the tables
CustTable and CustTrans are initialized. If no records are found, the loop breaks and the
report ends. If a data source has changed, a new record is found and the record is printed
using the send() method. Note the second parameter in the send() method. The second
parameter defines the level of the record. CustTable is on the first level of the query and
CustTrans is on the second level. This is important since, if it is not set correctly, auto
sums will not be printed.

In the fetch example, the query of the report was looped. The case could also be looping
a WHILE statement, SELECT statement, or a combination of both. For each record
looped in the query, you might want to select a record from a table which is not part of
the query, or even build a temporary table to be printed. For each record to be printed,
all you have to do is call the send() method.

If your objective is to validate which records should be printed, override the send()
method instead of the fetch() method:

public boolean send(Common _cursor, int _level=1, boolean _triggerOffBody=TRUE, boolean

_newPageBeforeBody=FALSE)
{
 boolean ret;
 CustTrans custTrans;

 if (_cursor.tableId == custTrans.tableId)
 {
 custTrans = _cursor;
 }

 if (custTrans.transDate == systemDateGet())
 {
 ret = super(_cursor, _level, _triggerOffBody, _newPageBeforeBody);
 }

 return ret;
}
The send() method has the record to be printed as a parameter. All you need to do is
initialize the appropriate table. In this case, the table CustTrans is initialized if the

MORPHX IT Reports

 © 2006 Steen Andreasen

226

cursor is a CustTrans record. Only customer transactions with a transaction date equal
to the system date will be printed.

Adding query values can often be handled by simply overriding the init() method,
which is much easier as only a few lines of code are needed. The range added to the
query in the fetch example was dependent upon user interaction. The modification had
to be done after the dialog was closed, so the code had to be put in fetch(). Before
adding a range to a query, you should always check to see whether or not the query
already contains a range for the field, by using the QueryBuildDataSource.findRange()
method. If two ranges are created for the same field, the ranges will be OR’ed which
may give you unexpected results. The user has an option in the report dialog to print
ranges for a query, when sending to a printer. Ranges added to the query data sources as
well as the ones added from X++ will be printed. However, if fetch() is overridden, this
option will be disabled.

7.7 Special Reports
Until this point, this chapter focused on the basic steps in creating reports. To get an
idea of the options within the MorphX languages this section will provide examples
showing how to handle special reports and how you can make your reports more user-
friendly.

Execute report from X++
Reports are normally activated from a menu item, called from either the main menu or
from a form. Sometimes it is necessary to call the report directly from X++ since the
user may not call the report directly from a menu item.

Elements used from MORPHXIT_Reports project

 Job, Reports_ExecuteReport
 Job, Reports_ExecuteReportSilent

static void Reports_ExecuteReport(Args _args)
{
 Args args;
 SysReportRun reportRun;
;

 args = new Args();

 reportRun = new menuFunction(menuItemOutputStr(MyReport),

 MenuItemType::Output).create(args);
 reportRun.run();
}
The job shows how MyReport is called from X++. Notice that the application class
SysReportRun is used. SysReportRun is inherited from the system class ReportRun.
The benefit of using the application class is that you have the option of overriding the

MORPHX IT Reports

 © 2006 Steen Andreasen

227

code in the SysReportRun class. You could also create your own extended class
inherited from the SysReportRun class. This could be the case if you have a series of
reports where checks must be made when printing, rather than modifying each single
report.

MyReport is called using the menu item since this will trigger the runbase report
framework and load the correct dialog for the report. If you do not want to use the
runbase framework or you want to print the report without user interaction, you must
instead trigger the report without using the runbase report framework.

static void Reports_ExecuteReportSilent(Args _args)
{
 Args args;
 SysReportRun reportRun;
;
 args = new Args();
 args.name(reportstr(MyReport));

 reportRun = classFactory.reportRunClass(args);
 reportRun.query().interactive(false);
 reportRun.report().interactive(false);
 reportRun.setTarget(PrintMedium::Printer);
 reportRun.run();
}
In this job, the report is executed without using the menu item and thereby the runbase
report framework is not used. The example prints the report direct to the default printer
without user interaction as both the query and the report dialog are set to inactive. If
dialog() is overridden in your report, you must ensure that this does not create any
problems since dialog() will not be executed.

If your report consists of more than one design, you must specify which design to use. If
not specified, or if an invalid design name is entered, the first design for the report will
be used.

 reportRun.design("MyDesign");
 reportRun.run();

Using temporary tables
If a special sorting is needed, or you must select data from several tables which cannot
be joined, using a temporary table may be the answer. Using temporary tables is fairly
simple. The temporary table must be filled and passed to the report. There may be
performance issues when using temporary tables, since the report will have two runs.
First the temporary table is built. Next it is looped in the report. The use of temporary
tables should not be your first choice. You might be better off reconsidering your
design. For more on temporary tables see the chapter Data Dictionary.

Elements used from MORPHXIT_Reports project

MORPHX IT Reports

 © 2006 Steen Andreasen

228

 Class, Reports_TempTable
 Report, Reports_TempTable

When using temporary tables the report should be called from a class. This will give
you the option building the temporary table on the server. The following example shows
how to create a report using a temporary table. For simplicity, the example adds 10
records to a temporary table and prints the result.

class Reports_TempTable extends runBaseReport
{
}
The class is inherited from runBaseReport.

public identifiername lastValueElementName()
{
 return reportstr(Reports_TempTable);
}
The name of the report is specified.

tmpAccountSum tempTable()
{
 CustTrans custTrans;
 TmpAccountSum tmpAccountSum;
 Counter counter;
;

 while select custTrans
 {
 counter++;

 if (counter == 10)
 {
 break;
 }

 tmpAccountSum.accountNum = custTrans.accountNum;
 tmpAccountSum.currencyCode = custTrans.currencyCode;
 tmpAccountSum.balance01 = custTrans.amountMST;
 tmpAccountSum.insert();
 }

 return tmpAccountSum;
}
The temporary table tmpAccountSum is used. The first ten records from the table
CustTrans are inserted into tmpAccountSum. This method is used by the report to pass
the buffer for the temporary table to the report.

static void main(Args args)
{
 Reports_TempTable reports_TempTable = new reports_TempTable();

 if (reports_TempTable.prompt())

MORPHX IT Reports

 © 2006 Steen Andreasen

229

 {
 reports_TempTable.run();
 }
}
The class is initialized and the report is executed.

The last step is to create the report. A report with the temporary table TmpAccountSum
as data source must be created. The three fields filled out with values from CustTrans
will be printed. Your report must look like figure 43: Report using temporary table.

Figure 43: Report using temporary table

Init() must be overrridden. The runbase class is initialized and the query is set with a
buffer to the temporary table. Notice that you will have to set a reference to the buffer.
The query will then have the full scope of the temporary table, and loop through all of
the records in the temporary table.

public void init()
{
 Reports_TempTable reports_tempTable;
;
 super();

 reports_TempTable = element.args().caller();

 if (!reports_TempTable)
 {
 throw error(Error::missingRecord(funcName()));
 }

 reports_TempTable.queryRun().setRecord(reports_TempTable.tempTable());
}

MORPHX IT Reports

 © 2006 Steen Andreasen

230

Coloring rows
Colors are rare in the standard packaged reports. You will need to fiddle a bit with the
report to obtain the desired result. However, the use of colors can give your report the
final touch and even make the printout easier to read.

Elements used from MORPHXIT_Reports project

 Report, MyReport_Color
 Menu item output, MyReport_Color

This example shows how to color a single column based on a condition. The report will
set the background color to control the printing of CustTrans.amountMST. To simplify
coding, the condition check is done from X++. In real life, the conditions could be set
up in a dialog or based on data in a form. You should end up with a design as shown in
figure 44: Report coloring rows.

Figure 44: Report coloring rows

1. Start out by duplicating the report MyReport and rename it “MyReport_Color”.

2. The goal is to color the control CustTrans_AmountMST. By using the MyReport

example as is, the header label will also change color. Instead of the standard header
for the body section CustTrans_Body, a new one must be created. To skip the
standard header, set the property NoOfHeadingLines to “0” in the body section
CustTrans_Body.

MORPHX IT Reports

 © 2006 Steen Andreasen

231

3. Create a new header by adding a programmable section and a prompt control for
each of the three fields in the body section. The property ModelFieldName on each
prompt control must be set to the corresponding body section control name. Add a
label for each prompt control.

4. Declare a variable to keep track of when the programmable section used for the

header must be printed.

public class ReportRun extends ObjectRun
{
 Boolean printCustTransHeader;
}

5. Now override send(). If the current record is a CustTrans record, the header is

printed for the first CustTrans in a row. A condition is set up for
CustTrans.AmountMST. If an amount larger than 500 is printed, the background
color is set to yellow. Otherwise the background color will be neutral.

public boolean send(Common _cursor, int _level=1, boolean _triggerOffBody=TRUE, boolean

_newPageBeforeBody=FALSE)
{
 boolean ret;
;

 if (_cursor.tableId == tableNum(custTable))
 printCustTransHeader = true;

 if (_cursor.tableId == tableNum(custTrans))
 {
 if (printCustTransHeader)
 {
 element.execute(10);
 printCustTransHeader = false;
 }

 if (custTrans.amountMST > 500)
 {
 CustTrans_AmountMST.backgroundColor(Winapi::RGB2int(255, 255, 0));
 }
 else
 {
 CustTrans_AmountMST.backgroundColor(Winapi::RGB2int(255, 255, 255));
 }
 }

 ret = super(_cursor, _level, _triggerOffBody, _newPageBeforeBody);

 return ret;
}

MORPHX IT Reports

 © 2006 Steen Andreasen

232

Print using Microsoft Word
Creating reports in Axapta with a complex design such as a formula with boxes, tables
and graphic can be a challenge. By using the COM interface you can connect to external
applications like Microsoft Word. To use Microsoft Word for printing data, you must
first create a Microsoft Word template with bookmarks. The bookmarks are used to
position the data from Axapta. Notice, that you must have a license code for at least one
COM client to use the COM interface.

Note: The Document handling in the standard package uses the COM interface to attach files from
Microsoft Excel and Microsoft Word. The classes used by Document handling are prefixed with
DocuActionCOM.

Elements used from MORPHXIT_Reports project

 Class, Reports_PrintUsingWord
 Job, Reports_PrintUsingWord

Additional

 Microsoft Word template, Reports_WordTemplate.dot

This example will show how to connect to Microsoft Word and create a new document
which prints data from the table InventTable. The first 10 records from InventTable will
be printed. Labels will be printed for report and column headers.
You will have to create a Microsoft Word template, with the following bookmarks:
label_header, label_itemid, label_itemname, and label_itemdesc. Label_header will
print a heading text for the columns. Create a table and add the remaining 3 bookmarks
as headers for the table. The next step is to create the following class:

void run()
{
 COM COMAppl, COMDocuments, COMDocument;
;

 COMAppl = new COM('Word.Application');
 COMDocuments = COMAppl.documents();

 // enter path to the template Reports_wordtemplate.dot
 COMDocument = COMdocuments.add('d:\\Reports_WordTemplate.dot');

 if (COMDocument)
 {
 this.setLabels(COMDocument);
 this.sendInventTable(COMDocument);
 this.showDocument(COMAppl);
 }
}
Run() will initiate the COM connection, and open a new Micosoft Word document
based on the template Reports_WordTemplate.dot. Remember to check that the path for
the template is valid. If the document is created, labels and data will be added. Finally

MORPHX IT Reports

 © 2006 Steen Andreasen

233

the document will be shown. Note that the document shown is not saved. If you want to
save the document you must add: COMdocument.saveAs(<filename>,0,false,'',false);.

void setLabels(COM _COMDocument)
{
 COM COMBookmarks, COMBookmark, COMrange;
 DictField dictField;
 Label label;
;

 COMBookmarks = _COMDocument.bookmarks();

 if (COMbookmarks.exists('label_header'))
 {
 COMbookmark = COMbookmarks.item('label_header');
 COMrange = COMbookmark.range();
 COMRange.InsertAfter("Inventory list");
 }

 if (COMbookmarks.exists('label_itemId'))
 {
 COMbookmark = COMbookmarks.item('label_itemId');
 COMrange = COMbookmark.range();
 DictField = new dictField(tableNum(inventTable), fieldNum(inventTable, itemId));
 COMRange.InsertAfter(dictField.label());
 }

 if (COMbookmarks.exists('label_itemName'))
 {
 COMbookmark = COMbookmarks.item('label_itemName');
 COMrange = COMbookmark.range();
 DictField = new dictField(tableNum(inventTable),
 fieldNum(inventTable, itemName));

 COMRange.insertAfter(dictField.label());
 }

 if (COMbookmarks.exists('label_itemDesc'))
 {
 COMbookmark = COMbookmarks.item('label_itemDesc');
 COMrange = COMbookmark.range();
 label = new Label(CompanyInfo::languageId());
 COMRange.InsertAfter(label.extractString(literalstr("@SYS58702")));
 }
}
A check is made to see whether the bookmark can be found. If found, the labels are set.
The header label is set with the static text “Inventory list.” The labels for the bookmarks
label_itemId and label_itemName are set with the label for the corresponding table
fields. The label for the bookmark label_itemDesc is set using the method
label.extractString() to fetch the label for the default company language.

void sendInventTable(COM _COMDocument)
{
 COM COMTable, COMRows, COMRow;

MORPHX IT Reports

 © 2006 Steen Andreasen

234

 COM COMCells, COMCell, COMRange;
 InventTable inventTable;
 Counter counter;
;

 //init tabel
 COMTable = COMDocument.Tables();
 COMTable = COMTable.Item(1);
 COMRows = COMTable.Rows();

 while select inventTable
 {
 counter++;

 if (counter == 10)
 {
 break;
 }

 // add new row
 COMRow = COMRows.Add();
 COMCells = COMRow.Cells();

 // item id
 COMCell = COMCells.Item(1);
 COMRange = COMCell.Range();
 COMRange.InsertAfter(inventTable.itemId);

 // item name
 COMCell = COMCells.Item(2);
 COMRange = COMCell.Range();
 COMRange.InsertAfter(inventTable.itemName);

 // item description
 COMCell = COMCells.Item(3);
 COMRange = COMCell.Range();
 COMRange.InsertAfter(inventTable.itemDescription());
 }
}
This code loops through the inventTable. The table in Microsoft Word is initiated first.
For each loop, a new row is added to the table in Microsoft Word. The fields itemId,
itemName and the display method itemDescription() from InvenTable is added to the
three rows in the Microsoft Word table. Notice that no bookmarks are needed.

void showDocument(COM _COMAppl)
{
 _COMAppl.visible(TRUE);
}
The created Microsoft Word document is shown.

static void main(Args _args)
{
 Reports_PrintUsingWord printUsingWord = new Reports_PrintUsingWord();
;

MORPHX IT Reports

 © 2006 Steen Andreasen

235

 printUsingWord.run();
}
This code initiates and executes the class.

7.8 Summary
This chapter introduced you to reports in Axapta. It covers the basics involved in
creating reports. By now you should be familiar with the various report elements, such
as data sources, designs, sections and controls in designs and the common methods used
when creating a report. You should also have acquired knowledge about how to create
reports using the report generator, and hopefully gained insight into the power offered
by reports in Axapta and the MorphX development environment.

MORPHX IT Queries

 © 2006 Steen Andreasen

237

8 Queries
Select statements and queries are the two options for fetching data from the database
when using MorphX. Where a select statement is a static expression written in X++, a
query can either be written in X++ or created by using the AOT node Queries. A query
can at runtime be changed by the application user by using the query dialog. From X++
the query can be change using the query system classes. This makes queries quite useful
when working with objects like forms and reports as data can be filtered and sorting
changed either by using the query dialog or from X++.
Settings made by the application user to the query dialog are saved per user in each
company, also referred to as last values. Storing last values makes the use easier for the
application users as their preferable settings only needed to be set at the first run.

Whether using a query or a select statement will not matter regarding performance.
Selects and queries are both part of MorphX and both are executed by the kernel. Using
a select or a query must depend on your needs. Queries should be used if you want the
application user to be able to filter data or if you need to do runtime changes like
filtering data in a form or a report depending on the calling object. Selects are typically
used if the data fetched are used without user interference.

This chapter will focus on creating and using queries from MorphX. You can find
information on the use of the query user interface by check the manuals in the standard
package.

Figure 45: Query stored in the AOT

MORPHX IT Queries

 © 2006 Steen Andreasen

238

8.1 Building Queries
Complex queries and queries where the default methods are overridden should be built
using the Queries node. A query stored as a node in the AOT is constructed using a tree
making it easy to get an overview of single components of the query. Especially when
start learning about queries you might find it far easier, as you will not have to worry
about which system classes to use and how to use them.

AOT Query
Queries stored in the AOT can be used in any part of your code. An AOT query cannot
be declared like a type or a table. You will have to use a system classes to execute your
query. Still it makes an AOT query very flexible as only a few code lines is required to
integrate your query in any part of code. If you later on decide to change your AOT
query like changing the way data is filtered, you changes will reflect all places the query
is used. The disadvantage is that it can be unclear which query to use. If you find a
query in the AOT fitting your needs you will not now where the query is used, unless
using the cross reference system. Making changes to such a query could have fatal
consequences. So you will probably ending up creating your own query in the AOT.

Basic Components
The first step creating a query is to localize the tables to be used for the query. A table
used in a query is referred to as a data source. You can compare a data source with a
table variable. Normally a data source has the same name as the related table. Only if
you need a table to be used more than once in a query, you should consider changing
the data source name. The name of the data source is from X++ referred like a table
variable. Tables, table maps and views can be used as data sources. As from X++ these
are all used in the same way. Only when using temporary tables you will have to do
some additional coding.

Note: If you are unsure what the outcome of your query will be, you should try creating your query in a
report. The report will print the result of your query. See the chapter Reports on how to use the report
query.

If a query is fetching data from more than one table you will like in a select statement
have to define the joined order of the tables. Each level in the query tree defines a join
of two tables.

Example 1: Creating an AOT query

Elements used from MORPHXIT_Queries project

 Query, MyQuery

MORPHX IT Queries

 © 2006 Steen Andreasen

239

This example will show how to create an AOT query joining two tables and setting
default ranges for filtering. You should end up with a query as shown in figure 46:
MyQuery.

Figure 46: MyQuery

1. Go to the Queries node in the AOT, right-click and select New Query. Rename the

query to "MyQuery" and unfold the new query.

2. Open another window of the AOT and locate the table CustInvoiceJour and drag the

table to the query node Data Sources. The data source will get the suffix "_1". This
is done prevent unique names. Remove the suffix.

3. Unfold the new data source node, and drag the table CustInvoiceTrans to the node

Data Sources/CustInvoiceJour/Data Sources and remove the suffix.

4. Go to the property sheet for the data source CustInvoiceTrans and set the property

Relations to "Yes". Unfold the new data source and check that relations fields are
listed under CustInvoiceTrans/Relations.

5. Go to Ranges node located under the data source CustInvoiceJour, right click and

select New Range. A new range will be added showing the first field from the data
source table. Change the field by opening the property sheet for the new range and
pick the field InvoiceAccount using the property Field.

6. Repeat step 5 by adding a range for the field CustGroup.

7. Go to the data source CustInvoiceTrans and add a range for the field ItemId.

MORPHX IT Queries

 © 2006 Steen Andreasen

240

The query created in this example is a join of the tables CustInvoiceTable and
CustInvoiceTrans which contains the customer invoice journals. The tables are by
default joined using an inner join. You can change the join mode of two data source by
setting the JoinMode property at the lower level data source. The property Relations
set at the lower level data source is used to define the relation fields used for the join.
These are the relation fields specified in the data dictionary. You can specify relations
fields manually, but it is preferable to use the data dictionary settings as this will keep
maintain easier. If a relations is change in the data dictionary all queries using the data
source will automatically be updated.

Now try creating a job to test the query:

static void Queries_TestMyQuery(Args _args)
{
 SysQueryRun queryRun = new SysQueryRun(querystr(MyQuery));
 CustInvoiceJour custInvoiceJour;
 CustInvoiceTrans custInvoiceTrans;
;

 if (queryRun.prompt())
 {
 while (queryRun.next())
 {
 custInvoiceJour = queryRun.get(tableNum(CustInvoiceJour));
 custInvoiceTrans = queryRun.get(tableNum(CustInvoiceTrans));

 if (queryRun.changed(tableNum(CustInvoiceJour)))
 {
 info(strfmt("Account: %1", custInvoiceJour.invoiceAccount));
 }

 if (queryRun.changed(tableNum(CustInvoiceTrans)))
 {
 info(strfmt("Item: %1, Qty: %2, ",custInvoiceTrans.itemId, custInvoiceTrans.qty));
 }
 }
 }
}

The subclass SysQueryRun of the system class QueryRun is used to execute a query.
The name of the query initialized is specified by the function querystr(). The name of
the query could be entered just as a text, but querystr() will validate that the query is
created in the AOT. QueryRun.prompt() will call the query dialog and if OK is pressed
in the query dialog, the records matching the ranges specified in the query will be
fetched. A table variable for each data source must be initialized to get the record values
from the query. When a query loops the records you will need to validate which data
source the present record is fetched from. This is done using queryRun.changed().

Note: By dragging an AOT query to the editor you can create the basics structure for looping the query.

MORPHX IT Queries

 © 2006 Steen Andreasen

241

When MyQuery is executed, the query dialog appears. The 3 fields specified under the
Ranges node in the query are the default fields used for filtering. The application user
can add or remove any of the default range. You can however set restrictions for a range
by using the range property Status. By default ranges are created with status Open. You
can enter a default value for a range using the property Value. If the Status property is
set to Lock the application user will not be allowed changing the range. Locking a range
can be useful if filtering data in a form and you would inform the application user about
the mandatory filter. You can set the range property Status to Hidden if you do not want
to show the mandatory filter to the application user.

The node Sorting is used to specify an index or fields used for sorting. Specifying fields
for sorting will cause the data to be fetch order by or group by. In the MyQuery
example no sorting was defined. Like in selects, sorting is not specified unless you must
be certain about the sorting order. Sorting is typically used for queries in reports. A
report query has additional properties for sorting making it possible to do
summarization based on the sorting fields. For more information on using queries in
reports, see the chapter Reports.

static void Queries_MyQueryAsSelect(Args _args)
{
 CustInvoiceJour custInvoiceJour;
 CustInvoiceTrans custInvoiceTrans;
;

 while select custInvoiceJour
 join custInvoiceTrans
 where custInvoiceJour.salesId == custInvoiceTrans.salesId
 && custInvoiceJour.invoiceId == custInvoiceTrans.invoiceId
 && custInvoiceJour.invoiceDate == custInvoiceTrans.invoiceDate
 && custInvoiceJour.numberSequenceGroup == custInvoiceTrans.numberSequenceGroup
 {
 // print fetch data
 }
}

If MyQuery were to be written as a select statement, the code would look like the above.
Notice that all fields used in the where clause are and'ed. A query will always select by
and'ing field ranges. Only a select can use both "and" and "or". However workaround
exists for using the same options in a query. This will be explained in the following
sections.

Aggregated Functions
By default a query is fetching all fields of a record like a select. If changing the property
Dynamic on the Fields node to No you can change the query to only fetch values of the
fields specified. It recommended only using this features if you have to optimize a query
as you might not be aware of this setting when using the query from X++.

MORPHX IT Queries

 © 2006 Steen Andreasen

242

The property Dynamic also serves another purpose. When right-clicking the Fields node
you can pick one of the aggregated functions AVG, SUM, COUNT, MIN or MAX.
Choosing an aggregate function will set the property Dynamic to No as only the
aggregated fields will contain a value. An aggregate function is used to do a calculating
on the fetched data. The most common use of aggregate function is for summarizing a
report.

Example 2: Aggregate function

Elements used from MorphxIt_Queries project

 Query, MyQuery_Aggregate

The example will show how to use the aggregate function SUM to summarize sold
quantities per item using the customer invoice journal.

1. Create a new query and rename the query to "MyQuery_Aggregate".

2. Drag the table CustInvoiceTrans as data source and remove the suffix.

3. Unfold the data source CustInvoiceTrans, right-click the node Fields and select

New/SUM. Open the property sheet for the sum field and choose the field Qty.

4. Go to the Sorting node, right-click and select New/Field. Use the property sheet to

select ItemId as the sorting field.

5. The last step is to set sorting order. Go to the data source CustInvoiceTrans and set

the property OrderMode to "Group by".

You can add any number of aggregated functions to a query. To simplify the example
only a single aggregated function is used. When using aggregated functions you use the
sorting fields to specify the grouping for the function. Together with the selected
aggregated functions only sorting fields will have a value. The order mode should
always be group by when using aggregate functions. It would not make sense using
order by as this would cause all records to be printed, and in this example there would
not be anything to sum.

static void Queries_TestMyQuery_Aggregate(Args _args)
{
 SysQueryRun queryRun = new SysQueryRun(querystr(MyQuery_Aggregate));
 CustInvoiceTrans custInvoiceTrans;
;

 if (queryRun.prompt())
 {
 while (queryRun.next())
 {
 custInvoiceTrans = queryRun.get(tableNum(CustInvoiceTrans));

MORPHX IT Queries

 © 2006 Steen Andreasen

243

 if (queryRun.changed(tableNum(CustInvoiceTrans)))
 {
 info(strfmt("Item: %1, Qty: %2, ",custInvoiceTrans.itemId, custInvoiceTrans.qty));
 }
 }
 }
}

This job can be used for testing the query. When executed you will see the sorting field
added to the query dialog at the sorting tab page. As data are fetched group by you
cannot change the sorting fields.

Advanced Ranges
A limitation in using a query is that ranges are and'ed. Say you wanted to find
transaction in the customer invoice journal belonging to the customer group "40" or
transactions which have the currency code "USD". If using a query you will end up
fetching records where only both conditions are true. A work around exists for handling
this. Try opening the form CustInvoiceJournal and press the query icon . Now enter
the following in any range: ((custgroup == "20") || (currency == "USD")). It does not
matter which query range is used as the code entered are not translated as a value for the
chosen query field. When pressing the OK button in the query dialog, the records in the
customer journal transaction form will be fetched using an OR expression.

Note: Wildcards used by the query dialog, such as ‘*’ and ‘..’ can also be used from X++ when building
query ranges. See the online help for the query dialog for a list of all the wildcard options.

The parentheses make it possible to write a boolean expressions in a query range by
using the data source fields. There are no validations when keying in such an
expression. In fact it can be a bit tricky to write an error free expression. For this reason
you would always add such expressions to your query by using X++. For testing such
an expression it is far easier to try out the expression using the query dialog, and then
paste the query range text to X++.

You might wonder, why bother when this can be done using a select statement. The
case could be that you would have to modify an existing object like a class or a form
using a query. If you were to replace an existing query with a select you might have to
change a lot of code. Besides it is always preferable using queries for objects used by
the user interface.

Methods on a Query
Methods on an AOT query are fairly never overridden. Changes are always made to the
data source methods. Only forms have AOT nodes for overwriting the data source
methods. See the chapter Forms on how to use the form data source methods.

MORPHX IT Queries

 © 2006 Steen Andreasen

244

X++ Query
As seen a query can be executed from X++, but a query can both be built and executed
from X++ using the system classes prefixed with Query*. Typically simple queries or
queries only to be use for a specific purpose are built using X++.

Note: some of the query system classes are inherited as application classes. You should use the
application sub classes as they contain additional logic. A subclass of a system class is typically prefixed
with Sys* like SysQuery.

When you get to know the single part of a query you will find it pretty easy constructing
queries using X++.

static void Queries_SystemClasses(Args _args)
{
 SysQuery query;
 SysQueryRun queryRun;
 QueryBuildDataSource custInvoiceJourDS, custInvoiceTransDS;
;

 query = new Query();
 custInvoiceJourDS = query.addDataSource(tablenum(CustInvoiceJour));
 custInvoiceJourDS.addRange(fieldnum(CustInvoiceJour, InvoiceAccount));
 custInvoiceJourDS.addRange(fieldnum(CustInvoiceJour, CurrencyCode));
 custInvoiceTransDS = custInvoiceJourDS.addDataSource(tablenum(CustInvoiceTrans));
 custInvoiceTransDS.addRange(fieldnum(CustInvoiceTrans, ItemId));
 custInvoiceTransDS.relations(true);

 queryRun = new SysQueryRun(query);
 queryRun.prompt();
}

Here the query used in the MyQuery example is built using the query system classes.
This is just straight forward as using the AOT. First a new query is declared and a data
source is added to the query node. The class QueryBuildDataSource gives a handle to
the data source CustInvoiceJour which is used to add the data source at the next level.
Like in the AOT query relations are set to true, using the data dictionary relations. The
default range fields are added using the addRange() method.
To get an overview of the query, the prompt() method is called when executing the job.
Having the query dialog shown makes it easy to get an overview of the query built.

If you are using a query for looping a temporary table, you must add the following line
after initialized your QueryRun object. This is a common mistake leaving this line out.
You might wonder that you will not get an output of your temporary table and end up
using a select instead.

 queryRun.setRecord(MyTable);

Adding ranges to a query is often done form X++. A typical case is to filter data fetched
from a query using the values of some variables.

MORPHX IT Queries

 © 2006 Steen Andreasen

245

static void Queries_SystemClassesRanges(Args _args)
{
 SysQuery query;
 SysQueryRun queryRun;
 QueryBuildDataSource custInvoiceJourDS;
 QueryBuildRange rangeInvoiceAccount, rangeInvoiceDate, rangeDimensionDepartment;
;

 query = new Query();
 custInvoiceJourDS = query.addDataSource(tablenum(CustInvoiceJour));
 rangeInvoiceAccount = custInvoiceJourDS.addRange(fieldnum(CustInvoiceJour, InvoiceAccount));
 rangeInvoiceAccount.value(queryValue("4000"));

 rangeInvoiceDate = custInvoiceJourDS.addRange(fieldnum(CustInvoiceJour, InvoiceDate));
 rangeInvoiceDate.value(queryRange(datenull(), systemdateget()));

 rangeDimensionDepartment = custInvoiceJourDS.addRange(fieldId2Ext(
 fieldnum(CustInvoiceJour, Dimension), 1));
 rangeDimensionDepartment.value(queryValue("Sales"));

 queryRun = new SysQueryRun(query);
 queryRun.prompt();
}

In the above example, 3 ranges are added to a query containing a single data source. The
method addRange() returns an instance of the class QueryBuildRange which is used to
set a value for each of the ranges.
Notice the global methods queryValue() and queryRange(). You should consider using
these methods when adding a value to a query as they takes the variable anytype as
parameter and formats the value to be presented in a range. QueryRange() is used to
enter a from and to value, whereas queryValue() is used for a single value. If you need
more values to be put in a range you can instead use the function strfmt() for formatting
your expression. Just remember that the range value must be separated by commas.

Using an entry of an array field as a query range requires some additional coding.
Dimension is the most common array field. When adding Dimension as a range from
the AOT query you can either pick the field Dimension which will add each entry of the
array as a range. You can also pick each entry of the array from the field list. It is a bit
different from X++ as your cannot just qualify the array entry by entering Dimension[1]
for the first array entry of Dimension. Instead the global method fieldId2Ext() is used.
The first parameter is the field id and the second parameter is the array entry number.
Here the first dimension from CustInvoiceJour is added as a range.

A query range has a limited size. Though the max range size is high and you will have
to concatenate several hundreds of ranges to reach the limit. You might think that this is
plenty. If you criteria's for fetching data cannot be fulfilled using a query an often used
practice is to use selects for build a string storing the values used by the query range.
This could be a list of item ids to be fetched from the inventory table. However this is
not considered good design as you will not know whether you are going to break the

MORPHX IT Queries

 © 2006 Steen Andreasen

246

limit. Adding an additional range for item ids when the first is filled will only result in
the two ranges are AND'ed. Reaching the limit will result in an error from the database.
By using the extended data type Range, you will new go that far. The extended data
type range has a string length of 250 chars. You can change the length to 1000 chars
which is the max length of a string. Before going that far, you should instead consider
using a temporary table or a records sorted list.

You will be using query ranges a lot when constructing forms and reports, as ranges are
typically used from X++ to filter the fetched data like when a form or a report must be
filtered based on a calling form.

8.2 Queries in Forms and Reports
Both forms and reports make use of queries for fetching data. As Forms and reports
have their only nodes for building a query they are not using the AOT queries.
Compared to an AOT query forms and reports have additional properties. Using X++
you can specify another query or event built the entire query from X++ to be used for a
form or report. The normal case would however be using the built in nodes in the AOT.

Select could do the same job as a query in a form or report, but using a selects in a form
or a report will be less user friendly.
In forms the options for filtering and sorting data are also used for printing auto reports
base on the fields specified in the table field group AutoReport. Forms which have no
query have not got this feature.
Reports without a query will have no filter options or options for automatically printing
totals. If using a select on a report, filter options would have to be built manually from
code.

8.3 Summary
Queries have a central role in MorphX. It is important to understand the concept of
queries as you will be using queries a lot. Knowing how a query is constructed and how
to use the query system classes will make it easier for you to modify objects using a
query and thereby make your modifications more user friendly.
You should now have the basic knowledge of how to build and how to use queries. By
reading about queries in the chapters Forms and Reports you should get the final
picture on how MorphX uses queries.

MORPHX IT Jobs

 © 2006 Steen Andreasen

247

9 Jobs
You might have noticed, that a lot of the examples throughout this book have been
written using jobs. This is in fact one of the main purpose of jobs, writing test scripts.
Jobs should be used for testing your modifications such as if you need to try out a
complex code block, figuring out what a specific system function does, or where a
single run is needed to update data. A job cannot be inherited or called from code in the
same way as methods.

9.1 Creating jobs
A job is created as static to make it runable. Without the static keyword the compiler
would consider a job as any method. When creating a new job an optional parameter
Args is automatically added to the parameter profile. The profile of a job is exactly the
same as a class method being runable. Jobs cannot return a value like a method. This is
why a job is created with the void keyword.

static void Jobs_MyJob(Args _args)
{
;
 info("Test of job.");
}

Jobs can be called from a menu item making it possible to execute a job from the menu.
This is useful if you have created a job fixing data, which must be executed in an
Axapta installation without license code to MorphX. A job cannot be dragged to a menu
item like forms, reports and runable classes. Instead you must create the menu item
manually. The reason for this might be that jobs are not intended to be put on menus or
at least making you think an extra time before adding a job to a menu. You can drag a
job to the node Classes. This will create a runable class with the code from your job.
This is really useful. All that is left is to create a menu item for the class. If a job is put
on menu, you should ensure that data will not be corrupted by running the job twice.

static void Jobs_ExecutingJob(Args _args)
{
 Args args;
;

 args = new Args();
 args.name(identifierStr(Jobs_MyJob));

 new menuFunction(menuItemActionStr(Jobs_MyJob), MenuItemType::Action).run(args);
}

By creating a menu item for a job, you will be able to use the menu item to run your job
from code. The example shows how the job Jobs_MyJob is executed. Notice the name
of the job in the args.name() is specified using the general function indentifierStr() as no

MORPHX IT Jobs

 © 2006 Steen Andreasen

248

specific function exists for jobs. Args could have been built passing a record or
parameter to the called jobs. This could be useful if your job had to called from a form
and the job needed the cursor record in the form to determine whether to be executed
the code in the job or not. Passing a cursor record to a called menu item is explained
further in the chapter Forms.

9.2 Summary
You should by now have an idea about when to use jobs for your code and when to put
your code in methods.

MORPHX IT Menu Items and Menus

 © 2006 Steen Andreasen

249

10 Menu Items and Menus
Objects such as forms, reports and runable classes are made available for application
users by adding the objects to menus. Often application users will not have permissions
to the AOT, so it is a way of controlling which features are available for application
users, i.e you would only add an object to menu when it is ready for use.

To have an object called from a menu, two steps must be taken.. First a menu item must
be created, and second the menu item must be called from a menu. The reason for
having two steps is that more than one menu item can be created for an object. Different
properties can set for the menu items, having the object behave according to the calling
menu item.

10.1 Menu Items
Menu items are grouped in 3 different nodes. The grouping is only a logical grouping,
having a proper icon shown for the object in the menu. However the display node
should be used for forms, the node output for reports and the action node for runable
classes. If you are using a class for calling a form or report, you should still be using the
nodes display and output respectively. The menu item and hence the icon shown in the
menu is supposed to be of the object type the user will see when activating the menu
item.
The easiest way of creating a new menu item is by dragging your object to the desired
menu item type. This will create a new menu item with the same name as your object.
All that is left is to add a label and set user permission for the menu item. If a label is
not specified for a menu item, the menu item will appear in the menu with the menu
item name prefixed with a *.

Note: You should always test your modifications by calling your objects using menu items rather than
calling an object directly from the AOT as you will then know how your modifications behave when an
application user executes your modifications.

Menu items are one of the main areas to control user permission. The properties
ConfigurationKey and SecurityKey are used to determine which user and user groups
may use a menu item. If a user is not allowed to execute a menu item, the menu item
will not be visible for the user. This powerful feature ensures only accessible menus are
shown. The user will therefore see a reduced menu, only showing the parts of the
application that are relevant to the user. The second main area handling user
permissions is tables. For more information on configuration keys and security keys, see
the chapter Data Dictionary.

Note: MorphX will automatically select a shortcut key for your menu items. To change the default
selected shortcut key add a ‘&’ in front the desired letter to be used as shortcut key: Transacti&ons. This
will not work if changing the menu item label. You will have to change the property Text for the
MenuItemButton control.

MORPHX IT Menu Items and Menus

 © 2006 Steen Andreasen

250

A menu item can be used to call an object from a menu, from a form calling another
object or from code. Objects used for the user interface such as forms and report should
always be called using menu items. You can call forms and reports from code without
using a menu item, but by using a menu item, user permissions will be automatically
verified.

static void MenuItems_ExecuteObject(Args _args)
{
;
 new menuFunction(menuItemDisplayStr(CustTable), MenuItemType::Display).run();
}

Here the form CustTable is called using the display menu item CustTable. The form
will only be loaded if the user has been granted permissions to the CustTable form. The
method run() executing the menu item has the class Args as parameter. For example you
can use Args to pass a parameter to the called object for filtering data. For more
information on the class Args, see the chapter Classes.

Another way of passing a value to the called object is by using the menu item’s
parameter properties. The properties EnumTypeParameter and EnumParameter can
be used to define an enum and an entry for the chosen enum. Setting an enum parameter
for a menu item makes it easy to reuse an object like a form for several purposes, rather
than creating similar forms. This technique is used in Axapta for calling the journals.
Take a look at the display menu items prefixed with LedgerJournalTable*. You will
notice these entire menu items are calling the same form LedgerJournalTable with
different entries of the enum LedgerJournalType. In the form LedgerJournalTable, the
enum is used to determine the behaviour of the form. This is a nice way to arrange your
code, as it will make it easy if you need to create a new journal type. You will just have
to add an new entry to the enum LedgerJournalType, create a new menu item using the
entry and make a check in the form LedgerJournalTable for the new enum entry.

For an overview of all the menu item properties, see Appendix Properties.

10.2 Menus
To create a new menu, you can simply drag menu items to your menu. Separators and
submenus can be created by right-clicking the menu node and choose new. Instead of
creating submenus and adding menu items to the submenu, you should consider using a
menu reference instead. A menu reference is a link to another menu. When adding a
new object to a menu, adding a menu reference can be chosen. A window will pop up
where an existing menu can be dragged to your menu as menu reference. Note that if
you drag another menu directly from the AOT to your menu, the selected menu will be
created as a submenu and not as a menu reference.
When adding a new menu item to a menu you will often be modifying an existing
menu. To make menus easier to upgrade you should consider creating a new menu for

MORPHX IT Menu Items and Menus

 © 2006 Steen Andreasen

251

your menu items, and add the new menu as a menu reference to the existing menu. This
has two purposes. First you will keep you modifications separated from the standard
menus and second you can easy reuse your menu in another menu.
Configuration keys and security keys can be set for an entire menu using the menu
properties. However this is not recommended. Instead you should define user
permissions for menu items only, as you will assure that regardless where a menu item
is called user permissions are verified. Second, setting user permission is easier to
maintain only having the settings in one place.

Note: Best practice says that each menu called from the main menu should have a max of 5 menu items
in top of the menu. The remaining menu items should be grouped in sub menus named: Journals,
Inquiries, Reports, Periodic and Setup.

Locate AOT object from menu
One of the first tasks when modifying an object in the AOT is to locate the name of the
object. You probably know where the object is called from the menu. Now you have
two options to get the AOT name of the object typically a form, a report, or a class. As
you are aware of the menu path to the object, you can find the corresponding menu in
the AOT and drill down the menu in the AOT to find the menu item. Check the property
sheet for the menu item, and the properties Class and Object will tell you the name of
the AOT object.

The second option is to right-click an open form or dialog and choose Setup. This will
open the form User setup as shown in figure 47: User setup form. Go to the tab page
Information. The first three fields will show you the AOT name of the called form or
class and the menu item calling the object. Click the Edit button to open the object in
the AOT. Notice, this is option is only available for forms and runable classes and
cannot be used for queries and reports.

MORPHX IT Menu Items and Menus

 © 2006 Steen Andreasen

252

Figure 47: User setup form

As you may conclude, none of these are fast ways to lookup an AOT object name.
Sadly these are the only options if you only know the menu path. However as MorphX
is open source you can modify the system using the system classes making it easier
providing AOT information.

10.3 Summary
You should by now know how to call an object using a menu item, the importance of
using menu items as menu items controls user permissions. When adding menu items to
a menu, you should know how to arrange your menus making re-use and upgrading
easier.

MORPHX IT Resources

 © 2006 Steen Andreasen

253

11 Resources
Resources are used to store any type of files. Instead of having bitmaps or any other
kind of files used for modifications stored in the file system, the files can be added to
the node Resources. The node Resources are not fully integrated such as objects like
forms and reports. When addressing resource nodes some of the general system classes
for traversing AOT nodes are used. In some cases you will have to temporarily export a
resource node before using the stored file. The resources node was first introduced by
version 3.0 of Axapta. This might be the reason that there are only a few methods
available when using the resource nodes. Still, resources are useful, as you can skip
using paths to the file system and at least you will have all files needed for your
modifications in one place.

Resources stored under the Resources node in the AOT should not be confused with the
resources stored in the kernel file. Bitmaps used for AOT nodes are all stored in the
kernel file and referenced using a resource id. For an overview of the resources in the
kernel file including the related resource id, see the form Tutorial_Resources.

11.1 Using Resources
A resource is added by right-clicking the Resources node and choosing Create from file.
Browse the file system using the dialog which pops up, and select a file. When pressing
the Open button, the chosen file will be stored in the AOT. Information about the added
resource can be viewed by right-clicking and choose Open. The type of the resource
will be shown in the preview window. If the resource is of the type bitmap, the bitmap
will also be shown in the preview window.

When adding a bitmap to a form or a report, you have several options for the source of
your bitmap such as the kernel resources, a bitmap stored in a table, specify a file path
to a bitmap or referring to a bitmap under the resources node. Depending on your case
different solutions will be optimal. If you need to ship a bitmap with your modifications
or you want to make sure that an exact bitmap is used, you should consider storing your
bitmap under the resources node.

Example 1: Loading bitmap

Objects used from MORPHXIT_Resources project

 Resource, MORPHXIT
 Form, Resources_LoadBitmap

In this example a bitmap stored under the resources node will be loaded and shown in a
form. To run the example a resource of the type image with the name MORPHXIT must
be created.

MORPHX IT Resources

 © 2006 Steen Andreasen

254

1. Create a new form, and rename the form “Resources_LoadBitmap”.

2. Go to the node Design and set the properties Width and Height to Column width and

Column height.

3. Add a window control to the design. The window control will be used to show the

resource node MORPHXIT. Set the property AutoDeclaration to Yes.

4. Create a new form method called showResource(). The method will be used to load

resource. The method must look like the following:

public void showResource()
{
 ResourceNode resourceNode;
 Container imageContainer;
 Image image;
;

 resourceNode = SysResource::getResourceNode(resourceStr(MORPHXIT));
 resourceNode.AOTload();

 imageContainer = SysResource::getResourceNodeData(resourceNode);
 image = new Image(imageContainer);

 imageCtrl.widthValue(image.width());
 imageCtrl.heightValue(image.height());
 imageCtrl.image(image);
}

5. The last step is to call the new method showResource() from run(). Overload run()

and add the following:

public void run()
{
 super();

 element.showResource();
}

The class SysResource and the system class ResourceNode are both used for accessing
resources. SysResource contains several useful static methods used both for loading and
saving resources. Typically SysResource is used to fetch the resource node and return
the found node to ResourceNode. If you have a closer look at the methods in the class
SysResource, you will notice that the class methods are using the system class
TreeNode. TreeNode is a base class which can be used to traverse any AOT nodes.

Note that after the ResourceNode is initialized in showResource() the method
AOTLoad() must be called. If not called, the bitmap will not be shown in the form. The
window control added to show the bitmap is initialized by using the system class Image.

MORPHX IT Resources

 © 2006 Steen Andreasen

255

Both the height and the width of the window control is set so the window control will fit
the size of the bitmap.
In this example a bitmap of the type JPG was used. Not all types of bitmaps are
supported, for instance you cannot use GIF. An error will occur if you are trying to use
a type of bitmap not support like GIF. If you have created a module or an add-on
solution, you could make use of resources to add files for your package, even sample
data. Demo data or default data are often shipped with the package to make it easier for
the user to getting started. You will just have to make an export of the data used and
create resources nodes for the data files. This solution is also used in the standard
package for setting up the Enterprise Portal and importing roles for the Enterprise Portal
users.

Example 2: Default data

Objects used from MORPHXIT_Resources project

 Resource, CustGroup_Data
 Resource, CustGroup_Def
 Job, Resources_DefaultData

This example will show how to make user of data export files added as resources. The
data will automatically be imported. You will be prompted if any data exists in the table
the data is imported to. For simplicity data is only imported to the table CustGroup.

1. Start exporting the content of the table CustGroup using the export data menu item

located in the main menu under Administration | Periodic | Data export/import |
Export.

2. Create resource nodes for respectively the data file and the definition file. The

resource nodes must be named CustGroup_Data and CustGroup_Def.

3. A job called Resources_DefaultData must be created with the following code:

static void Resources_DefaultData(Args _args)
{
 FilePath tempPath;
 ResourceNode resourceDefinitionFile;
 ResourceNode resourceDataFile;
 SysDataImport sysDataImport;
;
 tempPath = xinfo::directory(directoryType::Temp);

 resourceDefinitionFile = sysResource::getResourceNode(resourceStr(CustGroup_Definition));
 resourceDataFile = sysResource::getResourceNode(resourceStr(CustGroup_Data));

 sysResource::exportResource(resourceDefinitionFile, tempPath);
 sysResource::exportResource(resourceDataFile, tempPath);

 sysDataImport = sysDataImport::newFilename(tempPath + resourceDefinitionFile.filename());
 sysDataImport.parmLoadAll(true);

MORPHX IT Resources

 © 2006 Steen Andreasen

256

 sysDataImport.run();
}

The import tool which can be called from the main menu is used for importing the
resources data. Before the data files stored as resources can be imported, the files must
first be exported. The data files are temporary exported to the temp path for the Axapta
installation. This is done using the class SysResource for locating the resource nodes
and exporting the files. The export files can now be imported calling the data import
tool. When calling the import tool from the main menu you will be prompted for a
filename and settings. Here the dialog is skipped as no further information is needed.
That is all. This is really a user-friendly way of installing data for your modifications,
rather than the application user has to struggle with locating an importing the data
manually.

11.2 Summary
The use of resources is not widely used in MorphX. This might be the reason that
resources are often forgotten and alternative solutions are made instead. This chapter
should shed light on how resources can be used, and how by using resources, you can
skip addressing files in the file system.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

257

12 Appendix Properties
In this chapter you will find an overview of all properties accessible from the AOT. The
properties are sorted alphabetically in each section. Objects with similar properties are
grouped to have a more compact overview. Some sections have a third column called
Type, which is used to list which object has the current listed property. Where all is
stated in the column Type, the properties is available for all objects in the section.

12.1 Data Dictionary Properties
The properties for views metadata can be found in the section Query Properties.

Tables, Table Maps and Table Views
Property Description
CacheLookup Used to specify the caching algorithm used when a specific record is

selected by a WHERE statement.

ChangedBy The user who last modified the table.

ChangedDate The date the table was last modified.

ChangedTime The time the table was last modified.

ClusterIndex Which index should be used as the cluster index. Only unique indexes can
be specified.

ConfigurationKey Used to specify a Configuration Key for the table.

CreatedBy The user who created the table. If enabled the system field createdBy will
be updated when a record is inserted.

CreatedDate The date of record creation. If enabled the system field createdDate will be
updated when a record is inserted.

CreatedTime The time the record was created. If enabled the system field createdTime
will be updated when a record is inserted.

CreatedTransactionId If set, the transaction id belonging to the transaction which created the
record will be stored.

CreateRecIdIndex If enabled, an index called RecId containing the field recId will be created.

CreationDate The date the table was created. If enabled the system field createdDate will
be updated when a record is inserted.

FormRef The name of a display menu Item which should be used when going to
main table.

ID The id of the table.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

258

Label The label of the table. This is the label the application user would normally

identify the table with.

LockedBy The user who has currently locked the table.

MaxAccessMode Defines the access mode for the table.

ModifiedBy If set, the user id belonging to the user who modified the record will be
stored.

ModifiedDate If set, the date of record modification will be stored.

ModifiedTime If set, the time of record modification will be stored.

ModifiedTransactionId If set, the transaction id belonging to the transaction which modified the
record will be stored.

Name The name of the table, table map or table view.

PrimaryIndex Which index should be used as the primary index. Only unique indexes can
be selected as a primary index.

SaveDataPerCompany Should data be saved by company.

SecurityKey Used to specify a Security Key for the table.

Systemtable If enabled, the table will be considered being a system table.

TableContents Defines which type of data the table contains.

TableGroup Defines which table group the table should be a member of. The property is
used by the kernel to determine the execution plan for selects using joins.

Temporary Set for temporary tables.

TitleField1 The first field which is used in the title of forms.

TitleField2 The second field which is used in the title of forms.

Table Field, Map Field
Property Type Description
Adjustment String Specify the horizontal adjustment if an

extended data type is not specified.

AliasFor All Which field should this field be alias for.

AllowEdit All If set, the field is editable.

AllowEditOnCreate All If set, the field is editable when creating
the record.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

259

ConfigurationKey All Used to specify a Configuration Key for

the field.

EnumType Enum Specity an enum to be used for the table
field.

ExtendedDataType All Specify an extended data type to be used
for the table field.

FieldUpdate Integer
Real

Default setting is Absolute which will
overwrite the current value when the
field is changed. Relative will allow
several application users to write the
same record and have the values entered
by the users summed.

GroupPrompt All The field label to be used when used in a
field group.

HelpText All Helptext that will be displayed in the
status bar.

ID All The id of the field.

Label All Used to override the label of the
ExtendDataType, if specified.

Mandatory All If set, a value must be filled in by the
application user.

Name All The field name.

SaveContents All If enabled, the table field value will be
stored in the database.

StringSize String Used to define the field length in
characters if no extended data type is
specified.

Type All Displays the base field type.

Visible All If enabled, the field is visible on forms.

View Fields
Property Type Description
Aggregation All Choose the aggregation to be performed

on the field.

ConfigurationKey All Used to specify a Configuration Key for
the field.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

260

DataField All Select a field from the selected data

source.

DataSource All Data source which is used in the control.
Data will be retrieved from this data
source.

EnumType Enum Displays the enum used for the table
field.

ExtendedDataType All Displays the extended data type used for
the table field.

GroupPrompt All The field label to be used when used in a
field group.

HelpText All Helptext which will be shown in the help
text section of Axapta when the field is
selected.

ID All The id of the view field.

Label All Used to override the label of the
ExtendDataType.

Name All The field name.

StringSize String Displays the string size of the table field
which is used.

Type All Displays the base field type.

Table Field Group, Map field group, View field group
Property Description
Name The group name.

Label The label of the field group.

Table index
Property Description
Name The index name.

AllowDuplicates If enabled, the index can contain two or more records with the same index

key.

ConfigurationKey Used to specify a Configuration Key for the index.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

261

Enabled If enabled, the index will be enabled.

ID The id of the index.

Table Relation
Property Description
Name The Table Relation name.

Table The table to be related.

Validate Determines whether relations must be validated. If disabled the table

relation will not be used in objects as forms and reports.

Table Relation Field
Property Type Description
Field Normal

Field fixed
One of the fields which will be a part of
the field relation.

RelatedField Normal
Related field fixed

One of the fields which will be a part of
the field relation.

Value Field fixed
Related field fixed

Specifies a fixed value for a relation.
Normally used for setting the value of an
enum entry.

Table DeleteAction
Property Description
DeleteAction Action to be performed when deleting a record.

Table Table used for the delete action.

Map Mapping
Property Description
MappingTable Defines which table the map should be mapped to.

Map Field Mapping
Property Description

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

262

MapField The field in the map.

MapFieldTo Defines which field the map should be mapped to.

Extended Data Type
Property Type Description
Adjustment String Specify the horizontal adjustment, if the

Extended Data Type does not extend
another Extended Data Type.

Alignment All Horizontal alignment of the value.

AllowNegative Integer
Real

If disabled, only positive values can be
entered.

ArrayLength All Displays how many arrays the Extended
Data Types consists of.

AutoInsSeparator Real Used to have MorphX to set a decimal
separator.

ButtonImage All Which image should be displayed on the
right side of the control when lookup is
possible.

ChangeCase String Used to set the data to lower case or
upper case.

ConfigurationKey All Used to specify a Configuration Key for
the Extended Data Type.

DateDay Date Specify how day is shown. Windows
regional settings are used as default.

DateFormat Date Set the date format. Windows regional
settings are used as default.

DateMonth Date Specify how month is shown. Windows
regional settings are used as default.

DateSeparator Date Set the date separator. Windows regional
settings are used as default.

DateYear Date Specify how year is shown. Windows
regional settings are used as default.

DecimalSeparator Real Specify the decimal separator. Windows
regional settings are used as default.

DisplaceNegative Real Adjust the position of negative values

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

263

printed.

DisplayHeight String Sets the maximal number of lines to be
shown at one time for the control.

DisplayLength All Sets the maximal number of characters to
be shown at one time for the control.

EnumType Enum Specify an enum to be used.

Extends All If set, certain properties will be inherited
from this Extended Data Type like
Alignment and StringSize.

FormatMST Real Format the value using the settings from
the standard company currency.

FormHelp All Form to be used when performing
lookup in the control.

HelpText All Help text that will be displayed in the
status bar.

Label All Set the label to be used.

Name All Name of the Extended Data Type.

NoOfDecimals Real Set the number of decimals to be shown.

RotateSign Integer
Real

Used to invert negative values.

ShowZero Integer
Real

Defines whether zero values must be
shown.

SignDisplay Integer
Real

Set how to display negative values.

StringSize String Used to define the length in characters.

Style Enum Defines the graphical representation of
the Extended Data Type.

ThousandSeparator Real Specify the thousand separators.
Windows regional settings are used as
default.

TimeFormat Time Set the time format. Windows regional
settings are used as default.

TimeHours Time Specify whether to show hours.
Windows regional settings are used as
default.

TimeMinute Time Specify whether to show minutes.
Windows regional settings are used as

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

264

default.

TimeSeconds Time Specify whether to show seconds.
Windows regional settings are used as
default.

TimeSeparator Time Set the time separator. Windows regional
settings are used as default.

Base Enum
Property Description
ChangedBy The user who last modified the Base Enum.

ChangedDate The date the Base Enum was last modified.

ChangedTime The time the Base Enum was last modified.

ConfigurationKey Used to specify a Configuration Key for the Base Enum.

CreatedBy The user who created the Base Enum.

CreatedTime The time the Base Enum was created.

CreationDate The date the table was created.

DisplayLength Sets the maximal number of characters to be shown at one time for the

control.

Help Help text that will be displayed in the status bar.

ID The id of the Base Enum.

Label The label of the table. This is the label the user would normally identify the
Base Enum with.

LockedBy The user who has currently locked the table.

Name The name of the Base Enum.

Style Defines the graphical representation of the Base Enum.

UsedEnumValue If disabled, Axapta will number the Base Enum entries and the property
EnumValue on Base Enum entries will not be used.

Base Enum Entry
Property Description
ConfigurationKey Used to specify a Configuration Key for the Base Enum Item.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

265

EnumValue This is the Integer value that will be stored in the database.

Label Name which will be shown.

Name AOT name of the Base Enum Item.

License Codes
Property Description
ChangedBy

The user who last modified the License Code.

ChangedDate The date the License Code was last modified.

ChangedTime The time the License Code was last modified.

CreatedBy The user who created the License Code.

CreatedTime The time the License Code was created.

CreationDate The date the License Code was created.

Group Which License Code Group should the License Code be a part of.

ID The id of the License Code.

Label The label for the License Code. This is the label the user would normally
identify the License Code with.

LockedBy The user who has currently locked the table.

Type Most license codes are Boolean values. Only changed when counting the
number of licenses such as users or COM users.

Configuration Key, Security Key
Property Type Description
ChangedBy Both The user who last modified the key.

ChangedDate Both The date the key was last modified.

ChangedTime Both The time the key was last modified.

ConfigurationKey Security Key Used to specify a Configuration Key for

the key.

CreatedBy Both The user who created the key.

CreatedTime Both The time the key was created.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

266

CreationDate Both The date the key was created.

ID Both The id of the key.

Label Both The label of the key. This is the label the

user would normally identify the key
with.

LicenseCode Configuration Key License code used to activate this key.

LockedBy Both The user who has currently locked the
key.

Name Both The key name.

ParentKey Both Parent key for this key. If the parent key
is disabled, it will influence this key as
well.

12.2 Form properties

Form data source
Property Description
AllowCheck If set Configuration keys and Security keys will be validated at runtime.

AllowCreate Enables inserting new record for the data source.

AllowDelete Enables deletion of table records for the data source.

AllowEdit Enables editing of table records for the data source.

AutoNotify Should be disabled if the form query is not used. Used by the form query,

but seems as have no effect if only disabling this property.

AutoQuery If disabled, the application user will not be able to use the query dialog,
filter and search options for the data source.

AutoSearch Should the records be fetched automatically at startup.

Company If specified, records will be fetched from this company.

CounterField Used to define a counter for the records inserted using the data source.
CounterField can be used if records must be sorted as inserted by the
application users. A field of the type real must be created in the table used
by the data source. This field must be selected for the property
CounterField. MorphX will automatically set the counter value when a
record is inserted. The form SalesTable makes use of the CounterField
properties when inserting sales order lines.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

267

DelayActive If set, code execution and linking will be delayed when scrolling through

records. This will improve performance.

Index Index used for sorting and fetching records.

InsertAtEnd If set, new records will be inserted at the end.

InsertIfEmpty A new record will be inserted if the data source query does not find any
records.

JoinSource The joined form data source.

LinkType This property is used in combination with JoinSource. LinkType defines the
join mode used when joining two data source.

Name The name of the form data source.

OnlyFetchActive This will instruct the query of the form data source only to fetch the values
of the fields used in the form.

StartPosition Should the form data source show the first or the last record.

Table The table used in the form data source.

Form Data Source Fields
Property Description
AllowAdd Allows the user to add this field in the user setup.

AllowEdit Enables editing of the value in the control.

Enabled Should the control be enabled.

Mandatory If set, a value must be specified by the user in the field.

Skip Should the control be skipped when tab is pressed.

Visible Used to hide the control. If the follow controls are auto positioned, the

controls will be adjusted.

Form Design Group Controls
This section covers properties for the controls ButtonGroup, Group, Tab and TabPage.

Property Description
AlignChild All Should this control be included in the

adjustment of the group control it is

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

268

contained in.

AlignChildren All If set, controls which are contained in
this control will be aligned according
to each other.

AlignControl All This setting will adjust the controls
according to the longest label.

AllowEdit All Enables editing of the value in the
control.

AllowUserSetup All Enables user settings for this control
element.

ArrangeMethod All Set the orientation for the arranged
controls.

ArrangeWhen All Specify when the controls in the
design must be arranged.

AutoDataGroup Group If enabled, the control can only
contain fields from the group
specified in the property DataGroup.

AutoDeclaration All If set to Yes, the form design node
can be referred from X++ by using
the section name.

BackgroundColor All RGB value or name of Windows
color scheme item.

BackStyle All Set the background for the control to
transparent. Used if the background
color of bitmaps should not be
shown, or to set the color of the
background for the control data to the
color set with the property
BackGroundColor.

Bold ButtonGroup
Group

Set the bold level for control data.

BottomMargin All Sets the margin below the control.

Caption ButtonGroup
Group
TabPage

Caption for the control.

ColorScheme All Specify whether to use RGB colors,
or Windows color scheme.

Columns All Number of columns in the control.
The contained controls will be

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

269

arranged in this number of columns.

Columnspace All Set the space between columns.

ConfigurationKey All Used to specify a Configuration Key
for the control.

DataGroup Group Field group name.

DataSource All Data source which is used in the
control. Data will be retrieved from
this data source.

DragDrop All Enables drag and drop in the control.

Enabled All Should the control be enabled.

Font ButtonGroup
Group

The font to be used for the design. If
not specified the default font is used.

FontSize ButtonGroup
Group

The font size to be used for the
design. If not specified the default
font size is used.

FrameOptionButton Group Determines whether the frame should
contain a button.

FramePosition ButtonGroup
Group

Sets the placement of the frame.

FrameType ButtonGroup
Group

Which type of frame must surround
the control.

Height All Set a fixed height for the control.

HelpText All Help text that will be displayed in the
status bar. Will override help text
specified for a field or an extended
data type.

HideIfEmpty All Hides the control if it is empty.

Italic ButtonGroup
Group

Set the label to italic.

LabelBold Group Set the label to bold.

LabelFont Group Set the font for the label. If not
specified the default font will be
used.

LabelFontSize Group Set the font size for the label. If not
specified the default font size will be
used.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

270

LabelItalic Group Set the label to Italic.

LabelUnderline Group Underline the label text. The property
LabelLineBelow is used to set a line
below in the full width of the label.

Left All Set the control to a fixed position
calculated from left. If controls are
horizontal aligned and one control is
set to a fixed position, all controls
must be fixed.

LeftMargin All Set a left margin for the control.

Name All Name of the control.

NeededAccessLevel All Required access level to activate this
control.

OptionValue Group Value to be used with the property
FrameOptionButton. Used to set the
default value if FrameOptionButton
is set to Check or Radio.

RightMargin All Set a right margin for the control.

SecurityKey All Used to specify a Security Key for
the control.

SelectControl Tab Should the first control be activated
when changing tab page.

ShowTabs Tab If disabled, the tabpages will be
hidden.

SizeHeight ButtonGroup Should all the buttons in the
buttongroup have the same height.

SizeWidth ButtonGroup Should all the buttons in the
buttongroup have the same width.

Skip All Should the control be skipped when
tab is pressed.

Tab Tab Active tabpage when the form is
opened.

TabAppearance Tab
TabPage

Defines how the tabpages are shown.

TabAutoChange Tab
TabPage

Does not work. Should allow using
the tab key to go to the following
tabpage.

TabLayout Tab How the tabpages should be

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

271

arranged. The option Tunnel cannot
be used for forms as this is a features
used by the web framework.

TabPlacement Tab Defines where the tabpages are
placed.

Top All Set a fixed position for the control
calculated from the top of the
previous control.

TopMargin All Set the margin above the control.

Underline ButtonGroup
Group

Set the label to be underlined.

VerticalSpacing All Space above and under the control.

Visible All Used to hide the control. If the follow
controls are auto positioned, the
controls will be adjusted.

Width All Set a fixed width for the control. If
set to default, the extended data type
will set the width.

Form design
Property Description
AlignChild Should this control be included in the adjustment of the group control it is

contained in.

AlignChildren If set, controls which are contained in this control will be aligned according
to each other.

AllowDocking Can the window be docked.

AllowUserSetup Enables user settings for this control element.

AlwaysOnTop Should the form be displayed as the front most window.

ArrangeMethod Set the orientation for the arranged controls.

ArrangeWhen Specify when the controls in the design must be arranged.

BackgroundColor RGB value or name of Windows color scheme item.

BottomMargin Sets the margin below the control.

Caption Caption of the form. This will appear in the title bar of the form.

ColorScheme Specify whether to use RGB colors, or Windows color scheme.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

272

Columns Number of columns in the control. The contained controls will be arranged

in this numbers of columns.

Columnspace Set the space between columns.

DataSource Data source which is used for the control. Data will be retrieved from this
data source.

Font The font to be used for the design. If not specified the default font is used.

Frame This property defines the appearance of the frame around the form.

Height Set a fixed height for the form design.

HideIfEmpty Hides the design and only shows the title bar, if empty.

HideToolbar Hides the toolbar containing buttons for navigating and viewing documents
for the record.

Imagemode Controls how the background image must be shown. See property
ImageName.

ImageName Name of the image to be used as background in the form.

ImageResource Name of the resource to be used as background in the form.

LabelFont Set the font for the label of the control elements. If not specified the default
font will be used.

Left Set a fixed horizontal position for the form.

LeftMargin Set the left margin for the design.

Mode Seems to have no effect. This is a property used by the predecessor to
Axapta for setting write access on forms.

NeededAccessLevel Seems to have no effect. NeededAccessLevel is normally defined using the
menu items, as the help text for this property also state.

RightMargin Set the right margin for the design.

SaveSize Saves the size of the form design and uses this the next time the form is
displayed.

SetCompany Would you like to set the company when the form is activated.

TitleDatasource If enabled, the title fields of the data source will be shown in the caption of
the form.

Top Set a fixed vertical position for the form.

TopMargin Set the top margin for the design.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

273

Visible Used to hide the entire design.

Width Set a fixed width for the form.

WindowResize Enables or disables window resizing.

WindowType Used to change the form to a popup form. A popup form cannot be resized.

Type controls
This section is an overview of form controls for the base types and other controls used
for display data such as the grid control and button controls.

Property Type Description
ActiveBackColor Grid RGB value or name of Windows color

scheme item.

ActiveForeColor Grid RGB value or name of Windows color
scheme item.

AlignChild Design

Should this control be included in the
adjustment of the group control it is
contained in.

AlignChildren Design If set, controls which are contained in this
control will be aligned according to each
other.

AlignControl All This setting will adjust the controls
according to the longest label.

Alignment DateEdit
IntEdit
RealEdit
StaticText
StringEdit
TimeEdit

Align the control data. Can be used to left
align control data, when controls are
positioned vertical.

AllowEdit All Allows editing the value in the control.

AllowNegative IntEdit
RealEdit

The property is used to prevent negative
values to be entered by the user.

AnimateFile Animate The name of the .avi file that should be
played in the control.

AppendNew ComboBox If set to Yes, the user can manually add
new elements.

ArrayIndex ComboBox
DateEdit

If the selected field or method is an array
a single element of the array can be

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

274

IntEdit
Listbox
RadioButton
RealEdit
StringEdit
TimeEdit

specified to be used only.

AutoArrange ListView Should icons be arranged automatically.

AutoDataGroup Grid If enabled, the control can only contain
fields from the group specified in the
property DataGroup.

AutoDeclaration All If set to Yes the properties for the control
can be referenced from X++ by using the
control name.

AutoInsSeparator RealEdit Seems to have no effect. Should allow
disabling auto inserting decimals.

AutoPlay Animate Starts playback of the video file
automatically.

BackgroundColor Button
CheckBox
ComboBox
CommandButton
DateEdit
Grid
IntEdit
Listbox
ListView
MenuButton
MenuItemButton
RadioButton
RealEdit
StaticText
StringEdit
Table
TimeEdit
Tree
Window

RGB value or name of Windows color
scheme item.

BackStyle Button
CheckBox
ComboBox
CommandButton
DateEdit
IntEdit
Listbox
ListView
MenuButton
MenuItemButton
RadioButton
RealEdit

Set the background for the control to
transparent. Used if the background color
of bitmaps should not be shown, or to set
the color of the background for the
control data to the color set with the
property BackGroundColor.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

275

StaticText
StringEdit
TimeEdit
Tree
Window

Bold Button
ComboBox
CommandButton
DateEdit
IntEdit
Listbox
ListView
MenuButton
MenuItemButton
RadioButton
RealEdit
StaticText
StringEdit
TimeEdit
Tree

Set the bold level for control data.

Border Animate
Button
ComboBox
CommandButton
DateEdit
IntEdit
Listbox
ListView
MenuButton
MenuItemButton
RealEdit
StringEdit
TimeEdit
Tree

Typography of the frame belonging to the
control.

BottomMargin Grid
MenuButton
RadioButton
Table

Set the margin below the controls data.

ButtonDisplay Button
CommandButton
MenuButton
MenuItemButton

Determines whether text, image or both
should be displayed and also the location
of it.

CanScroll ListView
Tree

Enables scrolling.

Caption ActiveX
HTML
RadioButton

Caption for the control.

Center Animate If set to Yes, the video clip will be

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

276

centered in the control.

ChangeCase StringEdit Used to set the control data to lower case
or upper case.

CheckBox ListView
Tree

If enabled, a checkbox will be shown for
each row in the control’s data.

ClassName ActiveX
HTML

The name or GUID of the class or object
to be used.

ColorScheme Button
CheckBox
ComboBox
CommandButton
DateEdit
Grid
IntEdit
Listbox
ListView
MenuButton
MenuItemButton
RadioButton
RealEdit
StaticText
StringEdit
Table
TimeEdit
Tree
Window

Specify whether to use RGB colors, or
Windows color scheme.

Column Table Sets the active column.

ColumnHeader ListView Determines whether a header will be
shown for the columns.

ColumnHeaderButton ListView If enabled, the column headers will
function as a button. Only when Viewtype
is set to Report.

ColumnImages ListView If enabled, each object in a column can
contain an image.

Columns RadioButton
Table

Number of columns in the control. The
contained controls will be arranged in this
numbers of columns.

ComboType ComboBox The type of combobox.

Command CommandButton Command to be used when clicking on
the button.

ConfigurationKey All Used to specify a Configuration Key for
the control.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

277

Custom ActiveX
Html

This property must be used if a custom
ActiveX property editor should be used.

DataField CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RadioButton
RealEdit
StaticText
StringEdit
TimeEdit
Window

Select a field from the selected data
source. Instead of selecting a field, a
display method can be specified in the
property DataMethod.

DataGroup Grid Field group name.

DataMethod CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RadioButton
RealEdit
StaticText
StringEdit
TimeEdit
Window

Select a display or edit method to be used.
If the method is from a table, the data
source must be specified in the property
Table and the method must exist either on
the data source connected to the table or
the table itself.

DataSource CheckBox
ComboBox
DateEdit
Grid
IntEdit
Listbox
MenuItemButton
RadioButton
RealEdit
StaticText
StringEdit
TimeEdit
Window

Data source which is used in the control.
Data will be retrieved from this data
source.

DateDay DateEdit Specify how day is shown. Windows
regional settings are used as default.

DateFormat DateEdit Set the date format. Windows regional
settings are used as default.

DateMonth DateEdit Specify how month is shown. Windows
regional settings are used as default.

DateSeparator DateEdit Set the date separator. Windows regional
settings are used as default.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

278

DateValue DateEdit If specified, this date will be used as
default in the value of the control.

DateYear DateEdit Specify how year is shown. Windows
regional settings are used as default.

DecimalSeparator ReaLEdit Specify the decimal separator. Windows
regional settings are used as default.

DefaultButton Button
CommandButton
MenuButton
MenuItemButton

If enabled, this is the standard button.

Direction Progress Sets either horizontal or vertical direction.

DisabledImage Button
CommandButton
MenuButton
MenuItemButton

Will show the bitmap at the specified path
if the button is disabled. The property
ButtonText must be set to show images.

DisabledResource Button
CommandButton
MenuButton
MenuItemButton

Will show the specified resource bitmap if
the button is disabled. The property
ButtonText must be set to show images.

DisplaceNegative IntEdit
RealEdit

Adjust the position of negative values
printed.

DisplayHeight DateEdit
IntEdit
RealEdit
StaticText
StringEdit
TimeEdit

Sets the maximal number of lines to be
shown at one time for the control.

DisplayLength ComboBox
DateEdit
IntEdit
Listbox
RadioButton
RealEdit
StaticText
StringEdit
TimeEdit

Sets the maximal number of characters to
be shown at one time for the control.

DragDrop All Enables drag and drop in the control.

EditLabels ListView
Tree

Enables user editing of labels in the
control.

Enabled All Should the control be enabled.

EnumType ComboBox Specity an enum to be used for the control

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

279

Listbox
RadioButton

if a field or a method is not specified.

ExtendedDataType ComboBox
DateEdit
IntEdit
Listbox
RadioButton
RealEdit
StringEdit
TimeEdit

Specify an extended data type for the
control if a field or a method is not
specified

Font Button
ComboBox
CommandButton
DateEdit
IntEdit
Listbox
ListView
MenuButton
MenuItemButton
RadioButton
RealEdit
StaticText
StringEdit
TimeEdit
Tree

The font to be used for the control data. If
not specified the default font is used.

FontSize Button
ComboBox
CommandButton
DateEdit
IntEdit
Listbox
ListView
MenuButton
MenuItemButton
RadioButton
RealEdit
StaticText
StringEdit
TimeEdit
Tree

The font size to be used for the control
data. If not specified the default font size
is used.

ForegroundColor Button
CheckBox
ComboBox
CommandButton
DateEdit
IntEdit
Listbox
ListView
MenuButton
MenuItemButton
RadioButton
RealEdit

RGB value or name of Windows color
scheme item.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

280

StaticText
StringEdit
TimeEdit
Tree
Window

FormatMST RealEdit Format the value using the settings for the
standard company currency.

FramePosition RadioButton Sets the position of the frame.

FrameType RadioButton Which frame type must surround the
control.

GridLines Grid
ListView
Table

Show lines in the grid. Only valid by
control type ListView when the property
ViewType is set to Report.

HasButtons Tree If enabled, + or – is shown if the control
node can be expanded.

HasLines Tree This will draw lines for each row in the
data of the control.

Headerdragdrop ListView Enables drag and drop for the header in
the control.

Height All Set a fixed height for the control.

HelpText All Help text that will be displayed in the
status bar. This value will override the
label entered at the table field or extended
data type.

HideFirstEntry ComboBox
Listbox
RadioButton

Hides the first data entry.

HighlightActive Grid If enabled, the selected line will be
marked with a color.

Imagemode Window Controls how the background image must
be shown. See property ImageName.

ImageName Window Name of the image to be used as
background in the control.

ImageResource Window Specify an image resource id to be shown.

Italic ComboBox
CommandButton
DateEdit
IntEdit
Listbox

Set the font to italic for the control data.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

281

ListView
MenuButton
MenuItemButton
RadioButton
RealEdit
StaticText
StringEdit
TimeEdit
Tree

Item ComboBox
Listbox
RadioButton

Seems to have no effect. The property
Selection is used to set the default entry.
Is disabled if an enum is specified for the
control.

ItemAlign ListView Seems to have no effect. Should be
aligning the items in a list control to the
top or to the left.

Items ComboBox
Listbox
RadioButton

Is disabled if an enum is specified for the
control. Can be used for manually set the
number of entries for a radio button
control.

Label CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

Used to override the default label from
the field or extended data type. The label
will not be displayed, if the property
ShowLabel is set to false.

LabelAlignment CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

Align the label of the control.

LabelBold CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

Set the label to bold.

LabelFont CheckBox Set the font for the label. If not specified

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

282

ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

the default font will be used.

LabelFontSize CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

Set the font size for the label. If not
specified the default font size will be
used.

LabelForegroundColor CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

RGB value or name of Windows color
scheme item to be used for the label of the
control.

LabelHeight CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

This property is not working. Should be
used to set the height of a label.

LabelItalic CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

Set the label to Italic.

LabelPosition CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit

Position the label above or to the left.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

283

StringEdit
TimeEdit
Window

LabelUnderline CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

Underline the label text.

LabelWidth CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

Used when the property LabelPostion is
set to Left. Set a fixed width for the label.

Left All Set the control to a fixed position
calculated from left.

LeftMargin Grid
MenuButton
RadioButton
Table

Set a left margin for the control.

LimitText DateEdit
IntEdit
RealEdit
StringEdit
TimeEdit

The maximal number of characters that
the user can enter in the control.

LinesAtRoot Tree This will draw lines for the root row in
the data of the control.

LookupButton DateEdit
IntEdit
RealEdit
StringEdit
TimeEdit

When should the control have a lookup
button.

Loops Animate Number of times to play the movie clip.
Setting to zero will cause the movie clip
to be repeated.

Mandatory DateEdit
IntEdit
RealEdit
StringEdit

If set, the field must be filled out.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

284

TimeEdit

MenuItemName MenuItemButton Name of the menu item. Only menu items
of the type defined in the property
MenuItemType can be selected.

MenuItemType MenuItemButton Type of the menu item.

MultiLine StringEdit Should the value of the data control be
able to contain several lines.

MultiSelect Button
CommandButton
Grid
MenuButton
MenuItemButton

In a grid, it determines whether several
rows can be selected at one time. In other
types of controls, the control will be
disabled if several rows are selected and
this property is not enabled.

Name All The name of the section. This is the name
used from X++ to refer to the section,
when the property AutoDeclaration is set.

NeededAccessLevel Button
CommandButton
MenuButton
MenuItemButton

Required access level to activate this
control.

NoOfDecimals RealEdit Set the number of decimals to be shown.

NormalImage Button
CommandButton
MenuButton
MenuItemButton

Will show the specified resource bitmap if
the button is enabled. The property
ButtonText must be set to show images.

NormalResource Button
CommandButton
MenuButton
MenuItemButton

Will show the specified image if the
button is enabled. The property
ButtonText must be set to show images.

OneClickActivate ListView Activate with just one click.

PasswordStyle StringEdit If set, the value of the control will be
shown as *.

Pos Progress Start position for progress bar.

ProgressType Progress Seems as having no effect.

RangeHi Progress Maximum value for the progress bar.

RangeLo Progress Minimum value for the progress bar.

RealValue RealEdit Sets the default value for the control.

ReplaceOnLookup DateEdit Should the value entered in the control be

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

285

IntEdit
RealEdit
StringEdit
TimeEdit

replaced when a new value is selected on
lookup.

RightMargin Grid
MenuButton
RadioButton
Table

Set a right margin for the control.

RotateSign IntEdit
RealEdit

Used to invert negative values.

Row Table Active row.

Rows Table Number of rows in the control.

RowSelect ListView
Tree

Can rows be selected.

SaveRecord Button
CommandButton
MenuButton
MenuItemButton

Should the record be saved by the system
when activating this control.

SearchMode DateEdit
IntEdit
RealEdit
StringEdit
TimeEdit

Sets the search mode on how to find
records when typing.

SecurityKey All Used to specify a Security Key for the
control.

Selection ComboBox
Listbox
RadioButton

Sets the initially selected item.

ShowColLabels Grid
Table

Should column labels be shown.

ShowLabel CheckBox
ComboBox
DateEdit
IntEdit
Listbox
RealEdit
StringEdit
TimeEdit
Window

If set to No, the label will not be
displayed.

ShowRowLabels Grid
Table

Should column labels be shown.

ShowSelAlways ListView Should the object selection be maintained

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

286

Tree when focus is changed.

ShowShortCut Button
CommandButton
MenuButton
MenuItemButton

If enabled, a shortcut will be reserved and
shown in the label of the control.

ShowZero IntEdit
RealEdit

Defines whether zero values must be
shown.

SignDisplay IntEdit
RealEdit

Set how to display negative values.

SingleSelection ListView
Tree

Allow more than one object to be selected
at a time.

Skip All Should the control be skipped when the
tab key is pressed.

Sort ListView Defines how the sorting of elements is
performed.

Step Progress Number of steps in each iteration.

Text Button
ComboBox
CommandButton
Listbox
MenuButton
MenuItemButton
RadioButton
StaticText
StringEdit

Enter the text to be shown.

ThousandSeparator RealEdit Specify the thousand separator. Windows
regional settings are used as default.

TimeFormat TimeEdit Set the time format. Windows regional
settings are used as default.

TimeHours TimeEdit Specify whether to show hours. Windows
regional settings are used as default.

TimeMinute TimeEdit Specify whether to show minutes.
Windows regional settings are used as
default.

TimeSeconds TimeEdit Specify whether to show seconds.
Windows regional settings are used as
default.

TimeSeparator TimeEdit Set the time separator. Windows regional
settings are used as default.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

287

Top All Set a fixed position for the control
calculated from the top of the previous
control.

TopMargin Grid
MenuButton
RadioButton
Table

Set the margin above the control.

TrackSelect ListView
Tree

Should the object be selected when the
cursor is moved over the control.

Transparent Animate Should a transparent background be used.

TwoClickActivate ListView Require activation with double click.

Underline Button
ComboBox
CommandButton
DateEdit
IntEdit
Listbox
ListView
MenuButton
MenuItemButton
RadioButton
RealEdit
StaticText
StringEdit
TimeEdit
Tree

Underline the control data.

Value CheckBox
IntEdit
MenuItemButton
TimeEdit

Specifiy the initial value.

VerticalSpacing All Space above and under the control.

ViewType ListView Specify how objects are represented
visually.

Visible All Used to hide the control. If the following
controls are auto positioned, the controls
will be adjusted.

VisibleCols Grid How many columns should be visible.

VisibleRows Grid How many rows should be visible.

Width All Set a fixed width for the control. If set to
default, the extended data type will set the
width.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

288

12.3 Report Properties
The report query properties can be found in the section Query Properties.

Report
Property Description
Name AOT name of the report.

AllowCheck If set Configuration keys and Security keys will be validated at runtime.

Autojoin Joins the reports query with the caller. If the report is called from a form,

the report will be joined with the called record.

Interactive Specify whether the dialog is shown to the user at runtime.

Report design
Property Description
Name

Name of the design. Used to identify the design, if the report have more
than one design.

AutoDeclaration

If set to Yes, the report design node referred from X++ by using the section
name.

Caption

Caption for the report. If the standard report template InternalList is used,
caption will be used to print the name of the report in the header.

Description

Will be printed in the top bar of the print to screen window. If not specified,
the Caption text is printed instead.

JobType

Can be used to identify the design. JobType is not printed.

EmptyReportPrompt

Specify a text to be printed in the Infolog, if the report is empty. If not used,
the default text is printed.

ArrangeWhen

Specify when the controls in the design must be arranged.

ColorScheme

Specify whether to use RGB colors, or Windows color scheme.

ForegroundColor

RGB value or name of Windows color scheme item.

ResolutionX

Seems as having no effect.

ResolutionY

Seems as having no effect.

Ruler

Used to set the measure units for the visual designer.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

289

ReportTemplate

Choose a report template to be used for the design.

TopMargin

Set the top margin for the design.

BottomMargin

Set the bottom margin for the design.

LeftMargin

Set the left margin for the design.

RightMargin

Set the right margin for the design.

Language

Set a fixed language for the design. If not set the users default language will
be used.

Font

The font to be used for the design. If not specified the default font is used.

FontSize

The font size to be used for the design. If not specified the default font size
is used.

Italic

Set the design to italic.

Underline

Underline text in the design.

Bold

Set the design to bold.

PrintFormName

The application form used for the printer dialog. If the report is called using
the report runbase framework, this form is not used.

HideBorder

Skip printing labels and lines around controls.

Orientation

Fix orientation to portrait or landscape. A design will default be printed
landscape, if the there are too many controls to fit portrait without scaling.

FitToPage

Determine whether to scale the report, if the controls cannot fit in the width
of the report.

RemoveRepeatedHeaders

Skip headers where no records are printed for the header.

RemoveRepeatedFooters

Skip footers where no records are printed for the footer.

RemoveRedundantFooters

Skip printing sum footers if only one record is to be summed.

Auto design
Property Description
GrandHeader Defines whether to print a header text at sorting breaks. This header text is

identified as super grand header, and will be printed before the grand
header which can be set at the body section.

GrandTotal Will print a super grand total for controls where the property SumAll,
SumPos or SumNeg is set.

HeaderText This text will be printed as header text at sorting breaks if GrandHeader is

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

290

set to Yes. If no text has been entered, the default test will be printed.

TotalText If GrandTotal is set to Yes, this text will be printed as super grand total text,
instead of the default text.

Sections controls
This section is an overview of all the different type of report section controls.

Property Sections Description
ArrangeMethod All Set the orientation for the arranged

controls.

ArrangeWhen All Specify when the controls in the section
must be arranged.

AutoDeclaration ProgrammableSection
Body
PageFooter

If set to Yes, the section can be referred
from X++ by using the section name.

Bold All Set the bold level for headings and data in
the section.

Bottom ProgrammableSection
Prolog
Body
Epilog

Set a fixed position for the section
calculated from the bottom of the page.

BottomMargin All Set the margin below the section data.

ColorScheme All Specify whether to use RGB colors, or
Windows color scheme.

ColumnHeadingsStrategy ProgrammableSection
Body
PageFooter

Define whether labels must be word
wrapped or printed staggered. If set to
DisplacedLines, the heading labels will be
printed staggered on two lines, if the labels
cannot be fit on a single line.

Columns All This property has no function. Used on
forms to define the number of columns for
arranging sub controls.

Columnspace All Set the space between columns.

ControlNumber

ProgrammableSection The identification for a programmable
section. Used to execute the section from
X++.

Font All The font to be used for the section. If not
specified the default font is used.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

291

FontSize All The font size to be used for the section. If
not specified the default font size is used.

FooterText Body Only available in auto designs. This text
will be printed as grand total text, instead
of the default text.

ForegroundColor All RGB value or name of Windows color
scheme item.

GrandHeader Body Only available in auto designs. Defines
whether to print a header text at sorting
breaks.

GrandTotal Body Only available in auto designs. Will print a
grand total for controls where the property
SumAll, SumPos or SumNeg is set.

HeaderText Body Only available in auto designs. This text
will be printed as header text at sorting
breaks. If not text entered, the default test
will be printed.

Height All Set a fixed height for the section.

Italic All Set the font to italic for headings and data
in the section.

LabelBottomMargin ProgrammableSection
Body
PageFooter

Set the margin below the heading labels,
and before section data.

LabelTopMargin ProgrammableSection
Body
PageFooter

Set the margin above the heading labels.

LeftMargin All Left margin for the section.

LineAbove All Add a line above the section data.

LineBelow All Add a line below the section data.

LineLeft All Add a line to the left of the section data.

LineRight All Add a line to the right of the section data.

Name All The name of the section. This is the name
used from X++ to refer to the section,
when the property AutoDeclaration is set.

NoOfHeadingLines ProgrammableSection
Body
PageFooter

Labels are printed as heading lines. Used
to set NoOfHeadingLines to a fixed value.
Set to zero if no header should be printed.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

292

ResolutionX All Seems as having no effect.

ResolutionY All Seems as having no effect.

RightMargin All Right margin for the section.

Ruler All Used to set the measure unit for the

current section in the visual designer.

Table Body Used by element.send() to determine
which body sections to be printed.

Thickness All Set thickness of the lines added for the
section data.

Top ProgrammableSection
Prolog
Body
Epilog

Set a fixed position for the section
calculated from the top of the page.

TopMargin All Set the margin above the section data.

Underline All Underline headings and data in the
section.

Section Template
The section template is only used by report auto designs.

Property Description
SectionTemplate

Name of the section template.

Table

The table used for the section template. The table must a part of the map
used for the section template.

Section Group
The section group control is only used by report generated design.

Property Description
DataField

Can be used to identify a section group if a report contains two section
group using the same table.

Name

Name of the section group.

Table

The table used in the section group. Used by element.send() to determine
when to print the section group.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

293

Type controls
This section covers all type of report controls used by a section control.

Property Type Description
Alignment

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Prompt

Align the control data. Can be used to left
align control data, when controls are
positioned vertical.

AllowNegative

Real
Integer
Sum

This property is of no use on reports. The
property is used on forms to prevent
negative values to be entered by the user.

ArrayIndex

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Prompt

If the selected field or method is an array a
single element of the array can be
specified to be printed only.

AutoDeclaration All If set to Yes the properties for the control
can be referenced from X++ by using the
control name.

AutoInsSeparator

Real
Sum

Used to have MorphX to set a decimal
separator.

BackgroundColor

String
Text
Real
Integer
Enum
Date
Time
Sum
Prompt

RGB value or name of Windows color
scheme item.

BackStyle

String
Text
Real
Integer
Enum
Date

Set the background for the control to
transparent. Used if the background color
of bitmaps should not be shown, or to set
the color of the background for the control
data to the color set with the property
BackGroundColor.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

294

Time
Sum
Bitmap
Prompt

Bold

String
Text
Real
Integer
Enum
Date
Time
Sum
Prompt

Set the bold level for control data.

BottomMargin

All Set the margin below the controls data.

ChangeCase

String
Text
Enum
Prompt

Used to set the control data to lower case
or upper case.

ChangeLabelCase

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

Used to set the label to lower case or
upper case.

ColorScheme

All Specify whether to use RGB colors, or
Windows color scheme.

ConfigurationKey

All Used to specify a Configuration Key for
the control.

CssClass

All Web property.

DataField

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Prompt

Select a field from the selected data
source. Instead of selecting a field, a
display method can be specified in the
property DataMethod.

DataFieldName

Sum Name of the control to be summed.

DataMethod

String
Real
Integer

Select a display method to be printed. If
the display method is from a table, the
data source must be specified in the

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

295

Enum
Date
Time
Bitmap

property Table.

DateDay

Date Specify how day is shown. Windows
regional settings are used as default.

DateFormat

Date Set the date format. Windows regional
settings are used as default.

DateMonth

Date Specify how month is shown. Windows
regional settings are used as default.

DateSeparator

Date Set the date separator. Windows regional
settings are used as default.

DateYear

Date Specify how year is shown. Windows
regional settings are used as default.

DecimalSeparator

Real
Sum

Specify the decimal separator. Windows
regional settings are used as default.

DisplaceNegative

Real
Integer
Sum

Adjust the position of negative values
printed.

DynamicHeight

String If set to Yes the height will be set
according to the text.

ExtendedDataType

String
Text
Real
Integer
Enum
Date
Time
Prompt

Specify an extended data type for the
control if a DataField or a DataMethod is
not specified.

ExtraSumWidth

Real
Integer
Sum

Defines extra space for the summed value.
Useful in currencies with a lot of digits.

Font

String
Text
Real
Integer
Enum
Date
Time
Sum
Prompt

The font to be used for the control data. If
not specified the default font is used.

FontSize

String
Text

The font size to be used for the control
data. If not specified the default font size

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

296

Real
Integer
Enum
Date
Time
Sum
Prompt

is used.

ForegroundColor

All RGB value or name of Windows color
scheme item.

FormatMST

Real
Sum

Format the value using the settings for the
standard company currency.

Height

All Set a fixed height for the control.

ImageName

Bitmap Path and filename for bitmap.

ImageRessource

Bitmap Used to specify a resource id for the
bitmap. Use the report
Tutorial_Resources to get an overview
of the resource id's.

Italic

String
Text
Real
Integer
Enum
Date
Time
Sum
Prompt

Set the font to italic for the control data.

Label

All Used to override the default label or if no
DataField or ExtendDataType is specified.
The label will not be printed, if the
property ShowLabel is set to false.

LabelBold

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

Set the label to bold.

LabelCssClass

All Web property.

LabelFont

String
Real
Integer
Enum

Set the font for the label. If not specified
the default font will be used.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

297

Date
Time
Sum
Bitmap
Shape

LabelFontSize

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

Set the font size for the label. If not
specified the default font size will be used.

LabelItalic

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

Set the label to Italic.

LabelLineBelow

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

Print a line with the width of the control
below the label.

LabelLineThickness

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

Set the thickness of the line below the
label.

LabelPosition

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

Position the label above or to the left.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

298

LabelTabLeader

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

Used when the property LabelPosition is
et to Left. Put tabs or dots follow by a
colon after the label.

LabelUnderline

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

Underline the label text. The property
LabelLineBelow is used to set a line
below in the full width of the label.

LabelWidth

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

Used when the property LabelPosition is
set to Left. Set a fixed width for the label.

Left All Set the control to a fixed position
calculated from left. If controls are
horizontal aligned and one control is set to
a fixed position, all controls must be fixed.

LeftMargin

All Set a left margin for the control.

Line

Shape Specify the line type for the shape.

LineAbove

All Add a line above the control data.

LineBelow

All Add a line below the control data.

LineLeft

All Add a line to the left of the control data.

LineRight

All Add a line to the right of the control data.

MenuItemName

All Web property.

MenuItemType

All Web property.

ModelFieldName

All Enter the name of a control which this
control must be position according to. Is

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

299

often used to position prompt and sums
controls to be on line with the data
controls.

Name All Name of the control.

NoOfDecimals

Real
Sum

Set the number of decimals to be shown.

ResizeBitmap

Bitmap Used to resize the bitmap if a fixed width
and height is specified for the bitmap.

RightMargin

All Set a right margin for the control.

RotateSign

Real
Integer
Sum

Used to invert negative values.

SecurityKey

All Used to specify a Security Key for the
control.

ShowLabel

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Shape

If set to No, the label will not be printed.

ShowPicAsText

Bitmap Print the image path or the resource id
instead of printing the bitmap.

ShowZero

Real
Integer
Sum

Defines whether zero values must be
shown.

SignDisplay

Real
Integer
Sum

Set how to display negative values.

SumAll

Real
Integer

Sum all values. Used by sum controls to
define which controls to be summed. If set
in auto design, the control will be summed
if the user add a group total in the dialog.

SumNeg

Real
Integer

Set if only negative values should be
summed.

SumPos

Real
Integer

Set if only positive values should be
summed.

SumType Sum Set to sum only positive or negative

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

300

 values.

Table

String
Real
Integer
Enum
Date
Time
Sum
Bitmap
Prompt

Select a data source to be used for the
control.

Text

Text Enter the text to be printed.

Thickness

All Set thickness of the lines added for the
control data.

ThousandSeparator

Real
Sum

Specify the thousand separator. Windows
regional settings are used as default.

TimeFormat

Time Set the time format. Windows regional
settings are used as default.

TimeHours

Time Specify whether to show hours. Windows
regional settings are used as default.

TimeMinute

Time Specify whether to show minutes.
Windows regional settings are used as
default.

TimeSeconds

Time Specify whether to show seconds.
Windows regional settings are used as
default.

TimeSeparator

Time Set the time separator. Windows regional
settings are used as default.

Top

All Set a fixed position for the control
calculated from the top of the section. If
controls are horizontal aligned and one
control is set to a fixed position, all
controls must be fixed.

TopMargin

All Set the margin above the controls data.

Type

Shape Set the type of shape to be printed.

TypeHeaderPrompt

Text
Prompt

Specify whether to put following dots and
a colon after the text.

Underline

String
Text
Real
Integer

Underline the control data.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

301

Enum
Date
Time
Sum
Prompt

Visible

All Used to hide the control. If the follow
controls are auto positioned, the controls
will be adjusted.

WarnIfMissing

Bitmap Print a warning in the Infolog if the
bitmap cannot be located from the
ImageName, ImageRessource or the
DataMethod.

WebTarget

All Web property.

Width

All Set a fixed width for the control. If set to
default, the extended data type will set the
width.

Field Group
Property Description
AutoFieldGroupOrder

Determine whether properties and field order must be saved. The field
group will automatically be updated according to changes made to the field
group from the data dictionary.

DataGroup

Field group name.

Table

Table from which the field group is picked.

12.4 Query properties

Query
Property Description
AllowCheck If set Configuration keys and Security keys will be validated at runtime.

Form Specifies the Axapta form used for the query dialog. This is normally not

changed.

Interactive Specify whether the query dialog is shown to the user.

Literals Choose either default, forceliterals or forceplaceholders. All statements
which are frequently executed should use forceplaceholders and
forceliterals can be used against non-frequent skewed data.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

302

Name AOT name of the query.

Title Caption for the query.

UserUpdate Defines whether user settings to the query are saved.

Data sources
Property Description
AllowAdd If disabled, the user can not add or delete table ranges. The same applies for

sorting fields.

Company Fetch data from a specify company. It is normally not used, as the user
expect data to be fetched from the active company.

Enabled Should the data source be enabled or disabled. If disabled, it will be ignored
in the sql statement.

FetchMode Only joined data sources has this property. Can be used to change a one to
many relation to one to one relation. This property is not used very often. In
the most cases the property JoinMode will be sufficient.

FirstFast Should the first record be fetched faster than the remaining records.

FirstOnly Only select the first record.

JoinMode How should the data sources be joined.

Name AOT name of the data source.

OrderMode Choose either order by or group by. This will influence the way data is
ordered or grouped from the database.

Relations If enabled, relations between this data source and the data source one level
above will be added using the actual data model.

Update If set to yes, the record will be fetched forupdate allowing the record to be
updated.

Fields
Property Description
Dynamic Show default all fields for the table. If the reports order mode is group by,

the property will be set to no, and only aggregated values can be chosen for
the Fields node.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

303

Sorting fields
Property Description
AutoHeader Should a group title be printed each time the value in this field changes.

Only used by report queries.

AutoSum Should a sum be printed each time the value in this field changes. Only
used by report queries.

HeaderDetailLevel Used in report queries by the property AutoHeader. Default a header is
printed when the value of the sorting field changes. The property can be
used to determine for which part of a field an index break should occur.
Fields using the characters dot, space, dash, back slash forward slash
consists of several sub fields. If the value of customer account is
“CUST100.10 “, the field value consists of two subfields. Setting
HeaderDetailLevel to 2 will cause an index break to occur, when the value
after the dot is changed.

Ordering Set the ordering to either ascending or descending.

SumDetailLevel Used in report queries by the property AutoSum. Default a header is printed
when the value of the sorting field changes. The property can be used to
determine for which part of a field an index break should occur. Fields
using the characters dot, space, dash, back slash forward slash consists of
several sub fields. If the value of customer account is “CUST100.10 “, the
field value consists of two subfields. Setting SumDetailLevel to 2 will
cause an index break to occur, when the value after the dot is changed.

Ranges
Property Description
Enabled If disabled, the range will be ignored.

Label This is the label of the range field.

Name AOT name of the range.

Status Choose either open, locked or hide. If open, the range can be modified and

deleted. If locked, the range can not be modified or deleted. If hidden, the
range will not be shown in the query dialog.

Value Fixed value for the range.

12.5 Menus Properties
Property Description
ChangedBy The user who last modified the Menu.

ChangedDate The date the Menu was last modified.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

304

ChangedTime The time the Menu was last modified.

ConfigurationKey Used to specify a Configuration Key for the menu.

CreatedBy The user who created the Menu.

CreatedTime The time the menu was created.

CreationDate The date the menu was created.

HelpText Help text that will be displayed in the status bar.

Label The label of the menu.

LockedBy The user who has currently locked the menu.

Name The menu name.

NeededAccessLevel Required access level to activate this menu.

SecurityKey Used to specify a Security Key for the control.

SetCompany Would you like to set the company when the form is activated.

12.6 Menu Items Properties
Property Description
ChangedBy The user who last modified the menu item.

ChangedDate The date the menu item was last modified.

ChangedTime The time the menu item was last modified.

Class The object type that will be executed when activating the menu item.

ConfigurationKey Used to specify a Configuration Key for the menu.

CountryConfigurationKey Used to specify a country specific Configuration Key for the menu.

CreatedBy The user who created the menu item.

CreatedTime The time the menu item was created.

CreationDate The date the menu item was created.

EnumParameter Set a base enum entry, see also the parameter EnumTypeParameter.

EnumTypeParameter Select a base enum to be passed to the args.parmEnum() in the object which

is called. See properties Class and Object.

MORPHX IT Appendix Properties

 © 2006 Steen Andreasen

305

HelpText Help text that will be displayed in the status bar.

Label The label of the menu item.

LockedBy The user who has currently locked the menu item.

MultiSelect Can this menu item be executed when multiple records are selected in the
form.

Name The name of the menu item.

NeededAccessLevel Required access level to activate this menu item.

Object The object that will be executed when activating the menu item.

Parameters Enter a string value to be passed to the args.parm() in the object which is
called. See properties Class and Object.

RunOn This property will specify whether the object is executed on AOS or not.

SecurityKey Used to specify a Security Key for the control.

Web Web property.

WebConfigurationKey Web property.

WebPage Web property.

WebSecureTransaction Web property.

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

307

13 Appendix MorphX Development Tools
Located in the top menu at Tools | Development tools you have set of tools created
using MorphX. These are all tools enabling an overview of the application objects. Most
of the development tools can be called from the AOT or from the editor by right-
clicking. The debugger is also accessible from the development tools menu, but there is
no sense running the debugger from the development tools menu, so the debugger is
explained in the chapter Intro to MorphX. If you want to have a look at the
development tools from the AOT, check the menu DevelopmentTools in the AOT.

13.1 Cross-reference
Cross Reference is a tool used to locate where objects, variables and labels are used in
the application. If you are about to change the name of an object or a variable, or want
to delete a label from the label system, the cross-reference tool helps give you an
overview of the consequence of modifying the code.

Before being able to use the cross-reference, you must make a complete re-compilation
with cross-reference enabled. You can enable the cross-reference to be built while
compiling in the compiler setup form. This will however, increase the compilation time
significantly. A single run of the cross-reference can be done from the top menu at
Tools | Development tools | Cross-reference | Periodic | Update. Select Update all to
build the cross-reference. Building the cross-reference takes hours and requires a lot of
memory. It is not a quick job as the cross-reference will index all objects in the entire
AOT. To have the full benefit of the cross-reference, it must be kept up to date. This can
be done by setting up a batch job updating the cross-reference at off hours.

The cross-reference can be called from the top menu or by selecting an object in the
AOT, right-click and choose Cross-reference in the Add-ins menu. The result of the
cross-reference is stored in the tables prefixed with xRef.

Note: If you have done a new standard installation of Axapta, you should consider building the cross-
reference and export the cross-reference tables. Whenever you need the cross-reference for a new
installation, you can just import the cross-reference data, rather than starting all over again.

The forms Names and Path, called from Cross-reference in the top menu lists all entries
from the cross-reference. The form Names list the entries by object type, and the Path
form will show the AOT path for each entry. If you are going to filter records in the
cross-reference, or are searching for a specific object in the AOT, these forms are
useful. Otherwise, if you know the AOT path to an object, it is much quicker to drill
down to the AOT object, right-click and choose the cross-reference from the Add-ins
menu. From an AOT object, the Path form will only show AOT paths to the location
where the selected object is used. Using the cross-reference from, an object gives some
additional information like which other objects the selected object uses, and where the
selected object is used in the application. All cross-reference forms have the menu item

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

308

Edit, used to lookup the X++ code for a method. If the cross-reference entry is a
property, the property sheet can be looked up using the Add-ins menu and choosing
Properties.

Figure 48: Cross-reference showing where the extended data type CustAccount is used

13.2 Application Objects
The sub menu Application objects can be found in the AOT node Menus with the name
ApplicationObjects. These tools are not ground breaking tools which you will be using a
lot, rather the application tools are considered as “nice to have”. As the menu is created
in the AOT, you can add your own tools.

Application objects forms
The forms Application objects and Old application objects list the two system tables
UtilElements and UtilElementsOld which contain information on respectively all object
in the AOT, and all objects in the old layers. From the Add-ins submenu in the AOT,
you can call the form Application objects filtered on the record for the selected node in
the AOT.

You will have to be patient using the form Old application objects, as the form takes
ages to load. The form is joining the tables UtilElements and UtillementsOld to show
the differences. This could be a nice feature to compare an upgraded version with the
previous version, but the form is so slow it makes the form useless. For more
information about the system tables prefixed with Util*, see the chapter Data
Dictionary.

Application management
You can use this tool to set people in charge of the single application objects. The
Application management form will give you an overview of who is in charge of which
objects, and which team the person in charge belongs to. In the related forms, persons

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

309

and teams can be defined. The application management tool must have been created for
internal use in the Axapta development teams. It is a simple tool, and it might not be
fully tested. Just take a look at the overview in the Application management form. The
selection of the application object type is placed as the second field to be filled out first,
before you can select the application object name. However you can modify the tool to
fulfill your needs. All objects are prefixed with SysUtilMangement*.

Usage data
The Usage data form shows the content of the system table SysLastValue for all users.
For information on usage data, see the section User settings.

Count of application objects
The form is used to get an overview of the number of objects, like tables and forms used
for each module. Only the modules from the standard packaged are counted. If you want
to count your own modules, you will have to modify the class SysUtilCount. The table
SysCountTable holds the counted result.

Locked application objects
If you are using the lock application object feature in the AOT, you will find this form
useful. The form shows a list of the application objects locked by all users. If you delete
an entry in the form, the selected object will be unlocked. However the object will still
be shown as locked in the AOT, as the changes made in the Locked application objects
form will not be reflected in the AOT unless the Axapta client has been restarted.

Refresh tools
The three menu items, Refresh Dictionary, Refresh Data and Refresh AOD, are used in
web development. They are used to flush objects and data so the web interface will be
updated with the latest changes.

Re-index
Re-index will re-build the application objects layer index file. You should never re-
index the application objects layers if there are other users in the application, as this will
corrupt the index file. If you need to do a re-index of the layers, it will be preferable to
just delete the index file AXAPD.AOI. The file can be deleted when there are no clients
logged in, and all AOS servers and the COM connector have been stopped. When
starting your Axapta client and logging in, the index file will be built automatically.

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

310

13.3 System Monitoring
The system monitoring tool can be called from both the top menu and by double
clicking the computer icon on the status bar. The form System Monitoring shows
database calls, and size of the calls. If you are using an AOS server, you will have
additional information for client and server calls and an extra tab page showing
information on latency. These are all useful pieces of information if you are going to
optimize the traffic between client, server and the database.

Database tracing
When starting to trace a sequence, press the Continue button and try out your
modifications, like opening the sales order form, and create a sales invoice. Press the
Pause button to stop tracing. This will count the different type of database calls. In
many cases managing the count of selects is where you can most effectively optimize an
application.

AOS tracing
When using an Axapta Object Server (AOS), objects will either be executed on the
client or on the AOS. The calls between client and server will be counted by the system
monitoring form. You can use the result of the AOS calls to help minimize the client
calls. Objects with user interaction, like forms and dialogs will always be executed on
the client. However, it is preferable having classes and database calls executed on the
server. For more information on how to set a class to be executed on the server, see the
chapter Classes.

From the tab page Remote connection, you can test the AOS latency. To get the correct
latency you should test it a couple of times. If your application is going to be used from
clients with limited bandwidth, you can model the user experience using the application
by simulating a remote connection. Set the bandwidth and the latency, and press the
button Set as current. This allows you to test the application’s performance under
various communication scenarios, and provide good feedback on how you can optimize
your code.

13.4 Code Profiler
The code profiler is used to calculate the execution time and the database time of the
code. Like the system monitoring tools, the code profiler is activated by a start button.
When you have completed profiling the features from the menu to be checked, you
press the stop button. The trace depth option is used if you only will trace a specific
number of levels. When the profile run is stopped, the system prompts for a name under
which it will save the collected data. Each profile run is stored in the database and can
be accessed by pressing the button Profiler runs. The form Profiler runs shows profiles

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

311

compiled to date. You can drill down the profile and see each code line executed and
even edit the code. For a better overview of the code lines use the call tree. Execution
time for each code line is calculated, and if chosen, the total time for repeated calls of a
code line is available. These total time values are especially important when evaluating
code that is repeatedly executed in a loop.

static void Intro_CodeProfiler(Args _args)
{

 CustTable custTable;
 Counter counter;
;

 #profileBegin("Test of profiler")
 while select custTable
 {
 info(strFmt("Customer name: %1", custTable.name));

 counter++;

 if (counter >= 10)
 break;
 }
 #profileEnd
}

Another option for using the code profiler is to specify macro calls which activate the
code profile directly in the code. The profile start and stop point must be specified in the
code as shown in the example. Setting the profiler calls directly in code is useful when
you only want to check a specific part of your code. When you run the profile from the
menu, you might be tracing more code than necessary. Notice, you will have to
calculate totals manually from the Profiler runs form afterwards.

If you are using an AOS, the AOS time will also be calculated. In the overview of the
Profiler runs form the profiles will be listed whether a profile is called from an AOS
client or not. You should try running the example from both a 2-tier and a 3-tier client.
Notice that fewer lines are generated when the code is executed from an AOS client.
The reason for this is that the code is executed on the AOS and fewer calls to the client.

Using the code profile tool is good training as you get to know the execution time of
your code, and thereby learn where to optimize. Notice that it is only execution time and
not the overall time which is calculated. The code profiler generates a large number of
lines just openings a form and calling a few jobs from the form. When the code profiler
is running your system it might act slowly, and if you set the code profiler running on a
huge batch job the profiling may never finish. If you are going to trace the code of batch
job you might be better off limiting the number of runs for the job, or by using the code
profiler macro calls.

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

312

13.5 Application Hierarchy Tree
Before using the Application Hierarchy Tree, the Cross-reference for the type hierarchy
must be built. Go to Tools | Development Tools | Cross-reference | Periodic | Update
in the top menu and chose Update type hierarchy.

The best practice in Axapta is to use extended data types, rather than using the base
types. Over time, you will find that you create a lot of extended data types, as the extend
data types holds information like labels, formatting and relations. The Application
Hierarchy Tree comes in handy as it will give you an overview of the extended data
types and how the extended data types are inherited. When you are creating a new table
and have to select whether to create a new extended data type or figure out if an existing
extending data type matches your needs, this tool is quite useful. The names used for the
base types are not quite equal to the names used in the AOT. This might be a bit
confusing, however knowing that the base type varstring is equal to the base type memo
helps a lot.

Tables and classes are also listed in the Application Hierarchy Tree. The tables are
listed under the top node Common. All tables are at same level as tables are not
inherited. You can use the list of tables to browse information about each table such as
which methods, fields and indexes a table holds. Both application tables and system
tables are shown. Methods and indexes for system tables are also shown which cannot
be seen in the AOT. The Object node shows a tree of the classes, and how the classes
are inherited. For each class you will have information about the methods and for
inherited classes. You can easily see to which class a method belongs.

13.6 Visual MorphXplorer
The Visual MorphXplorer is used to build entity relation diagrams showing table
relations and class inheritance. Diagrams are built using the first tab page. If you want a
title for your diagram, the title can be set from the general tab page. The color tab page
is used to change the default colors for the diagram. Diagrams can be saved and printed.
A neat feature when printing large diagrams is that you can set the number pages used
in width and height.

To add an object, go to the diagram tab page, right-click and choose new table or class.
When choosing a table or a class, a list box will be shown where you select an object.
Drag the object to the diagram tab page to position the object. Right click the positioned
object to see and add related objects. Notice that you cannot combine tables and classes
in one diagram. You can use Visual MorphXplorer to build a diagram showing either
relations between tables or to show a class hierarchy. If related objects are not shown in
the Visual MorphXplorer you will have to build the cross-reference for the data model.
Go to Tools | Development tools | Cross-reference | Periodic | Update and choose
Update Data Model.

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

313

Figure 49: Visual MorphXplorer

Related tables are divided into 1-n and n-1 relation. This is the same way an Axapta
query presents related tables. If a table is part of a map, you will also be able to select
the map to be related. For an overview of the symbols in the diagram, see figure 50:
Symbols used in Visual MorphXplorer. When adding a related table, the field making
the relation will be printed. If the relation consists of more than one field, the relation
fields will not be printed. Instead, the table name will be printed prefixed with a +. This
is a limitation of the Visual MorphXplorer, as it would be preferable to see all relation
fields, at least in a tool tip box when moving the mouse over the relation.

When building a diagram for a class hierarchy, super and sub class can be chosen. If
you have built the cross-reference, you will also be able to select classes using and used
by the class.

Symbol Object Description

 Table Indicated 0-n records for the relation.

Table Exactly 1 record for the relation.

Table
Class

For tables indicating that the related table is a map.
Used for class to indicate a super or a sub class.

Class Class using or used by the related class.

Figure 50: Symbols used in Visual MorphXplorer

Visual MorphXplorer can be activated from the Add-ins menu in the AOT. The menu
item for the Visual MorphXplorer will only be available if a single table or a single
class is chosen. If you import the AOT project MORPHXIT_VisualMorphXplorer you
will be able to multi select tables from the AOT and have the diagram shown in the

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

314

Visual MorphXplorer with relations. Notice that if there are more than one related field
between two tables, like the tables CustTable and CustTrans, both relations will be
drawn. This modification can help you get a quick overview of the data model. You can
show a sub module using this modification, but it has some limits. You can only multi
select tables and if you choose too many tables, your client will crash.

The form Visual MorphXplorer is using the VarChart component to display the
diagram. The VarChart component is used in several places in the standard package, but
it is not well documented, little information is available about this component.
However, the Visual MorphXplorer form is a good place to check out some of the
features available with VarChart.

13.7 Code Explorer
The Code Explorer is used to browse the AOT in a HTML style. You can drill down the
single nodes and get information on layers, properties and have the code for methods
displayed. Cross-reference information will be shown, if updated. Code Explorer uses
the help system to display the information. If you need an example on how to use the
help system from code, it might be worth checking out the classes prefixed with
SysCodeExplorer*.

13.8 Table Definitions
This menu item will print the content of tables stored in the UtilElements table. The
report, printing the table definitions, is organized in a nice way showing all the
important information on a table like fields, properties and relations. Specify a range for
the content you wish to print in the query, otherwise you will keep your printer busy for
a while, as the entire content of all tables will make up more than 2000 pages. Use this
report only if you need information in print for a few tables or a sub module.

13.9 Number of Records
The Number of records form is used to count the records in the current company for
each table. The form also lists temporary tables and maps, but only tables will be
summed. When setting up caching of tables, the records counts are useful. You might
have set entire table cache for a table, but if the cached table contains a lot of records,
you might have to reconsider the caching of the table. For more information about
caching options for tables, see the chapter Appendix Properties.

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

315

13.10 Help Texts
The online help is shown in a HTML style. When pressing F1 on a form or an AOT
node, the online help for the node is shown. The content of the help system is listed in
the form Help Texts.

Three different kinds of online help exist: System Documentation, Application
Developer Documentation and Application Documentation. In the AOT you will find
the online help as the last three nodes. System documentation is the source for
information on kernel objects like class and tables. The Application Developer node is
used for creating online help for your own tables and classes. When a new table or class
is created, a new entry will be made to the Application Developer node. Application
Documentation covers the online help presented to the application users. Editing the
online help can be done either by using the form Help texts or by using the three AOT
nodes.

Note: Few table and classes have online help. This is supposed to be improved by the release of version
4.0.

13.11 Version Update
As new versions or service packs come out, you will need to upgrade your application.
The layer technology in Axapta facilitates the process as modifications are separated
from the base code delivered from Microsoft. Still, you will have to check a lot of code
manually. If you have modified a form in the VAR layer, and the same form is modified
in SYP layer of a new service pack, then you will have to manually check the form. For
this the compare tool, described in the section Compare objects, can be used. Before
using the compare tool, you can get an overview of the changes in the new release by
using the Version Update tools.

Renamed application objects
Objects renamed in a new service pack or a new version will be listed in the Renamed
application objects form. The content of the form must be built manually. To build the
list you will have to start the application to be upgraded and click the Update button.
This will create a text file containing the list of the renamed objects. The text file can
now be imported in the new release by clicking the Update button.
The overview of the renamed objects is useful, as only objects where the name has not
been changed need to be compared. You might have done modifications to a SYS
object, which is renamed in the new release, so you will only have your own layer of the
object. The list with renamed objects will help you to track down the changes, when the
object is renamed or deleted.

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

316

Create upgrade project
When doing an upgrade of an application, the first step is to create an upgrade project.
This will create an AOT project containing all objects where the current layer is
modified. An option can be checked to delete changes from the current layer, which
now is a part of the lower layer. If you have imported a hot fix in the current layer, you
might consider using this option, as hot fixes are normally merged into the released
service packs or version updates.

Having created the upgrade project, you will be able to carry on comparing the objects
using the compare tool.

Compare layers
To make a complete comparison of the differences in two layers, the Compare layers
tool can be used. An AOT project will be made with the objects which only exist in the
chosen source layer or where the source and the reference layers are not equal.
If you have upgraded to a beta version, or if you have installed a pre-released service
pack, using the compare layers tools will give you a quick overview of the changes
made between the different versions.

13.12 Wizards
The wizards in the Wizards menu will help you get started creating the base of objects
like reports and classes. Starting out using a wizard can be a good exercise, as you get to
know how the basic of an object is created, like which properties are usually set and
which controls are usually added. The report wizard is especially useful, and will help
you discover how to use certain properties rather than browsing around the report nodes
in the AOT.

If you drill down the menu node in the AOT, you will find the menu Wizards. From
here you can add your own wizards.

Report Wizard
To learn how the report generator works, use the report wizard. The wizard will build
the base for your report. If you have simple reports, you might not even have to go to
the AOT. For a complete walk through of the report wizard, see Appendix Report
Wizard.

Wizard Wizard
Until Axapta 2.5 it was considered best practice to provide the application users with
the option of using wizards for creating records in complex forms. This was changed

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

317

with version 3.0 and the introduction of record templates. The Wizard Wizard was
created to streamline the development of these wizards.

Even though it is not considered best practice to use wizards for adding data any more,
you might have special cases where a wizard will be preferable, especially in cases
where the application user will have to add data to an infrequently used form.

Label File Wizard
This is the only wizard not used for creating AOT objects. This wizard is used for
creating a new label file. When creating a label file using the wizard, you should start a
2-tier client with no other users logged on. After you have completed the wizard, restart
the client before any other users log on the application. Then the new label file will be
ready for use. Notice the label file will first be updated when the last user logs off the
application, therefore it is recommend that label files be created without any users
logged on to Axapta.

For more information on the label system, see section Label.

Class Wizard
This is a very simple wizard. The class wizard will create a class in the AOT and add
methods from interface classes. A single template is selectable in the wizard. However,
you can extend the wizard by adding your own templates, otherwise the wizard is of
more of interest for training purposes.

COM Class Wrapper Wizard
If you consider interfacing an ActiveX component using the COM interface, this wizard
is the right place to start. This wizard will list all component libraries installed on your
computer. Select a library and Axapta classes will be created wrapping all classes and
methods for the library. This is awesome, and really speeds up performing a COM
interface.

13.13 Label
The label system is one of the powerful features of Axapta making the application
handling of multi languages easy. Instead of entering the text for a field or a help text
directly in the code, a label id is added. The label id is drawn from the label system
which holds information of the corresponding text for label in each language.

The label id has the systax: @<label file id><label number>, like @SYS1002. The label
file id is a three character id. Label number is a forth running number, increased when a

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

318

label is added. In the Axapta application folder, a set of labels files exist for each label
file id. The labels files are named AX<label file id><language id>.<extension> like
AXSYSEN-US.ALD. For an overview of the label files, see figure 51: Label files.

File extension Description
*.ALD

A text file containing all labels for the label file id.

*.ALC

Comments added in the label system are stored in this file.

*.ALI

Index file for the label file id. If this file is missing, the file will automatically
be created first time the label system is accessed.

Figure 51: Label files

The label fields are updated when the last user logs off the application. If for some
reason the last user is not logged off properly, the label files will not be built. As the
label files is a part of the modifications, together with your AOT modifications, it is
crucial that you assure that the label files are updated with the last labels added. Go and
edit the *.ALD file to check that your last labels have been added. If a label is missing
in the file, the application user will see the label id instead of the label text.

Note: The reason for using labels is so the application users can run the application in their preferred
language. Even if you have no need to translate your modifications to another language, you should still
consider using labels as the use of labels will assure that you use consistent naming throughout your
application. If you are going to change a term, you will only have to change a single label, rather than
traversing your code.

The standard package has a label file for each layer named after the layer. It is not
recommended to modify these label files as for each service pack or version released,
these label files might have been updated. Instead you should create a new label file for
your modifications.

Find label
This form is used to search the label system. This is the same form opened when
looking up a label from the property sheet or from the code editor.

The search for labels will be done in the language selected at the top. If you want to
search for a label in English, you can have the label shown in other languages by going
to the advance tab page and select the desired languages. You search will still be done
in English, but as an addition the selected languages will be listed in the bottom of the
form. This can be useful if you want to assure that labels have been added for all the
languages you use for formulas like the sales invoice. When searching for a label using
< and > will narrow your search. If you want to look up the label 'Customer', it will
perform faster by keying in <Customer> as only labels with the exact text 'Customer'
will be found. To find all labels starting with 'Customer', you simply enter <Customer.

MORPHX IT Appendix MorphX Development Tools

 © 2006 Steen Andreasen

319

Normally the label system is called from the property sheet or from the code editor,
where you lookup a text to find the appropriate label for the text. If the label is found,
you click the Paste label button to return the label id. If no label is found, you can add a
new label based on the search text by clicking the New button. The new label will be
created in the default label file id specified in the advanced tab page.

Label log
All changes made according to the labels in the standard package are logged and shown
in this form. Labels added, deleted and modified are logged. If you have deleted a label
by mistake, the label can be recreated by using the Label log form.

Label file wizard
For a description of the label file wizard, see the section Wizards.

Label intervals
The Label intervals form can be used to administrate the label id's in your own label
files. If you are working in an environment where modifications are made in more than
one application and the same label file is going to be used, you can use this form to
define label intervals for each application. Enter the label file id. Interval status must be
available to label id numbers. In each application you must specify a label interval to be
used, and set the last used label id used in the interval. Next time a label is created, the
label id will be taken from within the interval, and the last label used will be
incremented in the form.

The preferable solution will always be to create your labels in one application, but this
solution can be used as a work-around. You will of course have to merge your label
files prefixed with *.ALD manually.

MORPHX IT Appendix Report Wizard

 © 2006 Steen Andreasen

321

14 Appendix Report Wizard
This appendix contains a step-by-step guide on how to create a report using the report
wizard. The report wizard is a tool designed to non-technical skill persons for writing
simple reports in Axapta. This is however also a useful tool when learning to write
reports in Axapta.
You can either save the result from the wizard as a report in the AOT or just run the
report at the end of the wizard. The saved report will be shown as a report in the AOT.
Whether using the wizard or the report generator for writing a report, the report will be
saved in the AOT. Till you get familiar with the report generator the wizard will be
helpful, as you are guided through the basic steps when setting up the structure of your
report.

Step 1
Specify whether you want to
use System names, or label
names. System names are
the names used in the AOT.
It can be advantages using
the system names, as the
system name are unique.

MORPHX IT Appendix Report Wizard

 © 2006 Steen Andreasen

322

Step 2
Enter the name for the
report. The name will be
used for saving the report
in the AOT. Caption is the
print name of the report.

Step 3
Select the tables where
data should be fetched
from.
Try select CustTable as the
first level table and
CustTrans as the second
level table. If the related
table window is empty,
when selecting the table
CustTable, you will have
to update the cross
reference for the data
model. This must be done
after installing Axapta, or
each time changes have
been made to the data
model. To update the data
model go to Tools | Development tools | Cross-reference | Periodic | Update. Select
Update Data Model only.

MORPHX IT Appendix Report Wizard

 © 2006 Steen Andreasen

323

Step 4
Select the fields to be
printed for each data
source. By default the field
group AutoReport will be
selected for each data
source. It is possible to
select between field
groups, table fields and
display methods. The Up
and Down buttons are used
to set the print order of the
fields.

Step 5
Select which fields of the
base type’s integer and real
to be summed. By default
all integer and real fields
will be selected to be
calculated.

MORPHX IT Appendix Report Wizard

 © 2006 Steen Andreasen

324

Step 6
Define the sort order for
the index fields. By default
all fields which are a
member of an index will
be selected. The Up and
Down buttons are used to
set the sort order of the
fields.

Step 7
Specify whether to print a
sub-header each time the
value in one of the defined
sort fields are changed. In
the example a sub-header
will be printed each time
the account number in the
customer table is changed.

MORPHX IT Appendix Report Wizard

 © 2006 Steen Andreasen

325

Step 8
Specify whether to print
group totals when the
value in one of the defined
sort fields is changed. In
the example group totals
will be printed each time
the account number in
customer table is changed,
and when the transaction
date in the customer
transactions is changed.

Step 9
Select the query ranges. By
default all fields used by
the tables’ indexes will be
selected.

MORPHX IT Appendix Report Wizard

 © 2006 Steen Andreasen

326

Step 10
Define the layout and
whether or not to use a
template for the report.

Report templates are
located in the AOT under
Reports.

Step 11
Specify whether to add the
report to a menu.

The Design button will
open the report in the AOT
in design view. The Print
preview button can be used
to preview the defined
report.

MORPHX IT Appendix Report Wizard

 © 2006 Steen Andreasen

327

Step 12
Select a menu for the
report. When adding the
report to a menu, a new
menu item of the type
Output will be created.

Step 13
All steps have now been
done. Click Finish to save
the report in the AOT.

