
THE WAY TO GO

IVO BALBAERT

A Thorough Introduction to the Go Programming Language

The Way To Go

Also by Ivo Balbaert:

“Handboek Programmeren met Ruby en Rails.”, 2009, Van Duuren Media, ISBN:
978-90-5940-365-9

The Way To Go
a Thorough Introduction to the Go Programming Language

Ivo BaLBaerT

iUniverse, Inc.
Bloomington

The Way to Go
A Thorough Introduction to the Go Programming Language

Copyright © 2012 by Ivo Balbaert.

All rights reserved. No part of this book may be used or reproduced by any means, graphic, electronic, or mechanical,
including photocopying, recording, taping or by any information storage retrieval system without the written permission of
the publisher except in the case of brief quotations embodied in critical articles and reviews.

iUniverse books may be ordered through booksellers or by contacting:

iUniverse
1663 Liberty Drive
Bloomington, IN 47403
www.iuniverse.com
1-800-Authors (1-800-288-4677)

Because of the dynamic nature of the Internet, any web addresses or links contained in this book may have changed
since publication and may no longer be valid. The views expressed in this work are solely those of the author and do not
necessarily reflect the views of the publisher, and the publisher hereby disclaims any responsibility for them.

Any people depicted in stock imagery provided by Thinkstock are models, and such images are being used for illustrative
purposes only.
Certain stock imagery © Thinkstock.

ISBN: 978-1-4697-6916-5 (sc)
ISBN: 978-1-4697-6917-2 (ebk)

Printed in the United States of America

iUniverse rev. date: 03/05/2012

ConTenTs

Preface .. xix

PART 1—WHY LEARN GO—GETTING STARTED

Chapter 1—Origins, Context and Popularity of Go ..1
1.1 Origins and evolution ...1
1.2 Main characteristics, context and reasons for developing a new language4

1.2.1 Languages that influenced Go ..4
1.2.2 Why a new language? ...5
1.2.3 Targets of the language ...5
1.2.4 Guiding design principles ..7
1.2.5 Characteristics of the language ...7
1.2.6 Uses of the language ...8
1.2.7 Missing features? ..9
1.2.8 Programming in Go ...10
1.2.9 Summary ...10

Chapter 2—Installation and Runtime Environment ...11
2.1 Platforms and architectures ..11

(1) The gc Go-compilers: ...11
(2) The gccgo-compiler: ...13
(3) File extensions and packages: ..14

2.2 Go Environment variables ...14
2.3 Installing Go on a Linux system ..16
2.4 Installing Go on an OS X system ..21
2.5 Installing Go on a Windows system...21
2.6 What is installed on your machine? ..26
2.7 The Go runtime ..27
2.8 A Go interpreter ...27

Chapter 3—Editors, IDE’s and Other tools...28
3.1 Basic requirements for a decent Go development environment28
3.2 Editors and Integrated Development Environments ..29

3.2.1. Golang LiteIDE ...32
3.2.2. GoClipse ...33

3.3 Debuggers ...34
3.4 Building and running go-programs with command- and Makefiles35
3.5 Formatting code: go fmt or gofmt ...39
3.6 Documenting code: go doc or godoc ...40
3.7 Other tools ..41
3.8 Go’s performance ..41
3.9 Interaction with other languages. ...43

3.9.1. Interacting with C ..43
3.9.2. Interacting with C++ ...45

PART 2—CORE CONSTRUCTS AND TECHNIQUES OF THE LANGUAGE

Chapter 4—Basic constructs and elementary data types ..49
4.1. Filenames—Keywords—Identifiers ...49
4.2. Basic structure and components of a Go-program ..50

4.2.1 Packages, import and visibility ...51
4.2.3 Comments ...56
4.2.4 Types..57
4.2.5 General structure of a Go-program ..58
4.2.6 Conversions ...60
4.2.7 About naming things in Go ...60

4.3. Constants ...60
4.4. Variables ...63

4.4.1 Introduction ..63
4.4.2 Value types and reference types ..66
4.4.3 Printing..68
4.4.4 Short form with the := assignment operator ...69
4.4.5 Init-functions ...70

4.5. Elementary types and operators ..73
4.5.1. Boolean type bool ...73
4.5.2. Numerical types ..75
4.5.2.1 ints and floats ..75
4.5.2.2 Complex numbers ..79
4.5.2.3 Bit operators ...79
4.5.2.4 Logical operators ...81

4.5.2.5 Arithmetic operators ..82
4.5.2.6 Random numbers ...82
4.5.3. Operators and precedence ...84
4.5.4. Aliasing types ..84
4.5.5. Character type ..85

4.6. Strings ..86
4.7. The strings and strconv package ...88

4.7.1—Prefixes and suffixes: ..88
4.7.2—Testing whether a string contains a substring: ..89
4.7.3—Indicating at which position (index) a substring or character occurs

in a string: ..89
4.7.4—Replacing a substring: ...90
4.7.5—Counting occurrences of a substring: ...90
4.7.6—Repeating a string:...90
4.7.7—Changing the case of a string:..91
4.7.8—Trimming a string: ..92
4.7.9—Splitting a string: ...92
4.7.10—Joining over a slice: ...92
4.7.11—Reading from a string: ...93

4.8. Times and dates ..95
4.9. Pointers ..96

Chapter 5—Control structures ..101
5.1—The if else construct ...101
5.2—Testing for errors on functions with multiple return values106
5.3—The switch keyword ...110
5.4—The for construct ...114

5.4.1 Counter-controlled iteration ..114
Character on position 2 is: ..116

5.4.2 Condition-controlled iteration ..117
5.4.3 Infinite loops ..118
5.4.4 The for range construct ..119

5.5—Break / continue ...121
5.6—Use of labels with break and continue—goto ..123

Chapter 6—Functions...126
6.1 Introduction ..126
6.2 Parameters and return values ...129

6.2.1 Call by value / Call by reference ...129
6.2.2 Named return variables ..131

6.2.3 Blank identifier ..133
6.2.4 Changing an outside variable ...134

6.3 Passing a variable number of parameters ..135
6.4 Defer and tracing ..137
6.5 Built-in functions ..142
6.6 Recursive functions ...143
6.8 Closures (function literals) ..147
6.9 Applying closures: a function returning another function 150
6.10 Debugging with closures ...153
6.11 Timing a function ..154
6.12 Using memoization for performance ...154

Chapter 7—Arrays and Slices ..157
7.1 Declaration and initialization ..157

7.1.1 Concept ...157
7.1.2 Array literals ...161
7.1.3 Multidimensional arrays ...162
7.1.4 Passing an array to a function ...163

7.2 Slices ...164
7.2.1 Concept ...164
7.2.2 Passing a slice to a function ..168
7.2.3 Creating a slice with make() ...168
7.2.4 Difference between new() and make() ..170
7.2.5 Multidimensional slices ..171
7.2.6 The bytes package ..171

7.3 For range construct ...172
7.4 Reslicing ..175
7.5 Copying and appending slices ...176
7.6 Applying strings, arrays and slices ..178

7.6.1 Making a slice of bytes from a string ..178
7.6.2 Making a substring of a string ..179
7.6.3 Memory representation of a string and a slice ...179
7.6.4 Changing a character in a string ...180
7.6.5 Comparison function for byte arrays ..180
7.6.6 Searching and sorting slices and arrays ..181
7.6.7 Simulating operations with append ..182
7.6.8 Slices and garbage collection ..182

Chapter 8—Maps ...185
8.1 Declaration, initialization and make ..185

8.1.1 Concept ...185
8.1.2 Map capacity ...188
8.1.3 Slices as map values ..188

8.2 Testing if a key-value item exists in a map—Deleting an element188
8.3 The for range construct ...190
8.4 A slice of maps ...191
8.5 Sorting a map ..192
8.6 Inverting a map ...194

Chapter 9—Packages ..196
A The standard library ...196
9.1 Overview of the standard library. ...196
9.2 The regexp package. ..199
9.3 Locking and the sync package. ..200
9.4 Accurate computations and the big package. ...202
B Custom and external packages: use, build, test, document, install203
9.5 Custom packages and visibility ..203
9.6 Using godoc for your custom packages. ...208
9.7 Using go install for installing custom packages. ...210
9.8 Custom packages: map structure, go install and go test ...212

9.8.1 Map-structure for custom packages ..212
9.8.2 Locally installing the package ...215
9.8.3 OS dependent code ..216

9.9 Using git for distribution and installation. ...216
9.9.1 Installing to github ..216
9.9.2 Installing from github ..217

9.10 Go external packages and projects. ...218
9.11 Using an external library in a Go program. ..219

Chapter 10—Structs and Methods ..224
10.1 Definition of a struct ...224
10.2 Creating a struct variable with a Factory method ...232

10.2.1 A factory for structs..232
10.2.2 new() and make() revisited for maps and structs:234

10.3 Custom package using structs ..235
10.4 Structs with tags ..236
10.5 Anonymous fields and embedded structs ...237

10.5.1 Definition ..237

10.5.2 Embedded structs ..238
10.5.3 Conflicting names ..239

10.6 Methods ..240
10.6.1 What is a method? ...240
10.6.2 Difference between a function and a method ...244
10.6.3 Pointer or value as receiver ...245
10.6.4 Methods and not-exported fields ...247
10.6.5 Methods on embedded types and inheritance ...248
10.6.6 How to embed functionality in a type ..251
10.6.7 Multiple inheritance ...253
10.6.8 Universal methods and method naming ...256
10.6.9 Comparison between Go types and methods and other

object-oriented languages. ...256
10.7 The String()-method and format specifiers for a type...258
10.8 Garbage collection and SetFinalizer ...261

Chapter 11—Interfaces and reflection ...263
11.1 What is an interface? ...263
11.2 Interface embedding interface(s) ..270
11.3 How to detect and convert the type of an interface variable: type assertions270
11.4 The type switch ...273
11.5 Testing if a value implements an interface ..274
11.6 Using method sets with interfaces ..275
11.7 1st example: sorting with the Sorter interface ...277
11.8 2nd example: Reading and Writing ...282
11.9 Empty Interface...284

11.9.1 Concept ...284
11.9.2 Constructing an array of a general type or with variables of

different types ...286
11.9.3 Copying a data-slice in a slice of interface{} ..287
11.9.4 Node structures of general or different types ..288
11.9.5 Interface to interface ..289

11.10 The reflect package ..290
11.10.1 Methods and types in reflect ..290
11.10.2 Modifying (setting) a value through reflection..293
11.10.3 Reflection on structs ..294

11.11 Printf and reflection. ...296
11.12 Interfaces and dynamic typing ...298

11.12.1 Dynamic typing in Go ...298
11.12.2 Dynamic method invocation ..300

11.12.3 Extraction of an interface ...301
11.12.4 Explicitly indicating that a type implements an interface........................303
11.12.5 Empty interface and function overloading..304
11.12.6 Inheritance of interfaces ...304

11.13 Summary: the object-orientedness of Go ...306
11.14 Structs, collections and higher order functions ..306

PART 3—ADVANCED GO

Chapter 12—Reading and writing ..313
12.1 Reading input from the user ..313
12.2 Reading from and writing to a file ...317

12.2.1 Reading from a file ...317
12.2.2 The package compress: reading from a zipped file321
12.2.3 Writing to a file ..322

12.3 Copying files ...324
12.4 Reading arguments from the command-line ..325

12.4.1 With the os-package ...325
12.4.2 With the flag-package ..326

12.5 Reading files with a buffer ...328
12.6 Reading and writing files with slices ..330
12.7 Using defer to close a file ..332
12.8 A practical example of the use of interfaces: fmt.Fprintf332
12.9 The json dataformat ..334
12.10 The xml dataformat ...340
12.11 Datatransport through gob ..342
12.12 Cryptography with go ...345

Chapter 13—Error-handling and Testing ..348
13.1 Error-handling ..349

13.1.1 Defining errors ...349
13.1.2 Making an error-object with fmt ...353

13.2 Run-time exceptions and panic ...353
13.4 Error-handling and panicking in a custom package ...357
13.5 An error-handling scheme with closures ..360
13.6 Starting an external command or program ..363
13.7 Testing and benchmarking in Go ..364
13.8 Testing: a concrete example ...367
13.9 Using table-driven tests. ..369
13.10 Investigating performance: tuning and profiling Go programs371

13.10.1 Time and memory consumption ..371
13.10.2 Tuning with go test ..371
13.10.3 Tuning with pprof ..371

Chapter 14—Goroutines and Channels ..375
14.1 Concurrency, parallelism and goroutines ...375

14.1.1 What are goroutines? ...375
14.1.2 The difference between concurrency and parallelism377
14.1.3 Using GOMAXPROCS ...378
14.1.4 How to specify the number of cores to be used on the command-line?.....379
14.1.5 Goroutines and coroutines ...381

14.2 Channels for communication between goroutines ...381
14.2.1 Concept ...381
14.2.2 Communication operator <- ..383
14.2.3 Blocking of channels ..385
14.2.4 Goroutines synchronize through the exchange of data on one (or

more) channel(s). ..387
14.2.5 Asynchronous channels—making a channel with a buffer387
14.2.6 Goroutine using a channel for outputting result(s)388
14.2.7 Semaphore pattern ...389
14.2.8 Implementing a parallel for-loop ..391
14.2.9 Implementing a semaphore using a buffered channel391
14.2.10 For—range applied to channels ..394
14.2.11 Channel directionality..396

14.3 Synchronization of goroutines: closing a channel—testing for blocked channels .400
14.4 Switching between goroutines with select ..403
14.5 Channels, Timeouts and Tickers ..408
14.6 Using recover with goroutines ...412
14.7 Comparing the old and the new model: Tasks and Worker processes.413
14.8 Implementing a lazy generator ...416
14.9 Implementing Futures ...420
14.10 Multiplexing ...421

14.10.1 A typical client-server pattern ...421
14.10.2 Teardown: shutdown the server by signaling a channel424

14.11 Limiting the number of requests processed concurrently427
14.12 Chaining goroutines ..428
14.13 Parallelizing a computation over a number of cores ...429
14.14 Parallelizing a computation over a large amount of data430
14.15 The leaky bucket algorithm ...431

14.16 Benchmarking goroutines. ...433
14.17 Concurrent acces to objects by using a channel. ..434

Chapter 15—Networking, templating and web-applications ...436
15.1 A tcp-server ..436
15.2 A simple webserver ..445
15.3 Polling websites and reading in a web page ..448
15.4 Writing a simple web application ..452
15.5 Making a web application robust ...454
15.6 Writing a web application with templates ..456
15.7 Exploring the template package ...461

15.7.1. Field substitution: {{.FieldName}} ...462
15.7.2. Validation of the templates ..463
15.7.3 If-else ...464
15.7.4 Dot and with-end ..465
15.7.5 Template variables $...466
15.7.6 Range-end ..467
15.7.7 Predefined template functions ..467

15.8 An elaborated webserver with different functions ..468
(works only on Unix because calls /bin/date) ...474

15.9 Remote procedure calls with rpc ..474
15.10 Channels over a network with netchan ..477
15.11 Communication with websocket ...478
15.12 Sending mails with smtp ...480

PART 4—APPLYING GO

Chapter 16—Common Go Pitfalls or Mistakes ...485
16.1 Hiding (shadowing) a variable by misusing short declaration...............................486
16.2 Misusing strings. ...486
16.3 Using defer for closing a file in the wrong scope. ...487
16.4 Confusing new() and make() ...488
16.5 No need to pass a pointer to a slice to a function ...488
16.6 Using pointers to interface types ..488
16.7 Misusing pointers with value types ..489
16.8 Misusing goroutines and channels ...489
16.9 Using closures with goroutines ..490
16.10 Bad error handling ..491

16.10.1 Don’t use booleans: ..491
16.10.2 Don’t clutter your code with error-checking: ..492

Chapter 17—Go Language Patterns ..494
17.1 The comma, ok pattern ...494
17.2 The defer pattern ...495
17.3 The visibility pattern ...497
17.4 The operator pattern and interface ..497

17.4.1 Implement the operators as functions...497
17.4.2 Implement the operators as methods ..498
17.4.3 Using an interface ..499

Chapter 18—Useful Code Snippets—Performance Advice ..500
18.1 Strings ...500
18.2 Arrays and slices ..501
18.3 Maps ...502
18.4 Structs ...502
18.5 Interfaces ...503
18.6 Functions ..503
18.7 Files ...504
18.8 Goroutines and channels ...505
18.9 Networking and web applications ..507
18.9.1. Templating: ...507
18.10 General ...508
18.11 Performance best practices and advice ...508

Chapter 19—Building a complete application ...509
19.1 Introduction ..509
19.2 Introducing Project UrlShortener ..509
19.3 Data structure ...510
19.4 Our user interface: a web server frontend ..515
19.5 Persistent storage: gob ...519
19.6 Using goroutines for performance ...524
19.7 Using json for storage ..527
19.8 Multiprocessing on many machines ...528
19.9 Using a ProxyStore ..532
19.10 Summary and enhancements ...536

Chapter 20—Go in Google App Engine ...538
20.1 What is Google App Engine ? ..538
20.2 Go in the cloud ..540
20.3 Installation of the Go App Engine SDK: the development environment for Go ..540

20.3.1. Installation ..540
20.3.2. Checking and testing ..542

20.4 Building your own Hello world app ...543
20.4.1 Map structure—Creating a simple http-handler543
20.4.2 Creating the configuration file app.yaml ..544
20.4.3 Iterative development ...548
20.4.4. Integrating with the GoClipse IDE ...548

20.5 Using the Users service and exploring its API ..549
20.6 Handling forms ...551
20.7 Using the datastore ..552
20.8 Uploading to the cloud ..556

Chapter 21—Real World Uses of Go ..559
21.1 Heroku—a highly available consistent data store in Go. 559
21.2 MROffice—a VOIP system for call centers in Go. ..561
21.3 Atlassian—a virtual machine cluster management system.562
21.4 Camlistore—a content addressable storage system. ..563
21.5 Other usages of the Go language. ..563

APPENDICES ..567
(A) CODE REFERENCE ..567
(B)CUTE GO QUOTES. ...571

GO QUOTES: TRUE BUT NOT SO CUTE. ..572
(C) LIST OF CODE EXAMPLES (Listings) ..572
(E) References in the text to Go—packages ...583
(F) References in the text to Go—tools ...586
(G) Answers to Questions ...586
(H) ANSWERS TO EXERCISES ...590
(I) BIBLIOGRAPHY (Resources and References) ...593

INDEX ...597

LIsT of ILLusTraTIons

Chapter 1—Origins, Context and Popularity of Go ..1
Fig 1.1: The designers of Go: Griesemer, Thompson and Pike ...1
Fig 1.2: The logo’s of Go ...3
Fig 1.3: Influences on Go ..5

Chapter 3—Editors, IDE’s and Other tools...28
Fig 3.1: LiteIDE and its AST-view ...33
Fig 3.2: GoClipse and its outline code-view ..34

Chapter 4—Basic constructs and elementary data types ..49
Fig 4.1: Value type ...67
Fig 4.2: Assignment of value types ...67
Fig 4.3: Reference types and assignment ..67
Fig 4.4: Pointers and memory usage ..98
Fig 4.5: Pointers and memory usage, 2 ..99

Chapter 7—Arrays and Slices ..157
Fig 7.1: Array in memory ..158
Fig 7.2: Slice in memory ...166

Chapter 9—Packages ..196
Fig 9.1: Package documentation with godoc ..210

Chapter 10—Structs and Methods ..224
Fig 10.1: Memory layout of a struct ..227
Fig 10.2: Memory layout of a struct of structs ...229
Fig. 10.3: Linked list as recursive struct ...230
Fig 10.4: Binary tree as recursive struct ..230

Chapter 11—Interfaces and reflection ...263
Fig 11.1: Interface value in memory ..264

Chapter 14—Goroutines and Channels ..375
Fig 14.1: Channels and goroutines ..382
Fig 14.2: The sieve prime-algorithm ..397

Chapter 15—Networking, templating and web-applications ...436
Fig 15.1—Screen of exercise 15.6 ..454

Chapter 19—Building a complete application ...509
Fig 19.1: Handler functions in goto ..515
Fig 19.2: The Add handler ..518
Fig 19.3: The response of the Add handler ..519
Fig 19.4: The response of the Redirect handler ..519
Fig 19.5: Distributing the work load over master- and slave computers529

Chapter 20—Go in Google App Engine ...538
Fig 20.1: The Application Control Panel ...558

xix

Preface

Code less, compile quicker, execute faster => have more fun!

This text presents the most comprehensive treatment of the Go programming language you can
find. It draws on the whole spectrum of Go sources available: online documentation and blogs,
books, articles, audio and video, and my own experience in software engineering and teaching
programming languages and databases, organizing the concepts and techniques in a systematic
way.

Several researchers and developers at Google experienced frustration with the software development
processes within the company, particularly using C++ to write large server software. The
binaries tended to be huge and took a long time to compile, and the language itself was quite
old. A lot of the ideas and changes in hardware that have come about in the last couple of decades
haven’t had a chance to influence C++. So the researchers sat down with a clean sheet of paper and
tried to design a language that would solve the problems they had:

1. software needs to built quickly,
2. the language should run well on modern multi-core hardware,
3. the language should work well in a networked environment,
4. the language should be a pleasure to use.

And so was born “Go”, a language that has the feel of a dynamic language like Python or Ruby, but
has the performance and safety of languages like C or Java.

Go seeks to reinvent programming in the most practical of ways: its not a fundamentally new
language with strange syntax and arcane concepts; instead it builds and improves a lot on the
existing C/Java/C#-style syntax. It proposes interfaces for object-oriented programming and
goroutines / channels for concurrent and parallel programming.

This book is intended for developers who want to learn this new, fascinating and promising language.
Some basic knowledge of programming and some experience with a programming language and
environment is assumed, but a thorough knowledge of C or Java or the like is not needed.

xx

Ivo Balbaert

For those of you who are familiar with C or the current object oriented languages, we will compare
the concepts in Go with the corresponding concepts in these languages (throughout the book we
will use the well known OO abrevation, to mean object-oriented).

This text explains everything from the basic concepts onwards, but at the same time we discuss
advanced concepts and techniques such as a number of different patterns when applying goroutines
and channels, how to use the google api from Go, how to apply memoization, how to use testing
in Go and how to use templating in web applications.

In Part I we discuss the origins of the language (ch 1) and get you started with the installation of
Go (ch 2) and a development environment (ch 3).

Part 2 then guides you through the core concepts of Go: the simple and composite types (ch 4, 7,
8), control structures (ch 5), functions (ch 6), structs with their methods (ch 10), and interfaces
(ch 11). The functional and object-oriented aspects of Go are thoroughly discussed, as well as how
Go code in larger projects is structured (ch 9).

Part 3 learns you how to work with files in different formats (ch 12) and how to leverage the
error-handling mechanism in Go (ch 13). It also contains a thorough treatment of Go’s crown
jewel: goroutines and channels as basic technique for concurrent and multicore applications (ch
14). Then we discuss the networking techniques in Go and apply this to distributed and web
applications (ch 15).

Part 4 shows you a number of Go language patterns and idioms (ch 16, 17), together with a
collection of useful code snippets (ch 18). With all of the techniques which you have learned in
the previous chapters, a complete Go project is built (ch 19) and you get an introduction in how
to use Go in the cloud (Google App Engine) (ch 20). In the last chapter (ch 21) we discuss some
real world uses of go in businesses and organizations all over the world. The text is concluded with
quotes of users, listings, references to Go packages and tools, answers to questions and exercises,
and a bibliography of all resources and references.

Go has very much a ‘no nonsense’ approach to it: extreme care has gone into making things easy
and automatic; it adheres to the KISS principle from Agile programming: Keep It Short and
Simple!

Solving or leaving out many of the ‘open’ features in C, C++ or Java makes the developer’s life
much easier! A few examples are: default initializations of variables; memory is allocated and
freed automatically; fewer, but more powerful control constructs. As we will see Go also aims to
prevent unnecessary typing, often Go code is shorter and easier to read than code from the classic
object-oriented languages.

The Way to Go

xxi

Go is simple enough to fit in your head, which can’t be said from C++ or Java; the barrier to entry
is low, compared to e.g. Scala (the Java concurrent language). Go is a modern day C.

Most of the code-examples and exercises provided interact with the console, which is not a surprise
since Go is in essence a systems language. Providing a graphical user interface (GUI) framework
which is platform-independent is a huge task. Work is under way in the form of a number of 3rd
party projects, so somewhere in the near future there probable will be a usable Go GUI framework.
But in this age the web and its protocols are all pervasive, so to provide a GUI in some examples
and exercises we will use Go’s powerful http and template packages.

We will always use and indicate what is called idiomatic Go-code, by which we mean code which is
accepted as being best practice. We try to make sure that examples never use concepts or techniques
which were not covered up until that point in the text. There are a few exceptions where it seemed
better to group it with the discussion of the basic concept: in that case the advanced concept is
referenced and the § can be safely skipped.

All concepts and techniques are thoroughly explained through 227 working code examples (on a
grey background), printed out and commented in the text and available online for execution and
experimenting.

The book is cross-referenced as much as possible, forward as well as backward. And of course this
is what you must do: after setting up a Go environment with a decent editor, start experimenting
with the code examples and try the exercises: mastering a new language and new concepts can
only be achieved through exercising and experimenting, so the text contains 130 exercises, with
downloadable solutions. We have used the famous Fibonacci algorithm in examples and exercises
in 13 versions to illustrate different concepts and coding techniques in Go.

The book has an website (https://sites.google.com/site/thewaytogo2012/) from where the code
examples can be downloaded and on which complementary material and updates are available.

For your convenience and further paving your path to become a Go master, special chapters are
dedicated to the best practices and language patterns in Go, and another to the pitfalls for the Go
beginner. Handy as a desktop-reference while coding is chapter 18, which is a collection of the
most useful code snippets, with references to the explanations in the text.

And last but not least, a comprehensive index leads you quickly to the page you need at the
moment. All code has been tested to work with the stable Go-release Go 1.

Here are the words of Bruce Eckel, a well known authority on C++, Java and Python:

xxii

Ivo Balbaert

“Coming from a background in C/C++, I find Go to be a real breath of fresh air. At this point, I think
it would be a far better choice than C++ for doing systems programming because it will be much more
productive and it solves problems that would be notably more difficult in C++. This is not to say that
I think C++ was a mistake -- on the contrary, I think it was inevitable. At the time, we were deeply
mired in the C mindset, slightly above assembly language and convinced that any language construct
that generated significant code or overhead was impractical. Things like garbage collection or language
support for parallelism were downright ridiculous and no one took them seriously. C++ took the first
baby steps necessary to drag us into this larger world, and Stroustrup made the right choices in making
C++ comprehensible to the C programmer, and able to compile C. We needed that at the time.

We’ve had many lessons since then. Things like garbage collection and exception handling and virtual
machines, which used to be crazy talk, are now accepted without question. The complexity of C++ (even
more complexity has been added in the new C++), and the resulting impact on productivity, is no longer
justified. All the hoops that the C++ programmer had to jump through in order to use a C-compatible
language make no sense anymore -- they’re just a waste of time and effort. Now, Go makes much more
sense for the class of problems that C++ was originally intended to solve.”

I would like to express my sincere gratitude to the Go team for creating this superb language,
especially “Commander” Rob Pike, Russ Cox and Andrew Gerrand for their beautiful and
illustrative examples and explanations. I also thank Miek Gieben, Frank Müller, Ryanne Dolan
and Satish V.J. for the insights they have given me, as well as countless other members of the
Golang-nuts mailing list.

Welcome to the wonderful world of developing in Go!

PART 1
Why Learn Go—GeTTInG sTarTeD

1

Chapter 1—Origins, Context and Popularity of Go

1.1 Origins and evolution

Go’s year of genesis was 2007, and the year of its public launch was 2009. The initial design on
Go started on September 21, 2007 as a 20% part-time project at Google Inc. by three distinguished
IT-engineers: Robert Griesemer (known for his work at the Java HotSpot Virtual Machine), Rob
‘Commander’ Pike (member of the Unix team at Bell Labs, worked at the Plan 9 and Inferno
operating systems and the Limbo programming language) and Ken Thompson (member of the
Unix team at Bell Labs, one of the fathers of C, Unix and Plan 9 operating systems, co-developed
UTF-8 with Rob Pike). By January 2008 Ken Thompson had started working on a compiler to
explore the ideas of the design; it produced C as output.

This is a gold team of ‘founding fathers’ and experts in the field, who have a
deep understanding of (systems) programming languages, operating systems and
concurrency.

Fig 1.1: The designers of Go: Griesemer, Thompson and Pike

By mid 2008, the design was nearly finished, and full-time work started on the implementation
of the compiler and the runtime. Ian Lance Taylor joins the team, and in May 2008 builds a
gcc-frontend.

2

Ivo Balbaert

Russ Cox joins the team and continues the work on the development of the language and the
libraries, called packages in Go. On October 30 2009 Rob Pike gave the first talk on Go as a
Google Techtalk.

On November 10 2009, the Go-project was officially announced, with a BSD-style license (so fully
open source) released for the Linux and Mac OS X platforms. A first Windows-port by Hector
Chu was announced on November 22.

Being an open-source project, from then on a quickly growing community formed itself which
greatly accelerated the development and use of the language. Since its release, more than 200
non-Google contributors have submitted over 1000 changes to the Go core; over the past 18
months 150 developers contributed new code. This is one of the largest open-source teams in
the world, and is in the top 2% of all project teams on Ohloh (source: www.ohloh.net). Around
April 2011 10 Google employees worked on Go full-time. Open-sourcing the language certainly
contributed to its phenomenal growth. In 2010 Andrew Gerrand joins the team as a co-developer
and Developer Advocate.

Go initiated a lot of stir when it was publicly released and on January 8, 2010 Go was pronounced
‘language of the year 2009’ by Tiobe (www.tiobe.com, well-known for its popularity ranking of
programming languages). In this ranking it reached its maximum (for now) in Feb 2010, being at
the 13th place, with a popularity of 1,778 %.

Year Winner

2010 Python

2009 Go

2008 C

2007 Python

2006 Ruby

2005 Java

2004 PHP

2003 C++

Go Programming Language of the year 2009 at Tiobe

The Way to Go

3

TIMELINE:

Initial design Public release Language of the
year 2009

Used at
Google

Go in Google
App Engine

2007 Sep 21 2009 Nov 10 2010 Jan 8 2010 May 2011 May 5

Since May 2010 Go is used in production at Google for the back-end infrastructure, e.g. writing
programs for administering complex environments. Applying the principle: ‘Eat your own dog
food’: this proves that Google wants to invest in it, and that the language is production-worthy.

The principal website is http://golang.org/: this site runs in Google App Engine with godoc (a
Go-tool) serving (as a web server) the content and a Python front-end. The home page of this site
features beneath the title Check it out! the so called Go-playground, a sandbox which is a simple
editor for Go-code, which can then be compiled and run, all in your browser without having
installed Go on your computer. A few examples are also provided, starting with the canonical
“Hello, World!”.

Some more info can be found at http://code.google.com/p/go/, it hosts the issue-tracker for Go bugs and -wishes:
http://code.google.com/p/go/issues/list

Go has the following logo which symbolizes its speed: =GO, and has a gopher as its mascot.

Fig 1.2: The logo’s of Go

The Google discussion-group Go Nuts (http://groups.google.com/group/golang-nuts/) is very
active, delivering tens of emails with user questions and discussions every day.

For Go on Google App Engine a separate group exists (https://groups.google.com/forum/#!forum/
google-appengine-go) although the distinction is not always that clear. The community has a Go
language resource site at http://go-lang.cat-v.org/ and #go-nuts on irc.freenode.net is the official
Go IRC channel.

@go_nuts at Twitter (http://twitter.com/#!/go_nuts) is the Go project’s official Twitter account,
with #golang as the tag most used.

4

Ivo Balbaert

There is also a Linked-in group: http://www.linkedin.com/groups?gid=2524765&trk=myg_
ugrp_ovr

The Wikipedia page is at http://en.wikipedia.org/wiki/Go_(programming_language)

A search engine page specifically for Go language code can be found at http://go-lang.cat-v.org/
go-search

Go can be interactively tried out in your browser via the App Engine application Go Tour: http://
go-tour.appspot.com/ (To install it on your local machine, use: go install go-tour.googlecode.com/
hg/gotour).

1.2 Main characteristics, context and reasons for developing a new language

1.2.1 Languages that influenced Go

Go is a language designed from the ground up, as a ‘C for the 21st century’.It belongs to the C-family,
like C++, Java and C#, and is inspired by many languages created and used by its designers.

There was significant input from the Pascal / Modula / Oberon family (declarations, packages)
For its concurrency mechanism it builds on experience gained with Limbo and Newsqueak, which
themselves were inspired by Tony Hoare’s CSP theory (Communicating Sequential Processes); this
is essentially the same mechanism as used by the Erlang language.

It is a completely open-source language, distributed with a BSD license, so it can be used by everybody
even for commercial purposes without a fee, and it can even be changed by others.

The resemblance with the C-syntax was maintained so as to be immediately familiar with a
majority of developers, however comparing with C/C++ the syntax is greatly simplified and made
more concise and clean. It also has characteristics of a dynamic language, so Python and Ruby
programmers feel more comfortable with it.

The following figure shows some of the influences:

The Way to Go

5

Fig 1.3: Influences on Go

1.2.2 Why a new language?

- C/C++ did not evolve with the computing landscape, no major systems language has emerged
in over a decade: so there is a definite need for a new systems language, appropriate for needs
of our computing era.

- In contrast to computing power, software development is not considerably faster or more
successful (considering the number of failed projects) and applications still grow in size, so a
new low-level language, but equipped with higher concepts, is needed.

- Before Go a developer had to choose between fast execution but slow and not efficient building
(like C++), efficient compilation (but not so fast execution, like .NET or Java), or ease of
programming (but slower execution, like the dynamic languages): Go is an attempt to combine
all three wishes: efficient and thus fast compilation, fast execution, ease of programming.

1.2.3 Targets of the language

A main target was to combine the efficacy, speed and safety of a strongly and statically compiled
language with the ease of programming of a dynamic language, so as to make programming more
fun again.

So the language is type-safe, and it is also memory-safe: pointers are used in Go, but pointer-arithmetic
is not possible.

6

Ivo Balbaert

Another target (and of course very important for internal use in Google) was that it should give
excellent support for networked-communication, concurrency and parallelization, in order to get
the most out of distributed and multicore machines. It is implemented through the concepts of
goroutines, which are very lightweight-threads, and channels for communication between them.
They are implemented as growing stacks (segmented stacks) and multiplexing of goroutines onto
threads is done automatically.

This is certainly the great stronghold of Go, given the growing importance of multicore and
multiprocessor computers, and the lack of support for that in existing programming languages.

Of the utmost importance was also the building speed (compilation and linking to machine code),
which had to be excellent (in the order of 100s of ms to a few s at most). This was born out of
frustration with the build-times of C++-projects, heavily used in the Google infrastructure. This
alone should give an enormous boost to developer productivity and give rise to a tighter test-code
development cycle.

Dependency management is a big part of software development today but the “header files” of
languages in the C tradition are causing considerable overhead leading to build times of hours for
the great projects. A rigid and clean dependency analysis and fast compilation is needed. This is
what Go provides with its package model: explicit dependencies to enable faster builds. The package
model of Go provides for excellent scalability.

The entire Go standard library compiles in less than 20 seconds; typical projects compile in half a
second: this lightning fast compiling process, even faster than C or Fortran, makes compilation a
non-issue. Until now this was regarded as one of the great benefits of dynamic languages because
the long compile/link step of C++ could be skipped, but with Go this is no longer an issue!
Compilation times are negligible, so with Go we have the same productivity as in the development
cycle of a scripting or dynamic language.

On the other hand, the execution speed of the native code should be comparable to C/C++.

Because memory-problems (so called memory-leaks) are a long time problem of C++, Go’s designers
decided that memory-management should not be the responsibility of the developer. So although
Go executes native code, it runs in a kind of runtime, which takes care of an efficient and fast
garbage collection (at this moment a simple mark- and sweep algorithm).

 Garbage collection, although difficult to implement for that kind of problems, was considered
crucial for the development of the concurrent applications of the future.

It also has a built-in runtime reflection capability.

The Way to Go

7

go install provides an easy deployment system for external packages.

Furthermore there is support for legacy software, notably C libraries can be used (see § 3.9).

1.2.4 Guiding design principles

Go tries to reduce typing, clutter and complexity in coding through a minimal amount of keywords
(25). Together with the clean, regular and concise syntax, this enhances the compilation speed,
because the keywords can be parsed without a symbol table.

These aspects reduce the number of code lines necessary, even compared with a language like
Java.

Go has a minimalist approach: there tends to be only one or two ways of getting things done, so
reading other people’s code is generally pretty easy, and we all know readability of code is of the
utmost importance in software engineering.

The design concepts of the language don’t stand in each other’s way, they don’t add up complexity
to one another: they are orthogonal.

Go is completely defined by an explicit specification that can be found at http://golang.org/doc/
go_spec.html;

it is not defined by an implementation, as is Ruby for example. An explicit language specification
was a requirement for implementing the two different compilers gc and gccgo (see § 2.1), and this
in itself was a great help in clarifying the specification.

The Go grammar is LALR(1) (http://en.wikipedia.org/wiki/LALR_parser), this can be seen in src/
cmd/gc/go.y); it can be parsed without a symbol table.

1.2.5 Characteristics of the language

It is essentially an imperative (procedural, structural) kind of language, built with concurrency in
mind.

It is not object-oriented in the normal sense like Java and C++ because it doesn’t have the concept
of classes and inheritance. However it does have a concept of interfaces, with which much of
polymorphism can be realized. Go has a clear and expressive type-system, but it is lightweight and
without hierarchy. So in this respect it could be called a hybrid language.

8

Ivo Balbaert

 Object-orientation as in the predominant OO-languages was considered to be too ‘heavy’,
leading to often cumbersome development constructing big type-hierarchies, and so not
compliant with the speed goal of the language.

Functions are the basic building block in Go, and their use is very versatile. In chapter 6 we will see
that Go also exhibits the fundamental aspects of a functional language.

It is statically typed, thus a safe language, and compiles to native code, so it has a very efficient
execution.

It is strongly typed: implicit type conversions (also called castings or coercions) are not allowed; the
principle is: keep things explicit!

It has certain characteristics of a dynamically typed language (through the var keyword).

 So it also appeals to programmers who left Java and the .Net world for Python, Ruby, PHP and
Javascript.

Go has support for cross-compilation: e.g. developing on a Linux-machine for an application that
will execute on Windows. It is the first programming language in which UTF-8 can be used, not
only in strings, but also in program code (Go source-files are UTF-8): Go is truly international!

1.2.6 Uses of the language

Go was originally conceived as a systems programming language, to be used in the heavy server-centric
(Google) world of web servers, storage architecture and the like. For certain domains like high
performance distributed systems Go has already proved to be a more productive language than most
others. Go shines in and makes massive concurrency easy, so it should be a good fit for game server
development.

Complex event processing (CEP, see http://en.wikipedia.org/wiki/Complex_event_processing), where
one needs both mass concurrency, high level abstractions and performance, is also an excellent
target for Go usage. As we move to an Internet of Things, CEP will come to the forefront.

But it turned out that it is also a general programming language, useful for solving text-processing
problems, making frontends, or even scripting-like applications.

However Go is not suited for real-time software because of the garbage collection and automatic
memory allocation.

The Way to Go

9

Go is used internally in Google for more and more heavy duty distributed applications; e.g. a part
of Google Maps runs on Go.

Real life examples of usage of Go in other organizations can be found at http://go-lang.cat-v.org/
organizations-using-go. Not all uses of Go are mentioned there, because many companies consider
this as private information. An application has been build inside Go for a large storage area network
(SAN).(See Chapter 21 for a discussion of a sample of current use cases).

A Go compiler exists for Native Client (NaCl) in the Chrome-browser; it will probably be used for
the execution of native code in web applications in the Chrome OS.

Go also runs on Intel as well as ARM processors (see chapter 2), so it runs under the Android OS,
for example on Nexus smartphones.

Go on Google App Engine: on May 5 2011 a Go SDK appeared to use the language in the Cloud
in web applications via the Google App Engine infrastructure, making it the first true compiled
language that runs on App Engine, which until then only hosted Python and Java apps. This was
mainly the work of David Symonds and Nigel Tao. The latest stable version is SDK 1.6.1 based on
r60.3, released Dec 13 2011. The current release is based on Go 1 (Beta).

1.2.7 Missing features?

A number of features which can be found in most modern OO-languages are missing in Go, some
of them might still be implemented in the future.

- No function or operator overloading: this is to simplify the design.
- No implicit conversions: this is by design, to avoid the many bugs and confusions arising from

this in C/C++
- No classes and type inheritance: Go takes another approach to object-oriented design (chapter

10-11)
- No variant types: almost the same functionality is realized through interfaces (see chapter 11)
- No dynamic code loading
- No dynamic libraries
- No generics
- No exceptions (although recover / panic (see § 13.2-3) goes a lot in that direction)
- No assertions
- No immutable variables

A discussion around this from the Go-team themselves can be found in the Go FAQ: http://
golang.org/doc/go_faq.html

10

Ivo Balbaert

1.2.8 Programming in Go

When coming to Go and having a background in other contemporary (mostly class or
inheritance-oriented languages like Java, C#, Objective C, Python, Ruby) you can fall in the trap
of trying to program in Go like you did in your X-language. Go is built on a different model, so
trying to move code from X to Go usually produces non-idiomatic code and overall works poorly:
you have to start over, thinking in Go.

If you take a higher point of view and start analyzing the problem from within the Go mindset,
often a different approach suggests itself which leads to an elegant and idiomatic Go-solution.

1.2.9 Summary

Here are the killer features of Go:

▪ Emphasis on simplicity: easy to learn
▪ Memory managed and syntactically lightweight: easy to use
▪ Fast compilation: enhances productivity (dev cycle of a scripting language)
▪ Fast compiled code: comparable to C
▪ Concurrency support: write simpler code
▪ Static typing
▪ Consistent standard library
▪ Easy deployment system (go install)
▪ Self-documenting (and well-documented)
▪ Free and Open Source (BSD licensed)

11

Chapter 2—Installation and Runtime Environment

2.1 Platforms and architectures

The Go-team developed compilers for the following operating systems (OS):

- Linux
- FreeBSD
- OS X (also named Darwin)

There are 2 versions of compilers: the gc Go-compilers and gccgo; they both work on Unix-like
systems. The gc compiler/runtime has been ported to Windows and is integrated in the main
distribution. Both compilers work in a single-pass manner.

Go 1 is available in source and binary form on these platforms:

FreeBSD 7+: amd64, 386
Linux 2.6+: amd64, 386, arm
OS X (Snow Leopard + Lion): amd64, 386
Windows (2000 + later): amd64, 386

The portability of Go-code between OS’s is excellent (assuming you use pure Go-code, no cgo,
inotify or very low level packages): just copy the source code to the other OS and compile, but you
can also cross compile Go sources (see § 2.2).

(1) The gc Go-compilers:

They are based on Ken Thompson’s previous work on the C toolchain for the Plan 9 operating
system.

The Go compilers and linkers are written in C and produce native code (there is no Go
bootstrapping or self-hosting involved), so a different compiler (instruction set) is required for
every combination of processor-architecture (32 bit and 64 bit, no others at this point) and OS.

12

Ivo Balbaert

They compile faster than gccgo and produce good native code; they are not linkable with gcc; they
work non-generational, non-compacting and parallel.

Compilers exist for the following processor-architectures from Intel and AMD:

No of bits Processor name Compiler Linker
64 bit

implementation
amd64 (also named

x86-64)
6g 6l

32 bit
implementation

386 (also named
x86 or x86-32)

8g 8l

32 bit RISC
implementation

arm (ARM) 5g 5l

The naming system is a bit strange at first sight (the names come from the Plan 9-project):

g = compiler: makes object code from source code (program text)
l = linker: transforms object code into executable binaries (machine code)

(The corresponding C-compilers are: 6c, 8c and 5c; and the assemblers are: 6a, 8a and 5a .)

The following OS-processor combinations are released:

OS ARCH OS version
linux 386 / amd64 / arm >= Linux 2.6
darwin 386 / amd64 OS X (Snow Leopard + Lion)
freebsd 386 / amd64 >= FreeBSD 7
windows 386 / amd64 >= Windows 2000

The windows implementation (both 8g and 6g) is realized by external contributors and is 95%
complete.

The Google-team is committed to the arm implementation, it can eventually be used in the
Android OS in Google’s smartphones: Go runs wherever Android will run.

 Flags: these are options which are given on the command-line and that can influence the
compilation/linking or give a special output.

The Way to Go

13

 The compiler flags are:
C:\Users\ivo>8g

gc: usage: 8g [flags] file.go...

flags:

 -I DIR search for packages in DIR

 -d print declarations

 -e no limit on number of errors printed

 -f print stack frame structure

 -h panic on an error

 -o file specify output file // see § 3.4

 -S print the generated assembly code

 -V print the compiler version // see § 2.3 (7)

 -u disable package unsafe

 -w print the parse tree after typing

 -x print lex tokens

- I can be used to indicate the map in which the Go files to compile are (it can also
contain the variable $GOPATH)

The linker flags are:
C:\Users\ivo>8l

usage: 8l [-options] [-E entry] [-H head] [-I interpreter] [-L dir] [-T text] [-R

rnd] [-r path] [-o out] main.8

- L can be used to indicate the map in which the Go files to link are (it can also contain
the variable $GOPATH)

In depth-info: The sources of the compilers and linkers can be found under $GOROOT/
src/cmd. Modifying the Go language itself is done in C code, not Go. The lexer/parser
is generated with GNU bison. The grammar/parser is controlled by the yacc file go.y at
$GOROOT/src/cmd/gc/go.y and the output is y.tab.{c,h} in the same directory. See the
Makefile in that directory for more about the build process. An overview of the build process
can be seen by examining $GOROOT/src/make.bash

Most of the directories contain a file doc.go, providing more information.

(2) The gccgo-compiler:

This is a more traditional compiler using the GCC back-end: the popular GNU compiler,
which targets a very wide range of processor-architectures. Compilation is slower, but the
generated native code is a bit faster. It also offers some interoperability with C.

14

Ivo Balbaert

From 25-3-2011 on with GCC Release 4.6.0 the Go-compiler was integrated in the family
of supported languages (containing also Ada, C, C++, Fortran, Go and Java).

(for more information see: http://golang.org/doc/gccgo)

Since Go 1 both compilers (gc and gccgo) are on par: equivalent in their functionality.

(3) File extensions and packages:

The extension for Go source code files is not surprisingly .go

C files end in .c and assembly files in .s; Source code-files are organized in packages. Compressed
files for packages containing executable code have the extension .a (AR archive)

The packages of the Go standard library (see § 9.1) are installed in this format.

Linker (object-) files can have the extension .o

An executable program has by default the extension .out on Unix and .exe on Windows.

Remark: When creating directories for working with Go or Go-tools, never use spaces in
the directory name: replace them by _ for example.

2.2 Go Environment variables

The Go-environment works with a small number of OS environment variables. They are
best defined before the installation starts; on Windows you will have to create the empty Go
root map first, like c:/go. Here are the most important:

$GOROOT mostly it has the value $HOME/go, but of course you can choose this: it
 is the root of the go tree (or installation)
$GOARCH the processor-architecture of the target machine, one of the values of the
 2nd column of fig 2.1: 386, amd64, arm.
$GOOS the operating system of the target machine, one of the values of the 1st
 column of fig 2.1: darwin, freebsd, linux, windows
$GOBIN the location where the binaries (compiler, linker, etc.) are installed,
 default is $GOROOT/bin

The target machine is the machine where you are going to run the Go-application.

The Way to Go

15

The Go-compiler architecture enables cross-compiling: you can compile on a machine(= the
host) which has other characteristics (OS, processor) than the target machine.

To differentiate between them you can use $GOHOSTOS and $GOHOSTARCH: these
are the name of the host operating system and compilation architecture: set them when
cross-compiling to another platform/architecture. (They default to the local system and
normally take their values from $GOOS and $GOARCH).

Host (H)
developing on

Target (T)
running on

Examples GOHOSTARCH GOHOSTOS GOARCH GOOS
H: 64 bit Linux
T: 32 bit Linux

amd64 linux 386 linux

H: 32 bit Linux
T: 64 bit Linux

386 linux amd64 linux

H: 32 bit Windows
T: 64 bit Linux

386 windows amd64 linux

The following variables can also be of use:

$GOPATH defaults to GOROOT, it specifies a list of paths that contain
Go source code package binaries (objects), and executables
(command binaries); they are located inside the GOPATHs’
src, pkg, and bin subdirectories respectively; this variable must
be set in order to use the go tool.

$GOROOT_FINAL defaults equal to $GOROOT, so doesn’t need to be set explicitly.
If after installation of Go, you want to move the installation to
another location, this variable contains the final location.

$GOARM for arm-architectures, possible values are 5, 6; default is 6
$GOMAXPROCS specifies the number of cores or processors your application

uses, see § 14.1.3

In the following sections we discuss the installation of Go on the operating systems where it is feature
complete, that is: Linux, OS X and Windows. For FreeBSD this is also the case, but installation is
very similar to that on Linux. Porting Go to other OS’s like OpenBSD, DragonFlyBSD, NetBSD,
Plan 9, Haiku and Solaris are in progress, the most recent info can be found on: http://go-lang.
cat-v.org/os-ports

16

Ivo Balbaert

2.3 Installing Go on a Linux system

It is instructive to download and compile the full source-code of Go yourself. Full and up
to date instructions can be found at http://golang.org/doc/install.html, but we will review
and comment them here:

(1) Set Go-Environment variables:

On a Linux system, set these variables in your shell profile, which is the $HOME/.bashrc file
or the $HOME/.profile or equivalent (use an editor like gedit or vi):
export GOROOT=$HOME/go

export GOBIN=$GOROOT/bin

export GOARCH=amd64

export GOOS=linux

To ensure that the binaries can be found from anywhere in the filesystem, also add this
line:
export PATH=$GOBIN:$PATH

The go tool also uses the variable GOPATH:
 export GOPATH=$HOME/goprograms

or: export GOPATH=$GOROOT

$HOME is /home/user1 if your are logged in as user1.

Adding the current directory.:
export GOPATH=$GOPATH:.

GOPATH may be set to a colon (:)-separated list of paths inside which Go source code,
package objects, and executables may be found.

After the changes restart terminal or reload .bashrc with: source .bashrc

(test the values with env | grep ^GO or echo $GOROOT etc. in a terminal window)

(2) Install C-tools:

The Go tool-chain is written in C, so for the build-process you need these programs:

The Way to Go

17

•	 GCC,
•	 the	standard	C	libraries	Libc6-dev,
•	 the	parser	generator	Bison,
•	 make,
•	 gawk
•	 the	text	editor	ed.

With the following command these tools are installed if necessary on Debian-based Linux
systems, like Ubuntu:
sudo apt-get install bison ed gawk gcc libc6-dev make

On other Linux distributions RPM’s can be used.

(3) Install Mercurial:

The Go source-code is maintained in the Mercurial revision control application. Type hg on
the command-line to see if this application is installed.

If not, install it with: sudo apt-get install mercurial

If this produces an error, on Ubuntu/Debian systems you might have to do first:

apt-get install python-setuptools python-dev build-essential

If this fails, try installing manually from the Mercurial download page: http://mercurial.
selenic.com/wiki/Download

 Mercurial versions 1.7.x and up require the configuration of Certification
Authorities (CAs). Error messages of the form: warning: go.googlecode.com certificate
with fingerprint b1:af: ... bc not verified (check hostfingerprints or web.cacerts config
setting) when using Mercurial indicate that the CAs are missing. Check your Mercurial
version (hg --version) and configure the CAs if necessary.

(4) Fetch the Go repository:

Go will install to a directory named go, indicated by the value of $GOROOT. This directory
should not exist. Then check out the repository with the command:

hg clone -u release https://go.googlecode.com/hg/ $GOROOT

18

Ivo Balbaert

(5) Build Go:
cd $GOROOT/src

./all.bash

This building and testing takes some time (order of minutes) and then when successful the
following text appears:

ALL TESTS PASSED

 Installed Go for linux/amd64 in /home/you/go.

 Installed commands in /home/you/go/bin.

 *** You need to add /home/you/go/bin to your $PATH. ***

The compiler is 6g.

adapted to the system you have installed Go on.

Remark 1: If you encounter an error in the make cycle, pull an update on the repository
with hg pull –u and restart step (5) .

Remark 2: the net test:

One of the http tests (net) goes out and touches google.com.

An often reported problem is that the installation pauses indefinitely at:

‘make[2]: Leaving directory `/localusr/go/src/pkg/net’

If you develop on a machine behind a firewall, it can be necessary to temporarily disable the
firewall while building everything.

Another way to solve this is to use $DISABLE_NET_TESTS to bypass network tests: set in your
shell profile .bashrc: export DISABLE_NET_TESTS=1

If this doesn’t work you can disable the test of the net package by adding net to the NOTEST
list in the Makefile in the map go/src/pkg .

If you don’t want to run the tests, you can leave them out by running ./make.bash
instead.

The Way to Go

19

(6) Testing the installation:

Using your favorite text-editor, make a file with the following code, and save this as test.go:

Listing 2.1—hello_world1.go:

package main

func main() {

println(“Hello”, “world”)

}

Compile this first Go-program with: 6g test.go
This compiles to a file: test.6
which is linked with the command: 6l test.6
This produces the executable named: 6.out
which executes with the command: ./6.out
and produces the output: Hello, world
(This is on a 64 bit installation, use 8g / 8l for 32 bit, or 5g / 5l for arm.)

(7) Verifying the release of the installation:

The Go-releases are identified by their version number and a

release-number for stable releases, like •	 release.r60 9481

release-date for weekly releases, like •	 release.2011-01-06 release 7053

Verify the installed release with:

cd $GOROOT

hg identify

A quicker way is to use go version or the –V flag of the compiler: 6g –V or 8g –V which
gives an output like: 8g version 7053 release.2011-01-06 release

From within Go-code, the current release which is executing can be obtained with the
function Version from the package runtime:

Listing 2.2—version.go:

package main

import (

 “fmt”

 “runtime”

20

Ivo Balbaert

)

func main() {

 fmt.Printf(“%s”, runtime.Version())

}

Output: 7053 release.2011-01-06 release

(8) Update the installation to a newer release:

cd $GOROOT

hg pull

hg update release

cd src

sudo ./all.bash

The latest releases can be viewed at: http://golang.org/doc/devel/release.html

Remark about releases: The first stable Go-release was r56 (2011.03.16)

From 15-3-2011 onwards there are still weekly releases with the latest additions/updates, to
be downloaded with hg update weekly. The latest release is Go 1 and this is the first stable
release which will be maintained and supported on a timescale of years.

Distinction is made between the following branches in the Go repository:

- Go release: these are the stable releases, best suited for most Go-development
- Go weekly: containing the last changes, roughly once a week
- Go tip: the latest release

The last 2 are normally only necessary when you urgently need the fixes or improvements;
update through hg update weekly or hg update tip.

The gofix—tool can be used to update Go source-code (written in an older release) to the
latest release.

Documentation for the different releases:

http://golang.org/pkg shows documentation for the latest stable release; it us updated when
the next release happens. Documentation for the latest weekly is at: http://weekly.goneat.
org/pkg/ Documentation for tip can be found at: http://tip.goneat.org/pkg/ (at some point

The Way to Go

21

‘goneat’ in these url’s will be replaced by ‘golang’: http://weekly.golang.org/pkg/—http://tip.
golang.org/pkg/)

Installation from a package:

Information about packaged Go-installations can be found at: http://go-lang.cat-v.org/
packages. A package for the Ubuntu installation can be downloaded from (23/2/2011):
https://launchpad.net/~cz.nic-labs/+archive/golang

2.4 Installing Go on an OS X system

Your Mac-system must contain an Intel 64 bit-processor, PowerPC processors are not yet
supported. Follow the instructions from § 2.3

(A port to PowerPC is in progress: https://codedr-go-ppc.googlecode.com/hg/)

Remarks:

Install C-tools: they are installed as part of Xcode, so this is necessary.

Install the Xcode.mpkg from the Optional Installs on my Snow Leopard DVD to
get gcc-4.3 installed.Do mkdir $GOBIN before the compile-step (5).

A detailed instruction can be found at:

http://www.kelvinwong.ca/2009/11/12/installing-google-go-on-mac-os-x-leopard/

2.5 Installing Go on a Windows system

Go directly in Windows: http://code.google.com/p/go/wiki/WindowsPort

Based on previous work by Hector Chu, Joe Poirier takes care of the Windows release.

A zip-file with a binaries release for win32/win64 can be downloaded from: http://code.
google.com/p/gomingw/downloads/list

Unzipping this file creates a go directory structure, with the map go/bin containing all the
necessary binaries to run Go. Then you have to add the Go-variables manually:

22

Ivo Balbaert

Start, Computer, RMouse: Properties, in the Menu: choose Advanced System Settings; click
the button: Environment Variables, System Variables, New:

Variable name Variable value (for example)
GOROOT c:\go
GOBIN c:\go\bin
GOOS windows
GOARCH 386

In the same dialog-window: Edit the PATH-variable: add the GOBIN map followed by ; in
front, like this: %GOBIN%;…rest of PATH…

There is also a GO installer executable gowin32_releasedate_installer.exe which adds the
Go-environment variables and adds GOBIN to the PATH.

Testing the installation: make the file hello_world1.go (see § 2.3 (6))

Compile this first Go-program with: 8g test.go

This compiles to a file: test.8

which is linked with the command: 8l test.8

This produces the executable named: 8.out.exe

which executes with the command: 8.out.exe

and produces the output: hello, world

Possible problem:

8g test.go test.go:3: fatal error: can’t find import: fmt

The cause can be that the GO-variables are not set properly, or that the submap of pkg
doesn’t have the right name, it should be: E:\Go\GoforWindows\gowin32_release\go\
pkg\windows_386 for example, where release is substituted with the exact date or release
number, e.g. 2011-01-06

You can set the GO-variables also on the command-line, like:

set GOROOT=E:\Go\GoforWindows\gowin32_release.r60\go

set GOBIN=$GOROOT\bin

set PATH=%PATH%;$GOBIN

Executing 8g then finds the import path to the packages.

The Way to Go

23

(2) Go in a virtual machine running Linux in Windows:

In this option you run Go in e.g. Linux in a virtual machine in Windows.

A good choice is VMware: http:// www.vmware.com

Download the VMware player: http://www.vmware.com/products/player/

Search in Virtual Appliances for a Linux-platform, download and install it; then follow the
instructions from § 2.3

(3) Go in Wubi: dual booting in Windows:

Another alternative is to install an Ubuntu-Linux side by side with Windows (using the
Windows filesystem) through Wubi: http://www.wubi-installer.org. Then you have Linux
without having to partition hard-drives. Install Go in this Linux by following the instructions
from § 2.3

Of course a real partitioning of the hard-drive system of the machine can also be done, so
that Linux is installed as a really separate OS, side by side with Windows.

Information on other OS-ports (FreeBSD, OpenBSD, DragonFlyBSD, NetBSD, Plan 9,
Haiku, Solaris can be found here: http://go-lang.cat-v.org/os-ports

(4) Express-Go:

Express Go is a bytecode implementation of Go programming language for Windows made
by Alexey Gokhberg and announced March 28 2011. The software is based on code of gc
Go compiler and tools. The original code has been ported from C to C++ (Visual C++ 2008
Express Edition has been used as a development platform). The concepts, architecture, and
code of the original gc implementation have been reused as much as possible, however,
Express Go generates MSIL bytecode for the .NET virtual machine instead of the native
machine code.

It includes an implementation of the virtual machine based on the just-in-time compilation
(JIT) principle. The JIT virtual machine reads a bytecode executable file and compiles its
content into the native machine code prior to execution. The virtual machine has been designed
from scratch. The instruction set was intentionally made low-level and language-independent.
High-level language-specific features are to be supported by the runtime libraries built into
the interpreter. The original Go runtime library was partially ported to C++ and integrated

24

Ivo Balbaert

into the interpreter of the virtual machine.Memory management is implemented using the
Boehm-Demers-Weiser conservative garbage collector.

The binary distribution is located here:

http://www.unicorn-enterprises.com/download/express_go.zip

For more detailed information: see

http://www.unicorn-enterprises.com/express_go.html

(5) Building Go on Windows: To be able to do this, you first have to install the MINGW/
MINSYS environment. Note that in the MINGW environment you must use Unix like /
instead of the Windows \ !

(A) Via MINGW zipfile:

With this method there is no restriction on where the MinGW folder can reside.

Download gowin-env.zip from https://bitbucket.org/akavel/gowin-env/downloads

An then unzip it into e.g. E:\Go\GoforWindows\MinGW

There are 2 batch files in the root of the MinGW folder: go-env.bat and run-mingw.bat

Set the Go environment variables in go-env.bat, for example:

set GOARCH=386

set GOOS=windows

set GOROOT=E:\Go\GoforWindows\gowin32_release.r59\go

set GOBIN=%GOROOT%\bin

set GOPATH=%GOROOT%

run-mingw.bat will import the environment variables from go-env.bat if it exists

Starting the MINGW-environment via command window:

open the command window: cmd in Start, Search box
go to MINGW installation map: e.g. cd E:\Go\GoforWindows\MinGW
run-mingw.bat (or run-mingw-mintty.bat)

this starts a new command window

The Way to Go

25

(B) Via Windows installation:

Download and save the latest version from:

http://sourceforge.net/projects/mingw/files/Automated%20MinGW%20Installer/
mingw-get-inst/

Open and run the saved automated MinGW installer executable file, which is
named mingw-get-inst-yyyymmdd.exe, where yyyymmdd is the version date stamp
(e.g. mingw-get-inst-20110802.exe).

The MinGW Setup Wizard window will open with the title “Setup—MinGW-Get”. Except
for the following, accept the setup defaults, unless it’s necessary to change them.

For Repository Catalogues: check the Download latest repository catalogues button.

For Select Components: the MinGW Compiler Suite, the C Compiler box is automatically
checked. Scroll down to the bottom of the list and check the MinGW Developer ToolKit
box, which includes the MSYS Basic System.

Before Ready to Install, review and verify the installation settings, which should look similar
this:

Installing:

 mingw-get

 pkginfo

 C Compiler

 MSYS Basic System

 MinGW Developer Toolkit

 Downloading latest repository catalogues

 Destination location:

 C:\MinGW

When the installation settings are correct, install.

The installation loads the package installation catalogues and downloads and installs the
files. The installation may take some time, largely depending on the download speed.

Add the Go-environment variable settings (see A)) in the beginning of msys.bat

26

Ivo Balbaert

The MSYS command window may be opened by opening and running the C:\MinGW\
msys\1.0\msys.bat batch file or via the Start menu by choosing: MinGW / MinGW Shell.

How to build Go on Windows:

To download the Go-source you will need an hg client for Windows, download and install
the binary package from http://mercurial.selenic.com/wiki/Download

Download the Go source by entering the following on the command line:

 $ hg clone -r release https://go.googlecode.com/hg/ $GOROOT

Make a bin directory under $GOROOT.

cd to the src directory: $ cd GOROOT/src and then build Go with: $./all.bash

2.6 What is installed on your machine?

The Go tree as the installation is called has the following structure under the go-root map
($GOROOT):

README, AUTHORS, CONTRIBUTORS, LICENSE
\bin all executables, like the compilers and the go-tools
\doc tutorial programs, codewalks, local documention, talks, logo’s, …
\include C/C++ header files
\lib templates for the documentation
\misc configuration files for editors for working with Go, cgo examples, …
\pkg\os_arch with os_arch e.g. linux_amd64, windows_386, …
 the object files (.a) of all the packages of the standard library
\src bash-scripts and make command files
\cmd scripts and source files (Go, C) of the compilers and commands
\lib9 \libbio \libmach : C-files
\pkg Go source files of all packages in the standard library (it is open source!)

On Windows 386 release r59 comprises 3084 files in 355 maps, amounting to 129 Mb.

On Linux 64 bit release r60 comprises 3958 files, totaling 176 Mb.

The Way to Go

27

2.7 The Go runtime

Although the compiler generates native executable code, this code executes within a runtime
(the code of this tool is contained in the package runtime). This runtime is somewhat
comparable with the virtual machines used by the Java and .NET-languages. It is responsible
for handling memory allocation and garbage collection (see also § 10.8), stack handling,
goroutines, channels, slices, maps, reflection, and more.

runtime is the “top level” package that is linked into every Go package, and it is mostly
written in C. It can be found in $GOROOT/src/pkg/runtime/ (see the mgc0.c and other
m* files in that Directory).

Garbage collector: 6g has a simple but effective mark-and-sweep collector. Work is
underway to develop the ideas in IBM’s Recycler garbage collector to build a very efficient,
low-latency concurrent collector. Gccgo at the moment has no collector; the new collector
is being developed for both compilers. Having a garbage-collected language doesn’t mean
you can ignore memory allocation issues: allocating and deallocating memory also uses
cpu-resources.

Go executable files are much bigger in size than the source code files: this is precisely because
the Go runtime is embedded in every executable. This could be a drawback when having
to distribute the executable to a large number of machines. On the other hand deployment
is much easier than with Java or Python, because with Go everything needed sits in 1 static
binary, no other files are needed. There are no dependencies which can be forgotten or
incorrected versioned.

2.8 A Go interpreter

Because of the fast compilation and (as we will see) the resemblance with dynamic languages
the question easily arises whether Go could be implemented in a read-eval-print loop like in
these languages. Such a Go interpreter has been implemented by Sebastien Binet and can
be found at:

https://bitbucket.org/binet/igo

28

Chapter 3—Editors, IDE’s and Other tools.

Because Go is still a young language work on (plugins for) IDE’s is still in progress, however there
is some very decent support in certain editors. Some environments are cross-platform (indicated
by CP) and can be used on Linux, OS X and Windows.

Consult http://go-lang.cat-v.org/text-editors/ for the latest information.

3.1 Basic requirements for a decent Go development environment

What can you expect from an environment giving above what you could accomplish with a
simple text-editor and the compiler/link tools on the command-line ? Here is an extensive
wish-list:

(1) Syntax highlighting: this is of course crucial, and every environment cited provides
configuration- or settings files for this purpose; preferably different color-schemes (also
customizable) should be available.

(2) Automatic saving of code, at least before compiling.
(3) Line numbering of code must be possible.
(4) Good overview and navigation in the codebase must be possible; different source-files

can be kept open.
 Possibility to set bookmarks in code.
 Bracket matching.
 From a function call, or type use, go to the definition of the function or type.
(5) Excellent find and replace possibilities, the latter preferably with preview.
(6) Being able to (un)comment lines and selections of code.
(7) Compiler errors: double clicking the error-message should highlight the offending

codeline.
(8) Cross platform: working on Linux, Mac OS X and Windows so that only 1

environment needs to be learned / installed.
(9) Preferably free, although some developers would be willing to pay for a qualitatively

high environment, which distinguishes itself from the rest.
(10) Preferably open-source

The Way to Go

29

(11) Plugin-architecture: so its relatively easy to extend or replace a functionality by a new
plugin.

(12) Easy to use: an IDE is a complexer environment, but still it must have a lightweight
feel.

(13) Code snippets (templates): quick insertion of of much used pieces of code can ease
and accelerate coding.

(14) The concept of a Go project, with a view of its constituent files and packages, and
where the Makefile typically plays the role of configuration file. Closely related is the
concept of a build system: it must be easy to compile/link (= build), clean (remove
binaries) and/or run a program or a project. Running a program should be possible in
console view or inside the IDE.

(15) Debugging capabilities (breakpoints, inspection of values, stepping through executing
code, being able to step over the standard library code).

(16) Easy acces to recent files and projects.
(17) Code completion (intellisense) capabilities: syntax-wise (keywords), packages, types

and methods within packages, program types, variables, functions and methods;
function signatures.

(18) An AST-view (abstract syntax tree) of a project/package code.
(19) Built-in go tools, such as: go fmt, go fix, go install, go test, …
(20) Convenient and integrated browsing of go documentation.
(21) Easy switching between different Go-environments (8g, 6g, different installation

root, …)
(22) Exporting code to different formats, such as pdf, html or even printing of the

code.
(23) Project templates for special kind of project (such as a web application, an App Engine

project) to get you started quickly.
(24) Refactoring possibilities.
(25) Integration with version control-systems like hg or git.
(26) Integration with Google App Engine.

3.2 Editors and Integrated Development Environments

Syntax highlighting and other Go-utilities exist for the following editors: Emacs, Vim,
Xcode3, KD Kate, TextWrangler, BBEdit, McEdit, TextMate, TextPad, JEdit, SciTE, Nano,
Notepad++, Geany, SlickEdit, SublimeText2.

The GEdit Linux text-editor can be made into a nice Go environment (see http://gohelp.
wordpress.com/).

30

Ivo Balbaert

SublimeText (http://www.sublimetext.com/dev) is an innovative cross platform text-editor
(Linux, Mac OSX, Windows) with extensions for a lot of programming languages, in
particular for Go a plugin GoSublime exists (https://github.com/DisposaBoy/GoSublime)
which provides code completion and code snippets.

Here are the more elaborated environments for Go-programming; some of them are plugins
for existing (Java) environments:

NetBeans: (commercial) Go For NetBeans plug-in, provides syntax highlighting and code
templates http://www.winsoft.sk/go.htm ; a new free plugin is in the making: http://www.
tunnelvisionlabs.com/downloads/go/

gogo: A basic environment for Linux and Mac: http://www.mikeparr.info/golinux.html

GoIde: (CP) is a plugin for the IntelliJ IDE: http://go-ide.com/
 Download it from https://github.com/mtoader/google-go-lang-idea-plugin
 Nice editing features and code-completion support,
 cfr: http://plugins.intellij.net/plugin/?idea&id=5047

LiteIDE (golangide): (CP) is a nice environment for editing, compiling and running Go
 programs and -projects. Contains an abstract syntax tree (AST) viewer of the
 source code and a built-in make tool: http://code.google.com/p/golangide/
 downloads/list

GoClipse:(CP) is a plugin for the Eclipse IDE: http://goclipse.googlecode.com/svn/trunk/
goclipse-update-site/; Interesting features are automatic make file creation, and a kind of
code completion (Content Assist via GoCode)

If you are not familiar with the IDE’s, go for LiteIDE, else GoClipse or GoIde are good
choices.

Code completion is built in (e.g. in LiteIDE and GoClipse) through the GoCode plugin:
To install gocode:

$ git clone git://github.com/nsf/gocode.git

$ cd gocode

$ export GOROOT=$HOME/go

$ export PATH=$HOME/go/bin:$PATH

$ make install

The Way to Go

31

Test gocode status:

$ gocode status

should give as output:

Server’s GOMAXPROCS == 2

Package cache contains 1 entries

Listing these entries:

name: unsafe (default alias: unsafe)

imports 9 declarations and 0 packages

this package stays in cache forever (built-in package)

In the following table we list the IDE requirements summed up in § 3.1 for the environments
which are most advanced at this time, + means it works, ++ is better, blanc means it does not.

Golang LiteIDE GoClipse GoIde

Syntax highlighting ++ + +
Automatic saving
before building

+

Line numbering + +
Bookmarks
Bracket matching +
Find / Replace + ++
Go to definition
(Un)Comment +
Compiler error
double click

++ +

Cross platform + +
Free + +
Open source + +
Plugin-architecture + +
Easy to use ++ +
Code snippets
Project concept + +
Code Folding
Build system + +
Debugging + +

32

Ivo Balbaert

Recent files and
projects

+ +

Code completion + ++
AST-view of code ++ +
Built-in go tools + +
Browsing of go
documentation

+

Easy switching
different
Go-environments

++ +

Exporting code to
different formats

++ +

Project templates
Integration
with version
control-systems
Integration with
Google App Engine

++

Here follows a more detailed discussion of LiteIDE and GoClipse.

3.2.1. Golang LiteIDE

The current version is X10; website: http://code.google.com/p/golangide/)

LiteIDE is a nice lightweight IDE with a plugin-architecture (based on QT, Kate and SciTE),
containing all necessary features for comfortable Go cross-platform development, with very
good editing, code-completion and debugging support. It has the concept of a Go project,
tied to a Makefile when this is present in its root directory. It is possible to work side by side
with different Go-environments because you can use different environment (.env)-files with
their own Go-variables, for example for 32 bit / 64 bit or different releases (a stable releases
versus a weekly release for instance).

Very nice also is the AST-view of the code, giving a nice overview of the constants, variables,
functions and the different types, with their properties and methods.

The Way to Go

33

Fig 3.1: LiteIDE and its AST-view

3.2.2. GoClipse

(Current version: 0.2.1; website: http://code.google.com/p/goclipse/)

This is a plugin for the well known Eclipse-environment, a big environment with starts
rather slow and depends on a Java VM installed, but on the other hand it can use much of
the built-in Eclipse functionality. A nice editor, code-completion and outline, project view
and debugging support.

34

Ivo Balbaert

Fig 3.2: GoClipse and its outline code-view

3.3 Debuggers

Application programming needs good debugging support, and in this area still a lot of work
needs to be done. A debugger (Oogle): support for gdb (at least version 7 is needed), the GNU
debugger is being built in Go’s gc linker (6l, 8l) by the Go-team from Google (not for Windows
and ARM-platforms) (see also http://blog.golang.org/2010/11/debugging)

Support for gdb version 7.1 is build in in LiteIDE and Goclipse.

If you don’t want to use a debugger, the following is useful in a simple debugging strategy:

1) use print-statements (with print / println and the fmt.Print functions) at well chosen
places

2) in fmt.Printf functions use the following specifiers to obtain complete info about
variables:

%+v gives us a complete output of the instance with its fields
%#v gives us a complete output of the instance with its fields and qualified type
name
%T gives us the complete type specification

The Way to Go

35

3) use a panic-statement (see § 13.2) to obtain a stack trace (a list of all the called functions
up until that moment)

4) use the defer keyword in tracing code execution (see § 6.4).

3.4 Building and running go-programs with command- and Makefiles

Messages from the compiler:

When a program has been written (applying common naming- and style-rules), subject it to gofmt
(see §3.5 to format it correctly), and then build (compile / link) it; if the build-process (which is
also called compile-time) doesn’t give any errors, the message appears:

---- Build file exited with code 0 .

In most IDE’s, building also saves the latest changes to the source-file.

If building produces (an) error(s), we get the following output:

---- Build file exited with code 1,

and the line number where the error occurs in the source-code is indicated, like:

hello_world.go:6: a declared and not used

In most IDE’s, double-clicking the error line positions the editor on that code line where the error
occurs.

Go does not distinguish between warnings and errors. The philosophy is: when it is worth warning
for a misuse of something, it better be signaled as an error to always be on the safe side. If you try
to execute a program which is not yet compiled, you get the following error:

---- Error run with code File not found, resource error

When executing a program you are in the run-time environment.

If the program executes correctly, after execution the following is output:

---- Program exited with code 0

36

Ivo Balbaert

The –o flag:

The compiler and linker also have the –o flag to give the executable a simpler name: if we have
compiled a program test.go to test.6 and want our executable to have the name test instead of
test.6, issue the following link-command:

6l –o test test.6

Command (batch) file in Windows:

A run.cmd or run.bat file containing the following commands (put the path to your Go root map
in the 1st line):

set GOROOT=E:\Go\GoforWindows\gowin32_release.r60\go

set GOBIN=$GOROOT\bin

set PATH=%PATH%;$GOBIN

set GOARCH=386

set GOOS=windows

echo off

8g %1.go

8l -o %1.exe %1.8

%1

can be used to run test.go in a command-window (cmd) like: run test

Makefile in Linux and OS X:

You can build/link without having to know which of the 5-, 6- or 8- compilers/linkers you need to
use by using makefiles. Produce a text file called Makefile in the map with your .go-files with the
following content:

include $(GOROOT)/src/Make.inc

TARG=test

GOFILES=\

test1.go\

test2.go\

include $(GOROOT)/src/Make.cmd

and make it executable with chmod 777 ./Makefile

Fill in the variable GOFILES with all the go-files that need to be compiled and linked separated by
a space. Leave a blank line before the include line. TARG contains the name of the executable. Then

The Way to Go

37

run make on the command-line: this compiles/links the source-files, but only when the source-code
has changed since the last make run; ./test executes the program.

If needed you can make your own variables in a Makefile like VAR1, and their value is substituted
in the expression $(VAR1) .

From Go 1 onwards, the preferred way is to use the go tool:

 go build compiles and installs packages and dependencies
 go install install packages and dependencies

Instead of make you can use the tool gomake, which is included in the Go-distribution. It was the
common build tool before Go 1(see §3.4, §9.5 for packages and § 13.7 for testing):

If $GOROOT is already set in the environment, running gomake is exactly the same as running
make. Usage: gomake [target ...]

 Common targets are:
 all (default) build the package or command, but do not install it.
 install build and install the package or command
 test run the tests (packages only)
 bench run benchmarks (packages only)
 clean remove object files from the current directory
 nuke make clean and remove the installed package or command

If it is convenient to use different Makefiles, like Makefile_Proj1, Makefile_Proj2, etc., you can
invoke them separately by issuing the command with the –f flag: gomake –f Makefile_Proj1

Including code formatting:

If you append the following lines to Makefile:

format:

gofmt -w $(GOFILES)

then gomake format will invoke gofmt on your source-files.

38

Ivo Balbaert

Makefile in Windows:

A Makefile and make can also be used in Windows by using MINGW (Minimalist GNU
environment for Windows, see http://www.mingw.org/). In order to be able to run the Go toolchain
(like gomake, gotest, etc.) the Windows-environment must be made more Unix-like. This can be
done through MINGW, which even gives you the possibility of building Go on Windows (see
§2.5 (5)).

A limited companion environment to make canonical Go-Makefiles work in a Windows
environment including MSYS can be found at https://bitbucket.org/akavel/gowin-env .

Download gowin_env.zip and unzip it, this produces a map gowin_env, with submap msys and
some bat-files. Open console.bat in Notepad or Wordpad and edit the line set GOROOT= to the
root of your Go-installation, for example:

set GOROOT=E:\Go\GoforWindows\gowin32_release.r57.1\go

Do the same for go_env.bat. Then double click console.bat and change to the map where you have
your Makefile ready, and invoke the make command to compile and link the programs indicated
in the Makefile.

Compiling all go-files in a directory:

Here is the Linux-version of a useful script for the purpose of quick testing for compilation errors
in a lot of files:

Listing 3.1—gocomp:

#!/bin/bash

FILES=~/goprograms/compiletest/*.go

for f in $FILES

do

 echo “Processing $f file...”

 # take action on each file. $f stores current file name

 # cat $f

 6g $f >> compout

done

You need to replace ~/goprograms/compiletest/ with your map name; the output of the compilation
is then appended to the file compout.

The Way to Go

39

A Windows-version is just as easy to write, e.g. a gocomp.bat file with this line:

FOR %%X in (*.go) DO 8g %%X >> compout

will compile all the go-files in the current directory and write the output to compout.

3.5 Formatting code: go fmt or gofmt

The Go-authors didn’t want endless discussions about code-style for the Go-language, discussions
which in the past have risen for so many programming languages and that were certainly to an
extent a waste of precious development time. So they made a tool: go fmt (or formerly gofmt).
It is a pretty-printer which imposes the official, standard code formatting and styling on the Go
source-code. It is a syntax level rewriting tool, a simple form of refactoring. It is used rigorously in
Go-development, and should be used by all Go-developers: use gofmt on your Go-program before
compiling or checking in!

Although not without debate, the use of gofmt and as a consequence the syntax-liberty you have
to give up certainly have big advantages in making Go-code uniform and better readable and thus
facilitates the cognitive task of comprehending foreign Go-code. Most editors have it built in.

For indentation of different levels in code the rule is not strict: tabs or spaces can be used, a tab
can be 4 or 8 spaces. In the real code-examples and exercises 1 tab takes the width of 4 spaces, in the
printed examples in this book for clarity 1 tab equals 8 spaces. In writing code in an editor of IDE,
use the tab, don’t insert spaces.

On the command-line: gofmt –w program.go reformats program.go (without –w the changes are
shown, but not saved). gofmt –w *.go works on all go-files. gofmt map1 works recursively on all .go
files in the map1 directory and its subdirectories.

It can also be used for simple changes (refactoring) in a codebase by specifying a rule with the –r
flag and a rule between ‘ ; the rule has to be of the form: pattern -> replacement

Examples:
gofmt -r “(a) -> a” –w *.go

this will replace all unnecessary doubled (()) with () in all go-files in the
current directory.

gofmt -r “a[n:len(a)] -> a[n:]” –w *.go

this will replace all superfluous len(a) in such slice-declarations

40

Ivo Balbaert

gofmt –r ‘A.Func1(a,b) -> A.Func2(b,a)’ –w *.go

this will replace Func1 with Func2 and swap the function’s arguments

For more info see: http://golang.org/cmd/gofmt/

3.6 Documenting code: go doc or godoc

go doc extracts and generates documentation for Go programs and packages.

It extracts comments that appear before top-level declarations in the source-code, with no
intervening newlines: together with the declaration they serve as explanatory text for the item.

It can also function as a web server delivering documentation; this is how the golang-website
http://golang.org works.

General format:

go doc package

 to get the ‘package comment’ documentation for package, ex.: go doc fmt
 this comment will appear first on the output produced by godoc.

go doc package/subpackage

 to get the documentation for subpackage in package, ex: go doc container/list

go doc package function

 to get the documentation for function in package, ex.: go doc fmt Printf
 provides explanations for the use of fmt.Printf()

These commands only work when the Go-source is located under the Go-root: ../go/src/pkg.

The command godoc itself has some more options.

Godoc can also be started as a local webserver: godoc -http=:6060 on the command-line starts
the server, then open a browser window with the url: http://localhost:6060 and you have a local
documentation server, without the need for an internet-connection.

Godoc can also be used to generate documentation for self-written Go-programs: see §9.6.

For more info see: http://golang.org/cmd/godoc/

The Way to Go

41

3.7 Other tools

The tools in the Go-toolset (http://golang.org/cmd/) are partly shell-scripts and also written in Go
itself. From Go 1 onwards they are implemented as commands for the go tool:

go install (formerly goinstall) is the go-package install tool; much like rubygems for the Ruby
language. It is meant for installing go packages outside of the standard library, and it works with
the source-code format of the package, which then has to be locally compiled and linked (see also
§ 9.7).

go fix (formerly gofix) is a tool that you can use to update Go source-code (outside of the
standard packages) from an older to the newest release: it tries to automatically ‘fix’ changes. It is
meant to reduce the amount of effort it takes to update existing code, automating it as much as
possible. gofix takes care of the easy, repetitive, tedious changes; if a change in API isn’t simply a
substitution of a new function and requires manual examination, gofix prints a warning giving the
file name and line number of the use, so that a developer can examine and rewrite the code. The
Go-team regularly updates the tool together with new API changes, and it is also used internally
in Google to update Go source code. go fix works because Go has support in its standard libraries
for parsing Go source files into (abstract) syntax trees (AST’s) and also for printing those syntax
trees back to Go source code.

go fix . tries to update all .go-files in the current directory when necessary; the changed filenames
are printed on standard output.

Examples:—show differences with the installed Go-release: go fix -diff .
 - update to changes: go fix -w .

go test (formerly gotest) is a lightweight test framework for unit-testing (see chapter 13)

3.8 Go’s performance

According to the Go-team and measured in simple algorithmic programs, performance is typically
within 10-20% of C. There are no official benchmarks, but regular experimental comparisons
between languages show a very good performance track.

A more realistic statement is that Go is 20% slower than C++ . This puts Go programs at
conservatively twice as fast and requiring 70% less memory when compared to an equivalent Java
or Scala application. In many cases that difference is irrelevant, but for a company like Google with
thousands of servers the potential efficiency improvements are certainly worth the investment.

42

Ivo Balbaert

The current popular languages execute in a virtual machine: JVM for Java and Scala, .NET CLR
for C#, etc..Even with the massive improvements in virtual machines, JIT-compilers and scripting
language interpreters (Ruby, Python, Perl, Javascript) none can come close to C and C++ for
performance.

If Go is 20% slower than C++, that’s still 2 to 10 times faster than any language that’s not statically
typed and compiled, and it is far more memory efficient.

Comparing benchmarks of a program in 2 or more languages is very tricky: the programs each
should do exactly the same things, utilizing the best possible concepts and techniques for that task
from the language. For example when processing text, the language that processes this as raw bytes
will almost certainly outperform the language that works with it as Unicode. The person performing
the benchmarks often writes both programs, but often he/she is much more experienced in one
language than in the other, and this can of course very much influence the results: each program
should be written by a developer well versed in the language. Otherwise, like in statistics, it is not
difficult to artificially influence the performance behavior of one language compared to another;
it is not an exact science. The outcome can also depend upon the problem to solve: in most
cases older languages have optimally tuned libraries for certain tasks, and it must be taken into
account that some of the Go-libraries are still early versions. For a lot of results, see The Computer
Language Benchmark Game—http://shootout.alioth.debian.org/ (ref 27).

Some benchmarking results:

(1) Comparing Go and Python on simple webserver applications, measured in transactions/s:

The native Go http package is 7-8 x faster than web.py, web.go slightly less performant with a ratio
of 6-7 compared to web.py. The tornado asynchronous server/framework much used in Python
web environments performs considerably better than web.py: Go outperforms tornado only with
a factor of 1.2 to 1.5 (see ref 26).

(2) Go is on average 25 x faster than Python 3, uses 1/3 of the memory, with number of lines
of code almost equal to double. (see ref 27).

(3) The article by Robert Hundt (Jun 2011, ref 28) comparing C++, Java, Go, and Scala, and
the reaction of the Go team (ref 29): some conclusions taking into account the tuning from
the Go-team:

- The Scala and Go versions are significantly more compact (less code lines) than the
verbose C++ and Java

- Go compiles quicker than alle others, 5-6x comparing to Java and C++, 10x
compared to Scala

- Go has the largest binary size (every executable contains the runtime)

The Way to Go

43

- Optimized Go code is as fast as C++, 2 to 3x faster than the Scala version and 5 to
10x faster than Java.

- Its memory consumption is also very much comparable to that of C++, nearly half
of what Scala required, and it was nearly 4x less than Java

3.9 Interaction with other languages.

3.9.1. Interacting with C

The cgo program provides the mechanism for FFI-support (foreign function interface) to allow safe
calling of C libraries from Go code: http://golang.org/cmd/cgo is the primary cgo documentation
(see also ref. 23). cgo replaces the normal Go-compilers, it outputs Go and C files that can be
combined into a single Go package. It is good practice to combine the calls to C in a separate
package.

The following import is then necessary in your Go program: import “C”

(this needs to be on a line of its own)
and usually also: import “unsafe”

You can include C-libraries (or even valid C-code) by placing these statements as comments (with
// or /* */) immediately above the import “C” line:

// #include <stdio.h>

// #include <stdlib.h>

import “C”

C is not a package from the standard library, it is simply a special name interpreted by cgo as a
reference to C’s namespace. Within this namespace exist the C types denoted as C.uint, C.long,
etc. and functions like C.random() from libc can be called.

Variables in the Go program have to be converted to the C type when used as parameter in C
functions, and vice-versa, examples:

 var i int

 C.uint(i) // from Go int to C unsigned int

 int(C.random()) // from C (random() gives a long) to Go int

The following program contains 2 Go functions Random() and Seed(), which call the equivalent
C functions C.random() and C.srandom():

44

Ivo Balbaert

Listing 3.2—c1.go:

package rand

// #include <stdlib.h>

import “C”

func Random() int {

 return int(C.random())

}

func Seed(i int) {

 C.srandom(C.uint(i))

}

Strings do not exist as explicit type in C: to convert a Go string s to its C equivalent use: C.CString(s).
The reverse is done with the function C.GoString(cs), where cs is a C ‘string’.

Memory allocations made by C code are not known to Go’s memory manager.

It is up to the developer to free the memory of C variables with C.free, as follows:

defer C.free(unsafe.Pointer(Cvariable))

This line best follows the line where Cvariable was created, so that the release of memory is not
forgotten. The following code contains a Go function Print() which prints a string to the console
by using the C function fputs from stdio, explicitly freeing the the memory used:

Listing 3.3—c2.go:

package print

// #include <stdio.h>

// #include <stdlib.h>

import “C”

import “unsafe”

func Print(s string) {

 cs := C.CString(s)

 defer C.free(unsafe.Pointer(cs))

 C.fputs(cs, (*C.FILE)(C.stdout))

}

The Way to Go

45

Building cgo packages:

A Makefile like in §9.5 (because we create a separate package) can be used here; apart from the
GOFILES variable, a variable CGOFILES now lists the files to be compiled with cgo. For example
Listing 3.2 could be compiled in a package rand with the following Makefile, issuing the command
gomake or make:

include $(GOROOT)/src/Make.inc

TARG=rand

CGOFILES=\

 c1.go\

include $(GOROOT)/src/Make.pkg

3.9.2. Interacting with C++

SWIG (Simplified Wrapper and Interface Generator) support exists for calling C++ and C code
from Go on Linux. Using SWIG is a bit more involved:

•	 Write	the	SWIG	interface	file	for	the	library	to	be	wrapped
•	 SWIG	will	generate	the	C	stub	functions
•	 These	can	then	be	called	using	the	cgo	machinery
•	 the	Go	files	doing	so	are	automatically	generated	as	well

This interface handles overloading, multiple inheritance and allows to provide a Go implementation
for a C++ abstract class.

A problem is that SWIG doesn’t understand all of C++, e.g. it can’t parse TObject.h

PART 2
Core ConsTruCTs anD TeChnIQues

of The LanGuaGe

49

Chapter 4—Basic constructs and elementary data
types

4.1. Filenames—Keywords—Identifiers

Go source-code is stored in .go files, these filenames consist of lowercase-letters, like scanner.go
If the name consist of multiple parts, there are separated by underscores _, like scanner_test.go
Filenames may not contain spaces or any other special characters.

A source-file contains code lines, who’s length have no intrinsic limit.

Nearly all things in Go-code have a name or an identifier. Go, like all languages in the C-family, is
case-sensitive. Valid identifiers begin with a letter (a letter is every letter in Unicode UTF-8 or _),
and followed by 0 or more letters or Unicode digits, like: X56, group1, _x23, i, өԑ12

The following are NOT valid identifiers:

1ab (starts with digit), case (= keyword in Go), a+b (operators are not allowed)

The _ itself is a special identifier, called the blank identifier. It can be used in declarations or
variable assignments like any other identifier (and any type can be assigned to it), but its value is
discarded, so it cannot be used anymore in the code that follows.

Sometimes it is possible that variables, types or functions have no name because it is not really
necessary at that point in the code and even enhances flexibility: these are called anonymous.

This is the set of 25 keywords or reserved words used in Go-code:

break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type

50

Ivo Balbaert

continue for import return var

It is kept deliberately small to simplify the code-parsing, the first step in the compilation process.
A keyword cannot be used as an identifier.

Apart from the keywords Go has a set of 36 predeclared identifiers: these contain the names of
elementary types and some basic built-in functions (see § 6.5); all these will be explained further
in the next chapters:

append bool byte cap close complex complex64 complex128 uint16
copy false float32 float64 imag int int8 int16 uint32
int32 int64 iota len make new nil panic uint64
print println real recover string true uint uint8 uintptr

Programs consist out of keywords, constants, variables, operators, types and functions.

The following delimiters are used: parentheses (), brackets [] and braces { }.

The following punctuation characters . , ; : and … are used.

Code is structured in statements. A statement doesn’t need to end with a ; (like it is imposed
in the C-family of languages). The Go compiler automatically inserts semicolons at the end of
statements.

However if multiple statements are written on one line (a practice which is not encouraged for
readability reasons), they must be separated by ;

4.2. Basic structure and components of a Go-program

Listing 4.1 hello_world.go:

package main

import “fmt”

func main() {

 fmt.Println(“hello, world”)

}

The Way to Go

51

4.2.1 Packages, import and visibility

Packages are a way to structure code: a program is constructed as a “package” (often abbreviated as
pkg), which may use facilities from other packages.

Every go-file belongs to one (and only one) package (like a library or namespace in other languages).
Many different .go files can belong to one package, so the filename(s) and package name are
generally not the same.

The package to which the code-file belongs must be indicated on the first line, e.g.: package main.
A standalone executable belongs to package main. Each Go application contains one package
called main.

An application can consist of different packages, but even if you use only package main, you don’t
have to stuff all code in 1 big file: you can make a number of smaller files each having package main
as 1st codeline. If you compile a source file with a package name other than main, like pack1, the
object file is stored in pack1.a; a package name is written in lowercase letters.

Standard library:

The Go installation contains a number of ready-to-use packages, which form the standard library.
On Windows the directories of the standard library can be found in the subdirectory pkg\
windows_386 of the Go-root map. On Linux the directories of the standard library can be found
in the subdirectory pkg\linux_amd64 of the Go-root map (or linux_amd32 in case of a 32 bit
installation). The general path (the global Go tree) where the standard library can be found is
$GOROOT/pkg/$GOOS_$GOARCH/ .

The standard library of Go contains a lot of packages (like fmt, os), but you can also create your
own packages (see chapter 8).

To build a program, the packages, and the files within them, must be compiled in the correct order.
Package dependencies determine the order in which to build packages.

Within a package, the source files must all be compiled together. The package is compiled as a unit,
and by convention each directory contains one package.

If a package is changed and recompiled, all the client programs that use this package must be recompiled
too!

52

Ivo Balbaert

The package model uses explicit dependencies to enable faster builds: the Go compiler pulls transitive
dependency type info from the object file .o—but only what it needs.

If A.go depends on B.go depends on C.go:

- compile C.go, B.go, then A.go.
- to compile A.go, compiler reads B.o not C.o.

At a large scale, this can be a huge speedup.

Every piece of code is compiled only once.

A Go program is created by linking together a set of packages through the import keyword.

import “fmt” tells Go that this program needs (functions, or other elements, from) the package
fmt, which implements functionality for formatted IO. The package names are enclosed within “
”. Import loads the public declarations from the compiled package, it does not insert the source
code.

If multiple packages are needed, they can each be imported by a separate statement:

 import “fmt”

 import “os”

or: import “fmt”; import “os”

but a shorter and more elegant way (called factoring the keyword, also applicable to const, var and
type) is available:

import (

 “fmt”

 “os”

)

(It can be even shorter: import (“fmt”; “os”) but gofmt enforces the distributed version)

Only apply this when there is more than one entry; in that case it is also clearer to list the package
names in alphabetical order.

The Way to Go

53

If the name of a package does not start with . or /, like “fmt” or “container/list”, Go looks for it in
the global Go tree. If it starts with ./ the package is searched in the actual directory; starting with /
(even on Windows) it is searched for in the (absolute) path indicated.

Packages contain all other code-objects.

Apart from _ , identifiers of code-objects have to be unique in a package: there can be no naming
conflicts. But the same identifier can be used in different packages: the package name qualifies it to
be different.

Packages expose their code-objects to code outside of the package according to the following rule,
which is enforced by the compiler :

VISIBILITY RULE:

When the identifier (of a constant, variable, type, function, struct field, …) starts with an
uppercase letter, like Group1, then the ‘object’ with this identifier is visible in code outside
the package (thus available to client-programs, ‘importers’ of the package), it is said to be
exported (like public in OO languages). Identifiers which start with a lowercase letter are
not visible outside the package, but they are visible and usable in the whole package (like
private).

(Capital letters can come from the entire Unicode-range,like Greek; not only ASCII letters are
allowed.)

So importing a package gives (only) access to the exported objects in that package.

Suppose we have a thing (variable or function) called Thing (starts with T so it is exported) in a
package pack1, then when pack1 is imported in the current package, Thing can be called with the
usual dot-notation from OO-languages: pack1.Thing (The pack1. is necessary !)

So packages also serve as namespaces and can help to avoid name-clashes (name-conflicts): variables
with the same name in two packages are differentiated by their package name, like:

pack1.Thing and pack2.Thing

A package can, if this is useful (for shortening, name conflicts, …), also be given another name (an
alias), like: import fm “fmt”. The alias is then used in the following code:

54

Ivo Balbaert

Listing 4.2—alias.go:

package main

import fm “fmt” // alias3

func main() {

 fm.Println(“hello, world”)

}

Remark: importing a package which is not used in the rest of the code is a build-error (for
example: imported and not used: os) . This follows the Go-motto: “no unnecessary code! ”

Package level declarations and initializations:

After the import statement 0 or more constants (const), variables (var), and types (type) can be
declared; these are global (have package scope) and are known in all functions in the code (like c and
v in gotemplate.go below), and they are followed by one or more functions (func).

4.2.2 Functions

The simplest function declaration has the format: func functionName()

Between the mandatory parentheses () no, one, or more parameters (separated by ,) can be given
as input to the function. After the name of each parameter variable must come its type.

A main function as starting is required (usually the first func), otherwise the build-error undefined:
main.main occurs. main has no parameters and no return type (in contrary to the C-family),
otherwise you get the build-error:

func main must have no arguments and no return values results.

When the program executes, after initializations the first function called (the entry-point
of the application) will be main.main() (like in C). The program exits—immediately and
successfully—when main.main returns.

The code in functions (the body) is enclosed between braces: { }

The first { must be on the same line as the func-declaration: this is imposed by the compiler and
gofmt (build-error: syntax error: unexpected semicolon or newline before {).

The Way to Go

55

(This is because the compiler then produces func main() ; which is an error.)

The last } is positioned after the function-code in the column beneath function; for small functions
it is allowed that everything is written on one line, like for example: func Sum(a, b int) int {
return a + b }

The same rule applies wherever { } are used (for example: if, etc.)

So schematically a general function looks like:

func functionName(parameter_list) (return_value_list) {

 …

 }

where parameter_list is of the form (param1 type1, param2 type2, …)

and return_value_list is of the form (ret1 type1, ret2 type2, …)

Function names only start with a capital letter when the function has to be used outside the
package; then they follow PascalCasing, otherwise they follow camelCasing: every new wordin the
name starts with a capital letter.

The line: fmt.Println(“hello, world”) calls the function Println from the package fmt, which
prints the string-parameter to the console, followed by a newline-character \n .

The same result can be obtained with fmt.Print(“hello, world\n”)

These functions Print and Println can also be applied to variables, like in: fmt.Println(arr); they
use the default output-format for the variable arr.

Printing a string or a variable can be done even simpler with the predefined functions print and
println: print(“ABC”) or println(“ABC”) or (with a variable i): println(i)

These are only to be used in the debugging phase; when deploying a program replace them with
their fmt relatives.

The execution of a function is stopped when the closing } is reached or when a return statement
is encountered, the execution of the program continues with the line following the call of the
function.

56

Ivo Balbaert

The program exits normally with code 0 (Program exited with code 0); a program that terminates
abnormally exits with another integer code like 1; this can be used to test succesfull execution of
he program from a script.

4.2.3 Comments

Listing 4.3—hello_world2.go:

package main

import “fmt” // Package implementing formatted I/O.

func main() {

 fmt.Printf(“Καλημέρα κόσμε; or こんにちは 世界\n”)

}

This illustrates the international character by printing Καλημέρα κέσμε; or こんに
ちは 世界, and also the characters used to indicate a comment.

Comments of course are not compiled, but they are used by godoc (see § 3.6)

A one-line comment starts with //, at the beginning or somewhere in a line; this is mostly used. A
multi-line or block-comment starts with /* and ends with */, nesting is not allowed; this is used
for making package documentation and commenting out code.

Every package should have a package comment, a block comment immediately preceding the
package statement, introducing the package and provide information relevant to the package and
its functionality as a whole. A package can be spread over many files, but the comment needs to
be in only one of them. This comment is shown when a developer demands info of the package
with godoc. Subsequent sentences and/or paragraphs can give more details. Sentences should be
properly punctuated.

Example:
// Package superman implements methods for saving the world.

//

// Experience has shown that a small number of procedures can prove

// helpful when attempting to save the world.

package superman

Nearly every top-level type, const, var and func, and certainly every exported name in a program
should have a comment. This comment (called a doc comment) appears on the preceding line, and
for a function Abcd should start with: “Abcd …”.

The Way to Go

57

Example:
// enterOrbit causes Superman to fly into low Earth orbit, a position

// that presents several possibilities for planet salvation.

func enterOrbit() error {

 ...

}

The godoc-tool (see §3.6) collects these comments to produce a technical documentation.

4.2.4 Types

Variables (like constants) contain data, and data can be of different data types, or types for short. A
declaration of a variable with var automatically initializes it to the zero-value defined for its type.A
type defines the set of values and the set of operations that can take place on those values.

Types can be elementary (or primitive), like int, float, bool, string,
 or structured (or composite), like struct, array, slice, map, channel,
 and interfaces, which only describe the behavior of a type.

A structured type which has no real value (yet) has the value nil, which is also the default value for
these types (in Objective-C this is also called nil, in Java it is null, in C anc C++ it is NULL or 0).
There is no type-hierarchy.

Functions can also be of a certain type, this is the type of the variable which is returned by the
function. This type is written after the function name and its optional parameter-list, like:

func FunctionName (a typea, b typeb) typeFunc

The returned variable var of typeFunc appears somewhere in the function in the statement:

return var

A function can return more than one variable, then the return-types are indicated separated by
comma’s and surrounded by (), like: func FunctionName (a typea, b typeb) (t1 type1, t2
type2)

Example: the function Atoi (see § 4.7): func Atoi(s string) (i int, err error)

Then return takes the form: return var1, var2

58

Ivo Balbaert

This is often used when the success (true/false) of the execution of a function or the error-message
is returned together with the return value (see multiple assignments below).

Use the keyword type for defining your own type. Then you probably want to define a struct-type
(see Chapter 10), but it is also possible to define an alias for an existing type, like in:

type IZ int

and then we can declare variables like: var a IZ = 5

We say that a has int as underlying type, this makes conversion possible (see § 4.2.6).

If you have more than one type to define, you can use the factored keyword form, as in:

type (

IZ int

FZ float

STR string

)

Every value must have a type after compilation (the compiler must be able to infer the types of all
values):

Go is a statically typed language.

4.2.5 General structure of a Go-program

The following program compiles but does nothing useful, but is shows the preferred structure for a
Go-program. This structure is not necessary, the compiler does not mind if main() or the variable
declarations come last, but a uniform structure makes Go code better readable from top to bottom.
All structures will be further explained in this and the coming chapters, but the general ideas are:

•	 After	import:	declare	constants,	variables	and	the	types
•	 Then	comes	the	init() function if there is any: this is a special function that every package

can contain and that is executed first.
•	 Then	comes	the	main()	function	(only	in	the	package	main)
•	 Then	come	the	rest	of	the	functions,	the	methods	on	the	types	first;	or	the	functions	in	

order as they are called from main() onwards; or the methods and functions alphabetically
if the number of functions is high.

The Way to Go

59

Listing 4.4—gotemplate.go:

package main

import (

 “fmt”

)

const c = “C”

var v int = 5

type T struct{}

func init() { // initialization of package

}

func main() {

 var a int

 Func1()

 // ...

 fmt.Println(a)

}

func (t T) Method1() {

 //...

}

func Func1() { // exported function Func1

 //...

}

The order of execution (program startup) of a Go application is as follows:

(1) all packages in package main are imported in the order as indicated,
 in every package:
(2) if it imports packages, (1) is called for this package (recursively)
 but a certain package is imported only once
(3) then for every package (in reverse order) all constants and variables are evaluated, and the

init() if it contains this function.
(4) at last in package main the same happens, and then main() starts executing.

60

Ivo Balbaert

4.2.6 Conversions

If necessary and possible a value can be converted (cast, coerced) into a value of another type. Go
never does implicit (automatic) conversion, it must be done explicit like so, with the syntax like a
function call (a type is here used as a kind of function):

valueOfTypeB = typeB(valueOfTypeA)

Examples: a := 5.0

 b := int(a)

But this can only succeed in certain well defined cases, for example from a narrower type to a
broader type (for example: int16 to int32). When converting from a broader type to a narrower
type (for example: int32 to int16, or float32 to int) loss of value (truncation) can occur. When
the conversion is impossible and the compiler detects this, a compile-error is given, otherwise a
runtime-error occurs.

Variables with the same underlying type can be converted into one another:

var a IZ = 5

c := int(a)

d := IZ(c)

4.2.7 About naming things in Go

Clean, readable code and simplicity are a major goal for Go development. gofmt imposes the
code-style. Names of things in Go should be short, concise, evocative. Long names with mixed
caps and underscores which are often seen e.g. in Java or Python code often hinders readability.
Names should not contain an indication of the package: the qualification with the package name is
sufficient. A method or function which returns an object is named as a noun, no Get… is needed.
To change an object, use SetName. If necessary, Go uses MixedCaps or mixedCaps rather than
underscores to write multiword names.

4.3. Constants

A constant const contains data which does not change.

This data can only be of type boolean, number (integer, float or complex) or string.

It is defined as follows: const identifier [type] = value, for example: const Pi = 3.14159

The Way to Go

61

The type specifier [type] is optional, the compiler can implicitly derive the type from the value.
Explicit typing example: const b string = “abc”

Implicit typing example: const b = “abc”

A value derived from an untyped constant becomes typed when it is used within a context that
requires a typed value (otherwise formulated: an untyped constant takes the type needed by its
context):

var n int

f(n + 5) // untyped numeric constant “5” becomes typed as int

Constants must be evaluated at compile time; a const can be defined as a calculation, but all the
values necessary for the calculation must be available at compile time.

So this is ok: const c1 = 2/3

this is NOT: const c2 = getNumber() // gives the build error: getNumber() used as value

Numeric constants have no size or sign, can be of arbitrary high precision and do no overflow:

const Ln2= 0.693147180559945309417232121458\

 176568075500134360255254120680009

const Log2E= 1/Ln2 // this is a precise reciprocal

const Billion = 1e9 // float constant

const hardEight = (1 << 100) >> 97

As demonstrated \ can be used as a continuation character in a constant.

In contrast to numeric variables of different types, with constants you don’t have to worry about
conversions: they are like ideal numbers.

Constants can overflow only when they are assigned to a numeric variable with too little precision
to represent the value, this results in a compile error. Multiple assignment is allowed, like in:

const beef, two, c = “meat”, 2, “veg”

const Monday, Tuesday, Wednesday, Thursday, Friday, Saturday = 1, 2, 3, 4, 5, 6

const (

Monday, Tuesday, Wednesday = 1, 2, 3

Thursday, Friday, Saturday = 4, 5, 6

)

62

Ivo Balbaert

Constants can be used for enumerations:

const (

 Unknown = 0

 Female = 1

 Male = 2

)

Unknown, Female, Male are now aliases for 0, 1 and 2. They can in effect be used to test for these
values, like in a switch / case construct (§ 5.3).

In such cases, the value iota can be used to enumerate the values:

 const (

 a = iota

 b = iota

 c = iota

)

The first use of iota gives 0, whenever iota is used again on a new line, its value is incremented by
1; so a=0, b=1, c=2. This can be shortened to:

const (

 a = iota

 b

 c

)

iota can also be used in an expression, like iota + 50. A new const block or declaration initializes
iota back to 0.

Of course, the value of a constant cannot change during the execution of the program; doing so is
prevented by a compiler error: cannot assign to value, where value is the value of the constant.

An example from the time package: the names for the days of the week:

const (

 Sunday = iota

 Monday

 Tuesday

The Way to Go

63

 Wednesday

 Thursday

 Friday

 Saturday

)

You can give the enumeration a type name like in this example:

type Color int

const (

 RED Color = iota // 0

 ORANGE // 1

 YELLOW // 2

 GREEN // ..

 BLUE

 INDIGO

 VIOLET // 6

)

Remark: There is a convention to name constant identifiers with all uppercase letters, like: const
INCHTOwCM = 2.54; this improves readability and can be used as long as it is not in conflict
with the Visibility Rule of §4.2

4.4. Variables

4.4.1 Introduction

The general form for declaring a variable uses the keyword var: var identifier type

Important to note is that the type is written after the identifier of the variable, contrary to almost
any other programming language. Why did the Go designers chose for this convention?

First it removes some ambiguity which can exist in C declarations, e.g. in writing int* a, b;

Only a is a pointer and b is not. In order to declare them both pointers, the asterisk must be repeated.
(for a longer discussion on this topic, see: http://blog.golang.org/2010/07/gos-declaration-syntax.
html)

However in Go, they can both be declared pointers as follows: var a, b *int

64

Ivo Balbaert

Secondly it reads well from left to right and so is easier to understand.

Some examples: var a int

 var b bool

 var str string

which also can be written as:

 var (

 a int

 b bool

 str string

)

This form is mainly used to declare variables globally.

When a variable is declared it contains automatically the default zero or null value for its type: 0
for int, 0.0 for float, false for bool, empty string (“”) for string, nil for pointer, zero-ed struct, etc.:
all memory in Go is initialized.

The naming of identifiers for variables follows the camelCasing rules (start with a small letter, every
new part of the word starts with a capital letter), like: numShips, startDate

But if the variable has to be exported, it must start with a capital letter (visibility rule §4.2).

A variable (constant, type, function) is only known in a certain range of the program, called the
scope. Variables etc. declared outside of any function (in other words at the top level) have global (or
package) scope: they are visible and available in all source files of the package.

Variables declared in a function have local scope: they are only known in that function, the same
goes for parameters and return-variables. In chapter 5 we will encounter control constructs like if
and for; a variable defined inside such a construct is only known within that construct (construct
scope). Mostly you can think of a scope as the codeblock (surrounded by { }) in which the variable
is declared.

Although identifiers have to be unique, an identifier declared in a block may be redeclared in an
inner block: in this block (but only there) the redeclared variable takes priority and shadows the
outer variable with the same name; if used care must be taken to avoid subtle errors (see § 16.1).

The Way to Go

65

Variables can get their value (which is called assigning and uses the assignment-operator =) at
compile time, but of course a value can also be computed or changed during runtime.

Examples: a = 15

 b = false

In general a variable b can only be assigned to a variable a as in a = b, when a and b are of the same
type.

Declaration and assignment(initialization) can of course be combined, in the general format:

 var identifier [type] = value

Examples: var a int = 15

 var i = 5

 var b bool = false

 var str string = “Go says hello to the world!”

But the Go-compiler is intelligent enough to derive the type of a variable from its value (dynamically,
also called automatic type inference, somewhat like in the scripting languages Python and Ruby, but
there it happens in run time), so the following forms (omitting the type) are also correct:

 var a = 15

 var b = false

 var str = “Go says hello to the world!”

or: var (

 a = 15

 b = false

 str = “Go says hello to the world!”

 numShips = 50

 city string

)

It can still be useful to include the type information in the case where you want the variable to be
typed something different than what would be inferred, such as in: var n int64 = 2

However an expression like var a is not correct, because the compiler has no clue about the type
of a. Variables could also be expressions computed at runtime, like:

var (

 HOME = os.Getenv(“HOME”)

66

Ivo Balbaert

 USER = os.Getenv(“USER”)

 GOROOT = os.Getenv(“GOROOT”)

)

The var syntax is mainly used at a global, package level, in functions it is replaced by the short
declaration syntax := (see § 4.4).

Here is an example of a program which shows the operating system on which it runs. It has
a local string variable getting its value by calling the Getenv function (which is used to obtain
environment-variables) from the os-package.

Listing 4.5—goos.go:

package main

import (

 “fmt”

 “os”

)

func main() {

 var goos string = os.Getenv(“GOOS”)

 fmt.Printf(“The operating system is: %s\n”, goos)

 path := os.Getenv(“PATH”)

 fmt.Printf(“Path is %s\n”, path)

}

The output can for example be: The operating system is: windows, or The operating system is:
linux, followed by the contents of the path variable.

Here Printf is used to format the ouput (see § 4.4.3).

4.4.2 Value types and reference types

Memory in a computer is used in programs as a enormous number of boxes (that’s how we will
draw them), called words. All words have the same length of 32 bits (4 bytes) or 64 bits (8 bytes),
according to the processor and the operating system; all words are identified by their memory
address (represented as a hexadecimal number).

All variables of elementary (primitive) types like int, float, bool, string, … are value types, they
point directly to their value contained in memory:

The Way to Go

67

7(int) i

32 bit word

Fig 4.1: Value type

Also composite types like arrays (see chapter 7) and structs (see Chapter 10) are value types.

When assigning with = the value of a value type to another variable: j = i, a copy of the original
value i is made in memory.

7(int) i

7(int) j

Fig 4.2: Assignment of value types

The memory address of the word where variable i is stored is given by &i (see § 4.9), e.g. this could
be 0xf840000040. Variables of value type are cointained in stack memory.

The actual value of the address will differ from machine to machine and even on different executions
of the same program as each machine could have a different memory layout and and also the
location where it is allocated could be different.

More complex data which usually needs several words are treated as reference types.
A reference type variable r1 contains the address (a number) of the memory location where the value
of r1 is stored (or at least the 1st word of it):

address1
value of r1

address1

(ref) r1

(ref) r2

Fig 4.3: Reference types and assignment

68

Ivo Balbaert

This address which is called a pointer (as is clear from the drawing, see § 4.9 for more details) is
also contained in a word.

The different words a reference type points to could be sequential memory addresses (the memory
layout is said to be contiguously) which is the most efficient storage for computation; or the words
could be spread around, each pointing to the next.

When assigning r2 = r1, only the reference (the address) is copied.

If the value of r1 is modified, all references of that value (like r1 and r2) then point to the modified
content.

In Go pointers (see § 4.9) are reference types, as well as slices (ch 7), maps (ch 8) and channels (ch
13). The variables that are referenced are stored in the heap, which is garbage collected and which
is a much larger memory space than the stack.

4.4.3 Printing

The function Printf is visible outside the fmt-package because it starts with a P, and is used to
print output to the console. It generally uses a format-string as its first argument:

func Printf(format string, list of variables to be printed)

In Listing 4.5 the format string was: “The operating system is: %s\n”

This format-string can contain one or more format-specifiers %.., where .. denotes the type of the
value to be inserted, e.g. %s stands for a string-value. %v is the general default format specifier.
The value(s) come in the same order from the variables summed up after the comma, and they are
separated by comma’s if there is more than 1. These % placeholders provide for very fine control
over the formatting.

The function fmt.Sprintf behaves in exactly the same way as Printf, but simply returns the
formatted string: so this is the way to make strings containing variable values in your programs (for
an example, see Listing 15.4—simple_tcp_server.go).

The functions fmt.Print and fmt.Println perform fully automatic formatting of their arguments
using the format-specifier %v, adding spaces between arguments and the latter a newline at the
end. So fmt.Print(“Hello:”, 23) produces as output: Hello: 23

The Way to Go

69

4.4.4 Short form with the := assignment operator

With the type omitted, the keyword var in the last statements of § 4.4.1 is pretty superfluous, so
we may write in Go: a := 50 or b := false

Again the types of a and b (int and bool) are inferred by the compiler.

This is the preferred form, but it can only be used inside functions, not in package scope. The :=
operator effectively makes a new variable; it is also called an initializing declaration.

Remark: If after the lines above in the same codeblock we declare a:= 20, this is not allowed : the
compiler gives the error “no new variables on left side of :=” ; however a = 20 is ok because
then the same variable only gets a new value.

A variable a which is used, but not declared, gives a compiler error: undefined: a

Declaring a local variable, but not using it, is a compiler error; like variable a in the following
main() function: func main() {

 var a string = “abc”

 fmt.Println(“hello, world”)

 }

which gives the error: a declared and not used

Also setting the value of a is not enough, the value must be read in order to count as a use, so fmt.
Println(“hello, world”, a) removes the error.

However for global variables this is allowed.

Other convenient shortening forms are:

Multiple declarations of variables of the same type on a single line, like: var a, b, c int

(this is an important reason why the type is written after the identifier(s))

Multiple assignments of variables on a single line, like: a, b, c = 5, 7, “abc”

This assumes that variables a, b and c where already declared, if not: a, b, c := 5, 7, “abc”

70

Ivo Balbaert

The values from the right-hand side are assigned to the variables on the left-hand side in the same
order, so a has the value 5, b has the value 7, c has the value “abc”.

This is called parallel or simultaneous assignment.

With two variables it can be used to perform a swap of the values: a, b = b, a

(This removes the need for making a swap function in Go)

The blank identifier _ can also be used to throw away values, like the value 5 in: _, b = 5, 7

_ is in effect a write-only variable, you cannot ask for its value. It exists because a declared variable
in Go must also be used, and sometimes you don’t need to use all return values from a function.

The multiple assignment is also used when a function returns more than 1 value, like here where
val and an error err are returned from Func1: val, err = Func1(var1)

4.4.5 Init-functions

Apart from global declaration with initialization, variables can also be initialized in an init()-function.
This is a special function with the name init() which cannot be called, but is executed automatically
before the main() function in package main or at the start of the import of the package that
contains it.

Every source file can contain only 1 init()-function. Initialization is always single-threaded and
package dependency guarantees correct execution order.

A possible use is to verify or repair correctness of the program state before real execution begins.

Example: Listing 4.6—init.go:

package trans

import “math”

var Pi float64

func init() {

 Pi = 4 * math.Atan(1) // init() function computes Pi

}

The Way to Go

71

In its init() the variable Pi is initialized by calculation.

The program in Listing 4.7 use_init.go imports the package trans (which is in the same directory)
and uses Pi:

package main

import (

“fmt”

“./trans”

)

var twoPi = 2 * trans.Pi

func main() {

fmt.Printf(“2*Pi = %g\n”, twoPi) // 2*Pi = 6.283185307179586

}

An init() function is also frequently used when (for example for a server application) a backend()
goroutine is required from the start of the application, like in:

func init() {

 // setup preparations

 go backend()

}

EXERCISES: Deduce the output of the following programs and explain your answer, then compile
and execute them.

Exercise 4.1: local_scope.go:

 package main

 var a = “G”

 func main() {

 n()

 m()

 n()

 }

72

Ivo Balbaert

 func n() { print(a) }

 func m() {

 a := “O”

 print(a)

 }

Exercise 4.2: global_scope.go:

 package main

 var a = “G”

 func main() {

 n()

 m()

 n()

 }

 func n() {

 print(a)

 }

 func m() {

 a = “O”

 print(a)

 }

Exercise 4.3: function_calls_function.go

 package main

 var a string

 func main() {

 a = “G”

 print(a)

 f1()

 }

The Way to Go

73

 func f1() {

 a := “O”

 print(a)

 f2()

 }

 func f2() {

 print(a)

 }

4.5. Elementary types and operators

In this paragraph, we discuss the boolean, numerical and character data types.

Values are combined together with operators into expressions, which are also values of a certain type.
Every type has its own defined set of operators, which can work with values of that type. If an
operator is used for a type for which it is not defined, a compiler error results.

A unary operator works on one value (postfix), a binary operator works on two values or operands
(infix).

The two values for a binary operator must be of the same type. Go does not implicitly convert the
type of a value, if necessary this must be done by an explicit conversion (see § 4.2): Go is strongly
typed.There is no operator overloading as in C and Java. An expression is by default evaluated from
left to right.

There is a built-in precedence amongst the operators (see § 4.5.3) telling us which operator in an
expression has the highest priority, and so gets executed first. But the use of parentheses () around
expression(s) can alter this order: an expression within () is always executed first.

4.5.1. Boolean type bool

An example: var b bool = true

The possible values of this type are the predefined constants true and false.

Two values of a certain type can be compared with each other with the relational operators == and
!= producing a boolean value:

Equality operator: ==

74

Ivo Balbaert

This gives true if the values on both sides are the same (values), false otherwise. This supposes that
they are of the same type.

Example: var aVar = 10

 aVar == 5 false

 aVar == 10 true

Not-equal operator: !=

This gives true if the values on both sides are different (values), false otherwise.

Example: var aVar = 10

 aVar != 5 true

 aVar != 10 false

Go is very strict about the values that can be compared: they have to be of the same type, or if they
are interfaces (see Chapter 11) they must implement the same interface type. If one of them is a
constant, it must be of a type compatible with the other. If these conditions are not satisfied, one
of the values has first to be converted to the other’s type.

Boolean constants and variables can also be combined with logical operators (not, and, or) to
produce a boolean value. Such a logical statement is not a complete Go-statement on itself.

The resultant boolean value can then be tested against in conditional structures (see chapter 5).
And, or and equals are binary operators; not is a unary operator. We will use T representing a true
statement, and F for a false statement.

The following are the logical operators:

NOT operator: ! !T false

 !F true

It turns the boolean value into its opposite.

AND operator: &&

 T && T true

The Way to Go

75

 T && F false
 F && T false
 F && F false

It only gives true if both operands are true.

OR operator: ||

 T || T true
 T || F true
 F || T true
 F || F false

It is true if any one of the operands is true, it only gives false if both operands are false.

The && and || operators behave in a shortcut way: when the value of the left side is known and it
is sufficient to deduce the value of the whole expression (false with && and true with ||), then the
right side is not computed anymore. For that reason: if one of the expressions involves a longlasting
calculation, put this expression at the right side.

Like in all expressions, () can be used to combine values and influence the result.

In format-strings %t is used as a format specifier for booleans.

Boolean values are most often used (as values or combined with their operators) for testing the
conditions of if-, for- and switch-statements (see chapter 5).

A useful naming convention for important boolean values and functions is to let the name begin
with is or Is, like isSorted, isFound, isFinished, isVisible, so code in if-statements reads as a normal
sentence, e.g.: unicode.IsDigit(ch) (see § 4.5.5).

4.5.2. Numerical types

4.5.2.1 ints and floats

There are types for integers, floating point numbers and there is also native support for complex
numbers. The bit representation is two’s complement (for more info see http://en.wikipedia.org/
wiki/Two’s_complement).

76

Ivo Balbaert

Go has architecture dependent types such as int, uint, uintptr.

They have the appropriate length for the machine on which the program runs:

 an int is the default signed type: it takes 32 bit (4 bytes) on a 32 bit machine and 64 bit(8
bytes) on a 64 bit machine; the same goes for the unsigned uint.

 uintptr is an unsigned integer large enough to store a pointer value.

A float type does not exist.

The architecture independent types have a fixed size (in bits) indicated by their names:

For integers: int8 (-128 -> 127)

 int16 (-32768 -> 32767)

 int32 (− 2,147,483,648 -> 2,147,483,647)

 int64 (− 9,223,372,036,854,775,808 -> 9,223,372,036,854,775,807)

For unsigned integers: uint8 (with alias byte, 0 -> 255)

 uint16 (0 -> 65,535)

 uint32 (0 -> 4,294,967,295)

 uint64 (0 -> 18,446,744,073,709,551,615)

For floats: float32 (+- 1O-45 -> +- 3.4 * 1038)

(IEEE-754) float64 (+- 5 * 10-324 -> 1.7 * 10308)

int is the integer type which offers the fastest processing speeds.

The initial (default) value for integers is 0, and for floats this is 0.0

A float32 is reliably accurate to about 7 decimal places, a float64 to about 15 decimal places. Due
to the fact that perfect accuracy is not possible for floats comparing them with == or != must be
done very carefully; if needed a test on the difference being smaller than a very small number (the
accuracy limit) must be made.

Use float64 whenever possible, because all the functions of the math package expect that type.

Numbers may be denoted in octal notation with a prefix of 0 (like 077), hexadecimal with a prefix
of 0x (like 0xFF) or scientific notation with e, which represents the power of 10 (e.g.: 1e3 = 1000
or 6.022e23 = 6.022 x 1023).

The Way to Go

77

Note that you can make a number like this: a := uint64(0) which is in fact a conversion to type
uint64.

Because Go is strongly typed, mixing of types is not allowed, as in the following program. But
constants are considered typeless in this respect, so with constants mixing is allowed.

Listing 4.8—type_mixing.go (does not compile!):

package main

func main() {

 var a int

 var b int32

 a = 15

 b = a + a // compiler error

 b = b + 5 // ok: 5 is a constant

}

The compiler error is: cannot use a + a (type int) as type int32 in assignment

Likewise an int16 cannot be assigned to an int32, there is no implicit coercion.

In the following program casting.go, an explicit conversion is done to avoid this (see §4.2)

Listing 4.9—casting.go:

package main

import “fmt”

func main() {
 var n int16 = 34
 var m int32

// compiler error: cannot use n (type int16) as type int32 in assignment
 //m = n
 m = int32(n)

 fmt.Printf(“32 bit int is: %d\n”, m)
 fmt.Printf(“16 bit int is: %d\n”, n)
}
// the output is:
32 bit int is: 34
16 bit int is: 34

78

Ivo Balbaert

Format specifiers:

In format-strings %d is used as a format specifier for integers (%x or %X can be used for a
hexadecimal representation), %g is used for float types (%f gives a floating point, %e gives a
scientific notation), %0nd shows an integer with n digits, and leading 0 is necessary.

%n.mg represents the number with m digits after the decimal sign, and n before it, instead of g also
e and f can be used, for example: the %5.2e formatting of the value 3.4 gives 3.40e+00

Conversions of numerical values:

In a conversion like a32bitInt = int32(a32Float) truncation of the decimal part occurs. In general
information is lost when converting to a smaller type, therefore in order to avoid loss of accuracy
always convert to the bigger numerical type. Or you could write suitable functions to perform safe
downsizing conversions, like the following for converting an int to a uint8:

func Uint8FromInt(n int) (uint8, error) {

 if 0 <= n && n <= math.MaxUint8 { // conversion is safe

 return uint8(n), nil

 }

 return 0, fmt.Errorf(“%d is out of the uint8 range”, n)

}

Or for safe converting of a float64 to an int:
func IntFromFloat64(x float64) int {

 if math.MinInt32 <= x && x <= math.MaxInt32 { // x lies in the integer range

 whole, fraction := math.Modf(x)

 if fraction >= 0.5 {

 whole++

 }

 return int(whole)

 }

 panic(fmt.Sprintf(“%g is out of the int32 range”, x))

}

In the case that x does not sit in the integer range, the program stops with a panic message (see §
13.2).

Question 4.1: Are int and int64 the same type ?

The Way to Go

79

4.5.2.2 Complex numbers

For these data we have the following types:

complex64 (with a 32 bit real and imaginary part)

complex128 (with a 64 bit real and imaginary part)

A complex number is written in the form: re + imi, where re is the real part, and im is the imaginary
part, and i is the √ -1 .

Example: var c1 complex64 = 5 + 10i

 fmt.Printf(“The value is: %v”, c1)

 // this will print: 5 + 10i

If re and im are of type float32, a variable c of type complex64 can be made with the function
complex: c = complex(re, im)

The functions real(c) and imag(c) give the real and imaginary part respectively.

In format-strings %v the default format specifier can be used for complex numbers; otherwise use
%f for both constituent parts.

Complex numbers support all the normal arithmetic operations as other numbers. You can only
compare them with == and !=, but again be aware of precision. The package cmath contains
common functions for operating on complex numbers. When memory constraints are not too
tight, use type complex128 because all cmath functions use it.

4.5.2.3 Bit operators

They work only on integer variables having bit-patterns of equal length:

%b is the format-string for bit-representations.

Binary: Bitwise and: &
bits in the same position are and-ed together, see AND-operator in §4.5.1,
replacing T (true) by 1 and F (false) by 0:
 1 & 1 1
 1 & 0 0
 0 & 1 0
 0 & 0 0

80

Ivo Balbaert

 Bitwise or: |
bits in the same position are or-ed together, see OR-operator in §4.5.1, replacing
T (true) by 1 and F (false) by 0
 1 | 1 1
 1 | 0 1
 0 | 1 1
 0 | 0 0

 Bitwise xor: ^
 bits in the same position are taken together according to the rule:
 1 ^ 1 0
 1 ^ 0 1
 0 ^ 1 1
 0 ^ 0 0

 Bit clear: &^ forces a specified bit to 0. (equivalent to and not)

Unary: Bitwise complement: ^
is defined with the xor operator: it is m ̂ x with m = “all bits set to 1” for unsigned
x and m = -1 for signed x

 e.g.: ^2 = ^10 = -01 ^ 10 = -11

 BitShift

Left Shift: << , for example: bitP << n

the bits of bitP shift n positions to the left, the empty positions on the right are filled
with 0’s; if n is 2, the number is multiplied by 2, left shift by n effects to a multiplication
by 2n

 So 1 << 10 // equals 1 KB (kilobyte)

 1 << 20 // equals 1 MB (megabyte)

 1 << 30 // equals 1 GB (gigabyte)

Right Shift: >> , for example: bitP >> n

the bits of bitP shift n positions to the right, the empty positions on the left are filled with
0’s; if n is 2, the number is divided by 2, right shift by n effects to a division by 2n

The Way to Go

81

When the result is assigned to the first operand, they can also be abbreviated like a <<= 2 or b ^=
a & 0xffffffff

Commonly used constants in memory resource usage:

Applying the << operator and the use of iota in constants, the following type definition neatly
defines memory constants:

type ByteSize float64

const (

 _ = iota // ignore first value by assigning to blank identifier

 KB ByteSize = 1<<(10*iota)

 MB

 GB

 TB

 PB

 EB

 ZB

 YB

)

A type BitFlag for working with bits in communication:

type BitFlag int

const (

 Active BitFlag = 1 << iota // 1 << 0 == 1

 Send // 1 << 1 == 2

 Receive // 1 << 2 == 4

)

flag := Active | Send // == 3

4.5.2.4 Logical operators

Here we have the usual ==, != (see § 4.5.1) and <, <=, > and >=

They are called logical because the result value is of type bool: b3:= 10 > 5 // b3 is true

82

Ivo Balbaert

4.5.2.5 Arithmetic operators

The common binary operators +, -, * and / exist for both integers and floats.

(In contrast to the general rule, this could be called a form of operator overloading; moreover the +
operator also exists for strings; but outside this Go does not allow operator overloading.)

/ for integers is integer division, for example: 9 / 4 -> 2.

The modulus operator % is only defined for integers: 9 % 4 -> 1

Integer division by 0 causes the program to crash, a run-time panic occurs (if it is obvious then the
compiler can detect it); see Chapter 13 for how to test for this properly.

Division by 0.0 with floating point numbers gives an infinite result: +Inf

Exercise 4.4: Try this out: divby0.go

There are shortcuts for these operations: b = b + a can be shortened to b += a, and the same goes
for -=, *=, /= and %=.

As unary operators for integers and floats we have ++ (increment) and -- (decrement), but only
after the number (postfix): i++ is short for i += 1 is short for i = i + 1

 i-- is short for i -= 1 is short for i = i – 1

Moreover ++ and - - may only be used as statements, not expressions; so n = i++ is invalid, and
subtler expressions like f(i++) or a[i]=b[i++], which are accepted in C, C++ and Java, cannot be
used in Go.

No error is generated when an overflow occurs during an operation: high bits are simply discarded.
Constants can be of help here, and if you need integers or rational numbers of unbounded size
(that is only limited by the available memory) you can use the big package from the standard
library, which provides the types big.Int and big.Rat (see § 9.4).

4.5.2.6 Random numbers

Some programs like games or statistical applications need random numbers. The package rand
implements pseudo-random number generators.

The Way to Go

83

For a simple example see Listing 4.10—random.go, which prints 10 random non-negative
integers.

package main

import (

 “fmt”

 “rand”

 “time”

)

func main() {

 for i := 0; i < 10; i++ {

 a := rand.Int()

 fmt.Printf(“%d / “, a)

 }

for i := 0; i < 5; i++ {

 r := rand.Intn(8)

 fmt.Printf(“%d / “, r)

 }

 fmt.Println()

 timens := int64(time.Now().Nanosecond())

 rand.Seed(timens)

 for i := 0; i < 10; i++ {

 fmt.Printf(“%2.2f / “, 100*rand.Float32())

 }

}

Output, for example: 816681689 / 1325201247 / 623951027 / 478285186 / 1654146165 /

1951252986 / 2029250107 / 762911244 / 1372544545 / 591415086 / / 3 / 0 / 6 / 4 / 2 /22.10

/ 65.77 / 65.89 / 16.85 / 75.56 / 46.90 / 55.24 / 55.95 / 25.58 / 70.61 /

The functions rand.Float32 and rand.Float64 return a pseudo-random number of that type in
[0.0, 1.0),) here means the upper bound not included. The function rand.Intn takes an int n and
returns a non-negative pseudo-random number in [0,n).

You can use the Seed(value)-function to provide a starting value for the pseudo-random generation.
Often the current offset time in nanoseconds is used for that purpose (see § 4.8).

84

Ivo Balbaert

4.5.3. Operators and precedence

Some operators have higher priority (precedence) than others; binary operators of the same
precedence associate from left to right. The following table lists all operators and their precedence,
top to bottom (7 -> 1) is highest to lowest:

Precedence Operator(s)

 7 ^ !

 6 * / % << >> & &^

 5 + - | ^

 4 == != < <= >= >

 3 <-

 2 &&

 1 ||

It is of course allowed to clarify expressions by using () to indicate priority in operations:
expressions contained in () are always computed first.

4.5.4. Aliasing types

When working with types, a type can also be given another name, so that this new name can be
used in the code (for shortening names, or avoiding a name-clash).

In type TZ int TZ is declared as a new name for the int type (perhaps it represents time zones
in a program), and can then be used to declare int-variables, like in the following program:

Listing 4.11—type.go :

package main

import “fmt”

type TZ int

func main() {

 var a, b TZ = 3, 4

 c := a + b

 fmt.Printf(“c has the value: %d”, c) // prints: c has the value: 7

}

In fact this alias is a brand new type, which can have methods that the original type does not have
(see Chapter 10); TZ can have a method to output the time zone-info in a clear or pretty way.

The Way to Go

85

Exercise 4.5: Define an alias type Rope for string and declare a variable with it.

4.5.5. Character type

Strictly speaking this is not a type in Go: characters are a special case of integers. The byte type is
an alias for uint8, and this is ok for the traditional ASCII-encoding for characters (1 byte): var ch
byte = ‘A’ ; a character is surrounded by single quotes ‘ ’.

In the ASCII-table the decimal value for A is 65, and the hexadecimal value is 41, so the following
are also declarations for the character A:

var ch byte = 65 or var ch byte = ‘\x41’

(\x is always followed by exactly 2 hexadecimal digits).

Another possible notation is a \ followed by exactly 3 octal digits, e.g. ‘\377’.

But there is also support for Unicode (UTF-8): characters are also called Unicode code points or
runes, and a Unicode character is represented by an int in memory. In documentation they are
commonly represented as U+hhhh, where h us a hexadecimal digit. In fact the type rune exists in
Go and is an alias for type int32.

To write a Unicode-character in code preface the hexadecimal value with \u or \U.

Because they need at least 2 bytes we have to use the int16 or int type. If 4 bytes are needed for the
character \U is used; \u is always followed by exactly 4 hexadecimal digits and \U by 8 .

The following code (see Listing 4.12 char.go)
var ch int = ‘\u0041’

var ch2 int = ‘\u03B2’

var ch3 int = ‘\U00101234’

fmt.Printf(“%d - %d - %d\n”, ch, ch2, ch3) // integer

fmt.Printf(“%c - %c - %c\n”, ch, ch2, ch3) // character

fmt.Printf(“%X - %X - %X\n”, ch, ch2, ch3) // UTF-8 bytes

fmt.Printf(“%U - %U - %U”, ch, ch2, ch3) // UTF-8 code point

prints out: 65 - 946 - 1053236

 A - - έ

 41 - 3B2 - 101234

 U+0041 - U+03B2 - U+101234

86

Ivo Balbaert

In format-strings %c is used as a format specifier for characters: the character is shown,
format-specifiers %v or %d show the integer representing the character; %U outputs the U+hhhh
notation (for another example: see § 5.4.4).

The package unicode has some useful functions for testing characters, like (ch is a character):

testing for a letter: unicode.IsLetter(ch)

testing for a digit: unicode.IsDigit(ch)

testing for a whitespace character: unicode.IsSpace(ch)

They return a bool value. The utf8 package further contains functions to work with runes.

4.6. Strings

Strings are a sequence of UTF-8 characters (the 1 byte ASCII-code is used when possible, a 2-4 byte
UTF-8 code when necessary). UTF-8 is the most widely used encoding, the standard encoding
for text files, XML files and JSON strings. While able to represent characters that need 4 bytes,
ASCII-characters are still stored using only 1 byte. A Go string is thus a sequence of variable-width
characters (each 1 to 4 bytes, see Ex. 4.6), contrary to strings in other languages as C++, Java or
Python that are fixed-width (Java uses always 2 bytes). The advantages are that Go strings and text
files occupy less memory/disk space, and since UTF-8 is the standard, Go doesn’t need to encode
and decode strings as other languages have to do.

Strings are value types and immutable: once created you cannot modify the contents of the string;
formulated in another way: strings are immutable arrays of bytes.

2 kinds of string literals exist:

Interpreted strings: surrounded by ““(double quotes),
 escape sequences are interpreted:
 for example: \n represents a newline
 \r represents a carriage return
 \t represents a tab
 \u or \U Unicode characters

the escape character \ can also be used to remove the special meaning of the
following character, so \” simply prints a “, and \’ is ‘, \\ prints a \

Raw strings: surrounded by ` ` (back quotes: AltGr + £), they are not interpreted; they
can span multiple lines.
 in `This is a raw string \n` \n is not interpreted but taken literally.

The Way to Go

87

Strings are length-delimited and do not terminate by a special character as in C/C++

The initial (default) value of a string is the empty string “” .

The usual comparison operators (== != < <= >= >) work on strings by comparing byte by byte
in memory. The length of a string str (the number of bytes) is given by the len() function:
len(str)

The contents of a string (the ‘raw’ bytes) is accessible via standard indexing methods, the index
between [], with the index starting from 0:

the first byte of a string str is given by: str[0]

the i-th byte by: str[i]

the last byte by: str[len(str)-1]

However these translate only to real characters if only ASCII characters are used!

Note: Taking the address of a character in a string, like &str[i], is illegal.

Adding (concatenating) strings: +

Two strings s1 and s2 can be made into one string s with: s := s1 + s2

s2 is appended to s1 to form a new string s.

Multi-line strings can be constructed as follows:

str := “Beginning of the string “+

“second part of the string”

The + has to be on the first line, due to the insertion of ; by the compiler.

The append shorthand += can also be used for strings:

s := “hel” + “lo,”

s += “world!”

fmt.Println(s) // prints out “hello, world!”

Concatenating strings in a loop using + is not the most efficient way, a better approach is to use
strings.Join() (see § 4.7.10), even better is to use writing in a byte-buffer (§ 7.2.6).

88

Ivo Balbaert

In chapter 7 we will see that strings can be considered as slices of bytes (or ints), and that the
slice-indexing operations thus also apply for strings. The for-loop from § 5.4.1 loops over the index
and so only returns the raw bytes, to loop over the Unicode characters in the string we must use
the for-range loop from § 5.4.4 (see also the example in § 7.6.1). In the next § we learn a number
of useful methods for working with strings. And then there is also the function fmt.Sprint(x) from
the fmt package, to produce a string out of data in the format you want (see § 4.4.3).

Exercise 4.6: count_characters.go

Create a program that counts the number of bytes and characters (runes) for this string:
 “asSASA ddd dsjkdsjs dk”
Then do the same for this string: “asSASA ddd dsjkdsjsこん dk”
Explain the difference. (hint: use the unicode/utf8 package.)

4.7. The strings and strconv package

Strings are a basic data structure, and every language has a number of predefined functions for
manipulating strings. In Go these are gathered in the package strings.

Some very useful functions are:

4.7.1—Prefixes and suffixes:

HasPrefix tests whether the string s begins with prefix:
strings.HasPrefix(s, prefix string) bool

HasSuffix tests whether the string s end with suffix:
strings.HasSuffix(s, suffix string) bool

Listing 4.13—presuffix.go:

package main

import (

“fmt”

“strings”

)

func main() {
 var str string = “This is an example of a string”
 fmt.Printf(“T/F? Does the string \”%s\” have prefix %s? “, str, “Th”)
 fmt.Printf(“%t\n”, strings.HasPrefix(str, “Th”))
}

The Way to Go

89

Output: T/F? Does the string “This is an example of a string” have prefix Th? True

This illustrates also the use of the escape character \ to output a literal “with \”, and the use of 2
substitutions in a format-string.

4.7.2—Testing whether a string contains a substring:

Contains returns true if substr is within s: strings.Contains(s, substr string) bool

4.7.3—Indicating at which position (index) a substring or character occurs in a string:

Index returns the index of the first instance of str in s, or -1 if str is not present in s:
strings.Index(s, str string) int

LastIndex returns the index of the last instance of str in s, or -1 if str is not present in s:
strings.LastIndex(s, str string) int

If ch is a non-ASCII character use strings.IndexRune(s string, ch int) int.

An example: Listing 4.14—index_in_string.go:

package main

import (

 “fmt”

 “strings”

)

func main() {

 var str string = “Hi, I’m Marc, Hi.”

 fmt.Printf(“The position of \“Marc\” is: “)

 fmt.Printf(“%d\n”, strings.Index(str, “Marc”))

 fmt.Printf(“The position of the first instance of \“Hi\” is: “)

 fmt.Printf(“%d\n”, strings.Index(str, “Hi”))

 fmt.Printf(“The position of the last instance of \“Hi\” is: “)

 fmt.Printf(“%d\n”, strings.LastIndex(str, “Hi”))

 fmt.Printf(“The position of \“Burger\” is: “)

 fmt.Printf(“%d\n”, strings.Index(str, “Burger”))

}

Output: The position of “Marc” is: 8
 The position of the first instance of “Hi” is: 0
 The position of the last instance of “Hi” is: 14
 The position of “Burger” is: -1

90

Ivo Balbaert

4.7.4—Replacing a substring:

With strings.Replace(str, old, new, n) you can replace the first n occurrences of old in str by
new. A copy of str is returned, and if n = -1 all occurrences are replaced.

4.7.5—Counting occurrences of a substring:

Count the number of non-overlapping instances of substring str in s with: strings.Count(s, str
string) int

An example: Listing 4.15—count_substring.go:

package main

import (

“fmt”

“strings”

)

func main() {

var str string = “Hello, how is it going, Hugo?”

var manyG = “gggggggggg”

fmt.Printf(“Number of H’s in %s is: “, str)

fmt.Printf(“%d\n”, strings.Count(str, “H”))

fmt.Printf(“Number of double g’s in %s is: “, manyG)

fmt.Printf(“%d\n”, strings.Count(manyG, “gg”))

}

Output: Number of H’s in Hello, how is it going, Hugo? is: 2
 Number of double g’s in gggggggggg is: 5

4.7.6—Repeating a string:

Repeat returns a new string consisting of count copies of the string s: strings.Repeat(s, count
int) string

An example: Listing 4.16—repeat_string.go :

package main

import (

 “fmt”

The Way to Go

91

 “strings”

)

func main() {

 var origS string = “Hi there!”

 var newS string

 newS = strings.Repeat(origS, 3)

 fmt.Printf(“The new repeated string is: %s\n”, newS)

}

Output: The new repeated string is: Hi there! Hi there! Hi there!

4.7.7—Changing the case of a string:

ToLower returns a copy of the string s with all Unicode letters mapped to their lower case:
strings.ToLower(s) string

All uppercase is obtained with: strings.ToUpper(s) string

An example: Listing 4.17—toupper_lower.go:

package main

import (

“fmt”

“strings”

)

func main() {

var orig string = “Hey, how are you George?”

var lower string

var upper string

fmt.Printf(“The original string is: %s\n”, orig)

lower = strings.ToLower(orig)

fmt.Printf(“The lowercase string is: %s\n”, lower)

upper = strings.ToUpper(orig)

fmt.Printf(“The uppercase string is: %s\n”, upper)

}

Output: The original string is: Hey, how are you George?
 The lowercase string is: hey, how are you george?
 The uppercase string is: HEY, HOW ARE YOU GEORGE?

92

Ivo Balbaert

4.7.8—Trimming a string:

Here you can use strings.TrimSpace(s) to remove all leading and trailing whitespace; if you want
to specify in a string cut which characters to remove, use strings.Trim(s, “cut”).

Example: strings.Trim(s, “\r\n”) removes all leading and trailing \r and \n from the string s. The
2nd string-parameter can contain any characters, which are all removed from the left and right-side
of s. If you want to remove only leading or only trailing characters or strings, use TrimLeft or
TrimRight.

4.7.9—Splitting a string:

On whitespace: strings.Fields(s) splits the string s around each instance of one or more
consecutive white space characters, returning a slice of substrings []string of s or an empty list if s
contains only white space.

On a separator sep: strings.Split(s, sep) : works the same as Fields, but splits around a separator
character or string sep (e.g.: ; or, or -).

Because both return a []string, they are often used within a for-range loop (see § 7.3)

4.7.10—Joining over a slice:

This results in a string with all the elements of the slice, separated by sep:
Strings.Join(sl []string, sep string)

These simple operations are illustred in Listing 4.18—strings_splitjoin.go:
package main

import (

 “fmt”

 “strings”

)

func main() {

 str := “The quick brown fox jumps over the lazy dog”

 sl := strings.Fields(str)

 fmt.Printf(“Splitted in slice: %v\n”, sl)

 for _, val := range sl {

 fmt.Printf(“%s - “, val)

 }

 fmt.Println()

The Way to Go

93

 str2 := “GO1|The ABC of Go|25”

 sl2 := strings.Split(str2, “|”)

 fmt.Printf(“Splitted in slice: %v\n”, sl2)

 for _, val := range sl2 {

 fmt.Printf(“%s - “, val)

 }

 fmt.Println()

 str3 := strings.Join(sl2,”;”)

 fmt.Printf(“sl2 joined by ;: %s\n”, str3)

}

/* Output:

Splitted in slice: [The quick brown fox jumps over the lazy dog]

The - quick - brown - fox - jumps - over - the - lazy - dog -

Splitted in slice: [GO1 The ABC of Go 25]

GO1 - The ABC of Go - 25 -

sl2 joined by ;: GO1;The ABC of Go;25

*/

Documentation for other functions in this package can be found at: http://golang.org/pkg/
strings/

4.7.11—Reading from a string:

The package also has a strings.NewReader(str) function. This procuces a pointer to a Reader value,
that provides amongst others the following functions to operate on str:

•	 Read() to read a []byte
•	 ReadByte() and ReadRune() : to read the next byte or rune from the string.

4.7.12—Conversion to and from a string:

This functionality is offered by the package strconv.

It contains a few variables to calculate the size in bits of an int of the platform on which the
program runs: strconv.IntSize

To convert a variable of a certain type T to a string will always succeed.

For converting from numbers we have the following functions:

94

Ivo Balbaert

strconv.Itoa(i int) string : returns the decimal string representation of i
strconv.FormatFloat(f float64, fmt byte, prec int, bitSize int) string:

converts the 64-bit floating-point number f to a string, according to the format
fmt (can be ‘b’, ‘e’, ‘f’ or ‘g’), precision prec and bitSize is 32 for float32 or
64 for float64.

Converting a string to another type tp will not always be possible, in that case a runtime error is
thrown: parsing “…”: invalid argument

For converting to numbers we have the following functions:
strconv.Atoi(s string) (i int, err error) : convert to an int
strconv.ParseFloat(s string, bitSize int) (f float64, err error) : convert to a
64bit floating-point number

As can be seen from the return-type these functions will return 2 values: the converted value (if
possible) and the possible error. So when calling such a function the multiple assignment form will
be used: val, err = strconv.Atoi(s)

For an example of use, see program: string_conversion.go.

In this program we disregard the possible conversion-error with the blank identifier _:
anInt, _ = strconv.Atoi(origStr)

Listing 4.19—string_conversion.go:

Package main

import (

 “fmt”

 “strconv”

)

func main() {

 var orig string = “666”

 var an int

 var newS string

 fmt.Printf(“The size of ints is: %d\n”, strconv.IntSize)

 an, _ = strconv.Atoi(orig)

 fmt.Printf(“The integer is: %d\n”, an)

 an = an + 5
 newS = strconv.Itoa(an)
 fmt.Printf(“The new string is: %s\n”, newS)
}

The Way to Go

95

/* Output:

The size of ints is: 32

The integer is: 666

The new string is: 671 */

In § 5.1 discussing the if-statement we will see a way to test a possible error on return.

For more information see: http://golang.org/pkg/strconv/

4.8. Times and dates

The package time gives us a datatype time.Time (to be used as a value) and functionality for
displaying and measuring time and dates.

The current time is given by time.Now(), and the parts of a time can then be obtained as t.Day(),
t.Minute(), etc. ; you can make your own time-formats as in: fmt.Printf(“%02d.%02d.%4d\n”,
t.Day(), t.Month(), t.Year()) // e.g.: 21.07.2011

The type Duration represents the elapsed time between two instants as an int64 nanosecond count.
The type Location maps time instants to the zone in use at that time, UTC represents Universal
Coordinated Time.

There is a predefined function func (t Time) Format(layout string) string, which formats a
time t into a string according to a layout string, with some predefined formats like time.ANSIC
or time.RFC822

The general layout defines the format by showing the representation of a standard time, which is
then used to describe the time to be formatted; this seems strange, but an example makes this clear:
fmt.Println(t.Format(“02 Jan 2006 15:04”)) // outputs now: 21 Jul 2011 10:31

(see program time.go, more info at: http://golang.org/pkg/time/)

Listing 4.20—time.go :

package main

import (

 “fmt”

 “time”

)

96

Ivo Balbaert

var week time.Duration

func main() {

 t := time.Now()

 fmt.Println(t) // e.g. Wed Dec 21 09:52:14 +0100 RST 2011

 fmt.Printf(“%02d.%02d.%4d\n”, t.Day(), t.Month(), t.Year())

 // 21.12.2011

 t = time.Now().UTC()

 fmt.Println(t) // Wed Dec 21 08:52:14 +0000 UTC 2011

 fmt.Println(time.Now()) // Wed Dec 21 09:52:14 +0100 RST 2011

 // calculating times:

 week = 60 * 60 * 24 * 7 * 1e9 // must be in nanosec

 week_from_now := t.Add(week)

 fmt.Println(week_from_now) // Wed Dec 28 08:52:14 +0000 UTC 2011

// formatting times:

 fmt.Println(t.Format(time.RFC822)) // 21 Dec 11 0852 UTC

 fmt.Println(t.Format(time.ANSIC)) // Wed Dec 21 08:56:34 2011

 fmt.Println(t.Format(“02 Jan 2006 15:04”)) // 21 Dec 2011 08:52

 s := t.Format(“20060102”)

 fmt.Println(t, “=>”, s)

 // Wed Dec 21 08:52:14 +0000 UTC 2011 => 20111221

}

The output is shown after the // in each line.

If you need to let something happen in an application after a certain amount of time or periodically
(a special case of event-handling) time.After and time.Ticker are what you need: §14.5 discusses
their interesting possibilities. There is also a function time.Sleep(Duration d), which pauses the
current process (goroutine in fact, see § 14.1) for a Duration d.

4.9. Pointers

Unlike Java and .NET, Go gives the programmer control over which data structure is a pointer
and which is not; however you cannot calculate with pointer values in programs. By giving the
programmer control over basic memory layout, Go provides you the ability to control the total
size of a given collection of data structures, the number of allocations, and the memory access
patterns, all of which are important for building systems that perform well: pointers are important
for performance and indispensable if you want to do systems programming, close to the operating
system and network.

The Way to Go

97

Because pointers are somewhat unknown to contemporary OO-programmers, we will explain
them here and in the coming chapters in depth.

Programs store values in memory, and each memory block (or word) has an address, which is
usually represented as a hexadecimal number, like 0x6b0820 or 0xf84001d7f0

Go has the address-of operator &, which when placed before a variable gives us the memory address
of that variable.

The following code-snippet (see Listing 4.9 pointer.go) outputs for example: “An integer: 5, its
location in memory: 0x6b0820” (this value will be different every time you run the program!)

var i1 = 5

fmt.Printf(“An integer: %d, it’s location in memory: %p\n”, i1, &i1)

This address can be stored in a special data type called a pointer, in this case it is a pointer to an int,
here i1: this is denoted by *int. If we call that pointer intP, we can declare it as

var intP *int

Then the following is true: intP = &i1, intP points to i1.
(because of its name a pointer is represented by %p in a format-string)
intP stores the memory address of i1; it points to the location of i1, it references the variable i1.

A pointer variable contains the memory address of another value: it points to that value in memory
and it takes 4 bytes on 32 bit machines, and 8 bytes on 64 bit machines, regardless of the size of
the value they point to. Of course pointers can be declared to a value of any type, be it primitive
or structured; the * is placed before the type of the value (prefixing), so the * is here a type modifier.
Using a pointer to refer to a value is called indirection.

A newly declared pointer which has not been assigned to a variable has the nil value.

A pointer variable is often abbreviated as ptr.

!! In an expression like var p *type always leave a space between the name of the pointer and the
* - var p*type is syntactically correct, but in more complex expressions it can easily be mistaken
for a multiplication !!

98

Ivo Balbaert

The same symbol * can be placed before a pointer like *intP, and then it gives the value which the
pointer is pointing to; it is called the dereference (or contents or indirection) operator; another way to
say it is that the pointer is flattened.

So for any variable var the following is true: var == *(&var)

Now we can understand the complete program pointer.go and its output:

Listing 4.21—pointer.go:

package main

import “fmt”

func main() {

var i1 = 5

fmt.Printf(“An integer: %d, its location in memory: %p\n”, i1, &i1)

var intP *int

intP = &i1

fmt.Printf(“The value at memory location %p is %d\n”, intP, *intP)

}

Output: An integer: 5, its location in memory: 0x24f0820

 The value at memory location 0x24f0820 is 5

We could represent the memory usage as:

 0x24f0820

 5

intP

i1

Fig 4.4: Pointers and memory usage

Program string_pointer.go gives us an example with strings.

It shows that assigning a new value to *p changes the value of the variable itself (here a string).

The Way to Go

99

Listing 4.22—string_pointer.go:

package main

import “fmt”

func main() {

s := “good bye”

var p *string = &s

*p = “ciao”

fmt.Printf(“Here is the pointer p: %p\n”, p) // prints address

fmt.Printf(“Here is the string *p: %s\n”, *p) // prints string

fmt.Printf(“Here is the string s: %s\n”, s) // prints same string

}

Output: Here is the pointer p: 0x2540820

 Here is the string *p: ciao

 Here is the string s: ciao

By changing the ‘object’ through giving *p another value, s is also changed.

Schematically in memory:

 ciao

s

 0x2540820
p

Fig 4.5: Pointers and memory usage, 2

Remark: you cannot take the address of a literal or a constant, as the following code snippet
shows:

const i = 5

ptr := &i //error: cannot take the address of i

ptr2 := &10 //error: cannot take the address of 10

So Go, like most other low level (system) languages as C, C++ and D, has the concept of pointers.
But calculations with pointers (so called pointer arithmetic, e.g. pointer + 2, to go through the bytes
of a string or the positions in an array), which often lead to erroneous memory access in C and thus
fatal crashes of programs, are not allowed in Go, making the language memory-safe. Go pointers
resemble more the references from languages like Java, C# and VB.NET .

100

Ivo Balbaert

So: c = *p++ is invalid Go code!!

One advantage of pointers is that you can pass a reference to a variable (for example as a parameter
to a function), instead of passing a copy of the variable. Pointers are cheap to pass, only 4 or 8
bytes. When the program has to work with variables which occupy a lot of memory, or many
variables, or both, working with pointers can reduce memory usage and increase efficiency. Pointed
variables also persist in memory, for as long as there is at least 1 pointer pointing to them, so their
lifetime is independent of the scope in which they were created.

On the other hand (but much less likely), because a pointer causes what is called an indirection
(a shift in the processing to another address), prohibitive use of them could cause performance
decrease.

Pointers can also point to other pointers, and this nesting can go arbitrarily deep, so you can
have multiple levels of indirection, but in most cases this will not contribute to the clarity of your
code.

As we will see, in many cases Go makes it easier for the programmer and will hide indirection like
for example performing an automatic dereference.

A nil pointer dereference, like in the following 2 lines (see program testcrash.go), is illegal and
makes a program crash:

Listing 4.23 testcrash.go:

package main

func main() {

var p *int = nil

*p = 0

}

// in Windows: stops only with: <exit code=”-1073741819” msg=“process crashed”/>

// runtime error: invalid memory address or nil pointer dereference

Question 4.2: Give all uses of the symbol * in Go

101

Chapter 5—Control structures

Until now we have seen that a Go program starts executing in main() and sequentially executes the
statements in that function. But often we want to execute certain statements only if a condition
is met: we want to make decisions in our code. For this Go provides the following conditional or
branching structures:

if else construct
switch case construct
select construct, for the switching between channels (see § 14.4)

Repeating one or more statements (a task) can be done with the iterative or looping structure:

for (range) construct

Some other keywords like break and continue can alter the behavior of the loop.

There is also a return keyword to leave a body of statements and a goto keyword to jump the
execution to a label in the code.

Go entirely omits the parentheses (and) around conditions in if, switch and for-loops, creating
less visual clutter than in Java, C++ or C#

5.1—The if else construct

The if test a conditional (a boolean or logical) statement: if this evaluates to true the body of
statements between { } after the if is executed, if it is false these statements are ignored and the
statement following the if is executed.

if condition {

 // do something

}

102

Ivo Balbaert

In a 2nd variant an else,with a body of statements surrounded by { }, is appended, which is executed
when the condition is false; we have then 2 exclusive branches (only one of them is executed):

if condition {

 // do something

} else {

 // do something else

}

In a 3rd variant another if condition can be placed after the else, so we have 3 exclusive branches:

if condition1 {

 // do something

} else if condition2 {

 // do something else

} else {

 // catch-all or default

}

The number of else if—branches is in principal not limited, but for readability reasons this should
not be exaggerated. When using this form, place the condition which is most likely true first.

The { } are mandatory, also when there is only one statement in the body (some people do not
like this, but on the other hand it is consistent and according to mainstream software engineering
principles).

The { after the if and else must be on the same line. The else if and else keywords must be on the
same line as the closing } of the previous part of the structure. Both of these rules are mandatory
for the compiler.

This is invalid Go-code: if x {
 }

 else { // INVALID

 }

Note that every branch is indented with 4 (or 8) spaces or 1 tab, and that the closing } are vertically
aligned with the if; this is enforced by applying gofmt.

The Way to Go

103

While () around the conditions are not needed, for complex conditions they may be used to make
the code clearer. The condition can also be composite, using the logical operators &&, || and !,
with the use of () to enforce precedence or improve readability.

A possible application is the testing of different values of a variable and executing different statements
in each case, but most often the switch statement from § 5.3 is better suited for this.

Listing 5.1—booleans.go:

package main

import “fmt”

func main() {

 bool1 := true

 if bool1 {

 fmt.Printf(“The value is true\n”)

 } else {

 fmt.Printf(“The value is false\n”)

 }

}

 // Output: The value is true

Note that it is not necessary to test: if bool1 == true, because bool1 is already a boolean value.

It is almost always better to test for true or positive conditions, but it is possible to test for the
reverse with ! (not): if !bool1 or if !(condition). In the last case the () around
the condition are often necessary, for example: if !(var1 == var2).

The idiom in Go-code is to omit the else-clause when the if ends in a break, continue, goto or
return statement. (see also § 5.2). When returning different values x and y whether or not a
condition is true use the following :

IDIOM if condition {

 return x

 }

 return y

Remark: Don’t use if / else with a return in both branches, this won’t compile: “function
ends without a return statement” (it’s a compiler bug or feature, but it strengthens the idiom
above).

104

Ivo Balbaert

Some useful examples:

(1) Checking if a string str is empty:
if str == “” { … }

if len(str) == 0 { … }or:

(2) Checking on what operating system the Go-program runs:

This can be done by testing the constant runtime.GOOS (see §2.2)

if runtime.GOOS == “windows” {

 …

 } else { // Unix-like

 …

 }

 A good place to do this is in the init()-function. Here is a code-snippet which changes
a prompt to contain the correct ‘end of input’:

var prompt = “Enter a digit, e.g. 3 “+ “or %s to quit.”

func init() {

 if runtime.GOOS == “windows” {

 prompt = fmt.Sprintf(prompt, “Ctrl+Z, Enter”)

 } else { // Unix-like

 prompt = fmt.Sprintf(prompt, “Ctrl+D”)

 }

}

(3) A function Abs to give the absolute value of an integer:

func Abs(x int) int {

 if x < 0 {

 return -x

 }

 return x

}

(4) A function isGreater to compare two integers:
func isGreater(x, y int) bool {

 if x > y {

 return true

 }

The Way to Go

105

 return false

}

In a 4th variant the if can start with an initialization statement (in which a value is given to a
variable). This takes the form (the ; after the initialization is mandatory):

 if initialization; condition {

 // do something

 }

For example instead of: val := 10

 if val > max {

 // do something

 }

you can write: if val := 10; val > max {

 // do something

 }

But pay attention that in the more concise form, the variable val initialized with := is only known
within the if-statement (the scope is limited to the statements in { }, but if there is an else clause
val is also known there): if a variable val existed in the code before the if, its value is hidden during
the if-block. A simple solution to this is to not use := in the if initialization (see also example 3 in
§5.2 for how this can be useful).

Listing 5.2—ifelse.go:

package main

import “fmt”

func main() {

 var first int = 10

 var cond int

 if first <= 0 {

 fmt.Printf(“first is less than or equal to 0\n”)

 } else if first > 0 && first < 5 {

 fmt.Printf(“first is between 0 and 5\n”)

 } else {

 fmt.Printf(“first is 5 or greater\n”)

 }

 if cond = 5; cond > 10 {

 fmt.Printf(“cond is greater than 10\n”)

106

Ivo Balbaert

 } else {

 fmt.Printf(“cond is not greater than 10\n”)

 }

}

Output: first is 5 or greater
 cond is not greater than 10

The following code-snippet shows how the result of a function process() can be retrieved in the if,
and action taken according to the value:

IDIOM if value := process(data); value > max {

…

if value := process(data); value > max {

…

}

5.2—Testing for errors on functions with multiple return values

Often functions in Go are defined so that they return 2 values with successful execution: the value
and true, and with unsuccessful execution: a 0 (or nil value) and false (see § 4.4). Instead of true
and false, an error-variable can be returned: in the case of successful execution, the error is nil,
otherwise it contains the error-information (an error in Go is a variable of type error: var err
error, more on this in chapter 13). It is then obvious to test the execution with an if-statement;
because of its notation this is often called the comma, ok pattern.

In the program string_conversion.go in § 4.7 the function strconv.Atoi converts a string to an
integer. There we disregarded a possible error-condition with:

anInt, _ = strconv.Atoi(origStr)

If origStr cannot be converted to an integer, the function returns 0 for anInt, and the _ absorbs
the error; the program continues to run.

This is not good: a program should test for every occurring error and behave accordingly, at least
informing the user (world) of the error-condition and returning from possibly the function or even
halting the program.

This is done in the second version of the code:

The Way to Go

107

Example 1:

Listing 5.3—string_conversion2.go:

package main

import (

“fmt”

“strconv”

)

func main() {

var orig string = “ABC”

var an int

var err error

an, err = strconv.Atoi(orig)

if err != nil {

fmt.Printf(“orig %s is not an integer - exiting with error\n”, orig)

return

}

fmt.Printf(“The integer is %d\n”, an)

// rest of the code

}

The idiom is to test if the error-variable err contains a real error (if err != nil), in that case
an appropriate message is printed and the program execution leaves the executing function with
return. We could also have used the form of return which returns a variable, like return err, so
the calling function can in this case examine the error err.

IDIOM

value, err := pack1.Function1(param1)

if err != nil {

fmt.Printf(“An error occurred in pack1.Function1 with parameter %v”,

param1)

return err

}

// normal case, continue execution:

In this case it was main() executing, so the program stops.

If we do want the program to stop in case of an error, we can use the function Exit from package
os instead of return:

108

Ivo Balbaert

IDIOM

if err != nil {

fmt.Printf(“Program stopping with error %v”, err)

os.Exit(1)

}

(The integer which is given to Exit, here 1, can be tested upon in the script outside the program)

Sometimes this idiom is repeated a number of times in succession.

No else branch is written: if there is no error-condition, the code simply continues execution after
the if { }.

Example 2: we try to open a file name for read-only with os.Open:

f, err := os.Open(name)

if err !=nil {

 return err

}

doSomething(f) // In case of no error, the file f is passed to a function

doSomething

Exercise 5.1: Rewrite string_conversion2.go by using also := for the err variable, what can be
changed?

Example 3: the possible production of an error can occur in the initialization of an if:

IDIOM

if err := file.Chmod(0664); err !=nil {

 fmt.Println(err)

 return err

}

(this is a Unix-only example, Chmod from package os attempts to change the mode of a file)

Example 4: the initialization can also contain a multiple assignment where ok is a bool return
value, which is tested, like in this form:

The Way to Go

109

IDIOM

if value, ok := readData(); ok {

…

}

Remark: If you accidentally forget a parameter left of the = sign of a multi-return function call, as
in the following snippet:

func mySqrt(f float64) (v float64, ok bool) {

if f < 0 { return } // error case

 return math.Sqrt(f),true

}

func main() {

 t := mySqrt(25.0)

 fmt.Println(t)

}

then you get the following compiler error: multiple-value mySqrt() in single-value

context

It must be: t, ok := mySqrt(25.0)

 if ok { fmt.Println(t) }

Remark 2: When you are really sure that the things you are dealing with are integers and you
don’t want to test the return value at every conversion, you can wrap Atoi in a function with only
returns the integer, like:

 func atoi (s string) (n int) {

 n, _ = strconv.Atoi(s)

 return

 }

In fact even the simple Print-functions of fmt (see § 4.4.3) also return 2 values:

 count, err := fmt.Println(x) // number of bytes printed, nil or 0, error

When printing to the console these are not checked, but when printing to files, network connections,
etc. the error value should always be checked. (see also Exercise 6.1b)

110

Ivo Balbaert

5.3—The switch keyword

Compared to the C, Java—languages, switch in Go is considerably more flexible. It takes the
general form: switch var1 {

 case val1:

 …

 case val2:

 …

 default:

 …

 }

where var1 is a variable which can be of any type, and val1, val2, … are possible values of var1; they
don’t need to be constants or integers, but they must be of the same type, or expressions evaluating
to that type. The opening { has to be on the same line as the switch.

More than one value can be tested in a case, the values are presented in a comma separated list
like: case val1, val2, val3:

Each case-branch is exclusive; they are tried first to last; place the most probable values first.

The first branch that is correct is executed and then the switch-statement is complete: the break
from C++, Java and C# happens but is implicit, certainly a big improvement!

So automatic fall-through is not the default behavior; if you want this, use the keyword fallthrough
at the end of the branch.

So switch i {

 case 0: //empty case body, nothing is executed when i==0

 case 1:

 f() // f is not called when i==0!

 }

And: switch i {
 case 0: fallthrough

 case 1:

 f() // f is called when i==0!

 }

The Way to Go

111

Fallthrough can also be used in a hierarchy of cases where at each level something has to be done
in addition to the code already executed in the higher cases, and when also a default action has to
be executed.

After the case … : multiple statements can follow without them being surrounded by { }, but
braces are allowed. When there is only 1 statement: it can be placed on the same line as case.

The last statement of such a body can also be a return with or without an expression.

When the case-statements ends with a return statement, there also has to be a return statement
after the } of the switch (see exercise 1).

The (optional) default branch is executed when no value is found to match var1 with, it resembles
the else clause in if-else statements. It can appear anywhere in the switch (even as first branch), but
it is best written as the last branch.

Listing 5.4—switch1.go:

package main

import “fmt”

func main() {

var num1 int = 100

switch num1 {

case 98, 99:

fmt.Println(“It’s equal to 98”)

case 100:

fmt.Println(“It’s equal to 100”)

default:

fmt.Println(“It’s not equal to 98 or 100”)

}

}

// Output: “It’s equal to 100”

In § 12.1 we will use a switch-statement to read input from the keyboard (see Listing 12.2 switch.
go). In a 2nd form of the switch-statement no variable is required (this is in fact a switch true) and
the cases can test different conditions. The first condition that is true is executed. This looks very
much like if-else chaining, and offers a more readable syntax if there are many branches.

112

Ivo Balbaert

switch {

 case condition1:

 …

 case condition2:

 …

 default:

 …

}

For example: switch {

 case i < 0:

 f1()

 case i == 0:

 f2()

 case i > 0:

 f3()

 }

Any type that supports the equality comparison operator, such as ints, strings or pointers, can be
used in these conditions.

Listing 5.5—switch2.go:

package main

import “fmt”

func main() {

var num1 int = 7

switch {

case num1 < 0:

fmt.Println(“Number is negative”)

case num1 > 0 && num1 < 10:

fmt.Println(“Number is between 0 and 10”)

default:

fmt.Println(“Number is 10 or greater”)

}

}

 // Output: Number is between 0 and 10

The Way to Go

113

As a 3rd form and like the if, a switch can also contain an initialization statement:

 switch initialization {

 case val1:

 …

 case val2:

 …

 default:

 …

}

This can blend nicely with case testing of conditions, like in:

switch result := calculate(); {

case result < 0:

 // …

case result > 0:

 // …

default:

 // 0

}

Or this snippet, where a and b are retrieved in the parallel initialization, and the cases are
conditions: switch a, b := x[i], y[j]; {

 case a < b: t = -1

 case a == b: t = 0

 case a > b: t = 1

 }

There is also a type-switch (see § 11.4) which tests the type of an interface variable.

Question 5.1: Give the output of the following code snippet:

k := 6

switch k {

case 4: fmt.Println(“was <= 4”); fallthrough;

case 5: fmt.Println(“was <= 5”); fallthrough;

case 6: fmt.Println(“was <= 6”); fallthrough;

case 7: fmt.Println(“was <= 7”); fallthrough;

case 8: fmt.Println(“was <= 8”); fallthrough;

default: fmt.Println(“default case”)

}

114

Ivo Balbaert

Exercise 5.2—season.go: Write a function Season which has as input-parameter a month-number and
which returns the name of the season to which this month belongs (disregard the day in the month).

5.4—The for construct

Only the for statement exists for repeating a set of statements a number of times; this is possible
because it is more flexible than in other languages. One pass through the set is called an iteration.

Remark: There is no for-match for the do while-statement found in most other languages, probably
because the use case for it was not that important.

5.4.1 Counter-controlled iteration

The simplest form is counter-controlled iteration, like in for1.go:

The general format is: for init; condition; modif { }

Listing 5.6—for1.go:

package main

import “fmt”

func main() {

 for i := 0; i < 5; i++ {

fmt.Printf(“This is the %d iteration\n”, i)

 }

}

Output: This is the 0 iteration

 This is the 1 iteration

 This is the 2 iteration

 This is the 3 iteration

 This is the 4 iteration

The body { } of the for-loop is repeated a known number of times, this is counted by a variable
(here i). The loop starts (so this is performed only once) with an initialization for i (i := 0); this is
shorter than a declaration beforehand. This is followed by a conditional check on i (i < 10), which
is performed before every iteration: when it is true, the iteration is done, the for-loop stops when
the condition becomes false. Then comes a modification of i (i++), which is performed after every
iteration, at which point the condition is checked again to see if the loop can continue. This
modification could for example also be a decrement, or + or—using a step.

The Way to Go

115

These are 3 separate statements which form the header of the loop, so they are separated by ; but
there are no () surrounding the header: for (i = 0; i < 10; i++) { } is invalid code!

Again the opening { has to be on the same line as the for. The counter-variable ceases to exist after
the } of the for; always use short names for it like i, j, z or ix.

!! Never change the counter-variable in the for-loop itself, this is bad practice in all languages !!

Exercise 5.3: i_undefined.go: this program does not compile, why not ?
package main

import “fmt”

func main() {

 for i:=0; i<10; i++ {

 fmt.Printf(“%v\n”, i)

 }

 fmt.Printf(“%v\n”, i) //<-- compile error: undefined i

}

 How could you make it work ?

More than 1 counter can also be used, as in: for i, j := 0, N; i < j; i, j = i+1, j-1 {}

which is often the preferred way in Go as we can use parallel assignment.

(see the example of reversing an array and exercise string_reverse.go in Chapter 7)

For-loops can be nested, like: for i:=0; i<5; ji++ {

 for j:=0; j<10; j++ {

println(j)

 }

}

What happens if we use this kind of for-loop for a general Unicode-string ?

Listing 5.7—for_string.go:

package main

import “fmt”

func main() {

 str := “Go is a beautiful language!”

 fmt.Printf(“The length of str is: %d\n”, len(str))

116

Ivo Balbaert

 for ix :=0; ix < len(str); ix++ {

 fmt.Printf(“Character on position %d is: %c \n”, ix, str[ix])

 }

 str2 := “日本語”

 fmt.Printf(“The length of str2 is: %d\n”, len(str2))

 for ix :=0; ix < len(str2); ix++ {

 fmt.Printf(“Character on position %d is: %c \n”, ix, str2[ix])

 }

}

/* Output:

The length of str is: 27

Character on position 0 is: G

Character on position 1 is: o

Character on position 2 is:

Character on position 3 is: i

…

Character on position 25 is: e

Character on position 26 is: !

The length of str2 is: 9

Character on position 0 is: æ

Character on position 1 is: —

Character on position 2 is:

Character on position 3 is: æ

Character on position 4 is: œ

Character on position 5 is: ¬

Character on position 6 is: è

Character on position 7 is: ª

Character on position 8 is: έ

*/

If we print out the length len of strings str and str2, we get respectively 27 and 9.

We see that for normal ASCII-characters using 1 byte, an indexed character is the full character,
whereas for non-ASCII characters (who need 2 to 4 bytes) the indexed character is no longer
correct! The for-range from § 5.4.4 will solve this problem.

The Way to Go

117

EXERCISES:

Exercise 5.4: for_loop.go

1. Create a simple loop with the for construct. Make it loop 15 times and print out the loop
counter with the fmt package.

2. Rewrite this loop using goto. The keyword for may not be used now.

Exercise 5.5: for_character.go

 Create a program that prints the following (up to 25 characters):

G
GG
GGG
GGGG
GGGGG
GGGGGG
GGGGGGG
...

1. - use 2 nested for loops
2. - use only one for loop and string concatenation

Exercise 5.6: bitwise_complement.go : Show the bitwise complement of the integers 0 till 10,
use the bit-respresentation %b

Exercise 5.7: TheFizz-Buzz problem: fizzbuzz.go

 Write a program that prints the numbers from 1 to 100, but for multiples of three
print “Fizz” instead of the number and for the multiples of five print “Buzz”. For
numbers which are multiples of both three and five print “FizzBuzz”. (hint: use a
switch with conditions)

Exercise 5.8: rectangle_stars.go: Print out a rectangle of width=20 and height=10 with the *
character:

5.4.2 Condition-controlled iteration

The 2nd form contains no header and is used for condition-controlled iteration (the while-loop in
other languages) with the general format: for condition { }

118

Ivo Balbaert

You could also argue that it is a for without init and modif section, so that the ; ; are superfluous.

Example: Listing 5.8—for2.go:

package main

import “fmt”

func main() {

var i int = 5

for i >= 0 {

 i = i - 1

 fmt.Printf(“The variable i is now: %d\n”, i)

}

}

Output: The variable i is now: 4

 The variable i is now: 3

 The variable i is now: 2

 The variable i is now: 1

 The variable i is now: 0

 The variable i is now: -1

5.4.3 Infinite loops

The condition can be absent: like in for i:=0; ; i++ or for { } (or for ;; { } but the ; ; is
removed by gofmt): these are in fact infinite loops. The latter could also be written as: for true { },
but the normal format is: for { }

If a condition check is missing in a for-header, the condition for looping is and remains always
true, so in the loop-body something has to happen in order for the loop to be exited after a number
of iterations.

Always take care that the exit-condition will evaluate to true at a certain moment, in order to avoid
an endless loop! This kind of loop is exited via a break statement (see § 5.5) or a return statement
(see § 6.1).

But there is a difference: break only exits from the loop, while return exits from the function in
which the loop is coded!

A typical use for an infinite loop is a server-function which is waiting for incoming requests.

The Way to Go

119

For an example in which this all comes together, see the for loop in listing 12.17 (xml.go):

for t, err = p.Token(); err == nil; t, err = p.Token() {

 …

}

5.4.4 The for range construct

This is the iterator construct in Go and you will find it useful in a lot of contexts. It is a very useful
and elegant variation, used to make a loop over every item in a collection (like arrays and maps, see
chapters 7 and 8). It is similar to a foreach in other languages, but we still have the index at each
iteration in the loop. The general format is: for ix, val := range coll { }

Be careful: val is here a copy of the value at that index in the collection, so it can be used only for
read-purposes, the real value in the collection cannot be modified through val (try this out!). A
string is a collection of Unicode-characters (or runes), so it can be applied for strings too. If str is a
string, you can loop over it with:

for pos, char := range str {

…

}

Each rune char and its index pos are available for processing inside the loop. It breaks out individual
Unicode characters by parsing the UTF-8 (erroneous encodings consume one byte and produce
the replacement rune U+FFFD).

See it in action in Listing 5.9—range_string.go:
package main

import “fmt”

func main() {

 str := “Go is a beautiful language!”

 for pos, char := range str {

 fmt.Printf(“Character on position %d is: %c \n”, pos, char)

 }

fmt.Println()

 str2 := “Chinese: 日本語”

 for pos, char := range str2 {

 fmt.Printf(“character %c starts at byte position %d\n”, char,

 pos)

120

Ivo Balbaert

 }

 fmt.Println()

 fmt.Println(“index int(rune) rune char bytes”)

 for index, rune := range str2 {

 fmt.Printf(“%-2d %d %U ‘%c’ % X\n”, index, rune, rune,

 rune, []byte(string(rune)))

 }

}

Output: Character on position 0 is: G

 Character on position 1 is: o

 Character on position 2 is:

 Character on position 3 is: i

 …

 The length of str2 is: 18

 character C starts at byte position 0

 character h starts at byte position 1

 character i starts at byte position 2

 character n starts at byte position 3

 character e starts at byte position 4

 character s starts at byte position 5

 character e starts at byte position 6

 character : starts at byte position 7

 character starts at byte position 8

 character 日 starts at byte position 9

 character 本 starts at byte position 12

 character 語 starts at byte position 15

 index int(rune) rune char bytes

 0 67 U+0043 ‘C’ 43

 1 104 U+0068 ‘h’ 68

 2 105 U+0069 ‘i’ 69

 3 110 U+006E ‘n’ 6E

 4 101 U+0065 ‘e’ 65

 5 115 U+0073 ‘s’ 73

 6 101 U+0065 ‘e’ 65

 7 58 U+003A ‘:’ 3A

 8 32 U+0020 ‘ ’ 20

 9 26085 U+65E5 ‘日’ E6 97 A5

 12 26412 U+672C ‘本’ E6 9C AC

 15 35486 U+8A9E ‘語’ E8 AA 9E

The Way to Go

121

Compare this with the output of Listing 5.7 (for_string.go).

We see that the normal English characters are represented by 1 byte, and these Chinese characters
by 3 bytes.

Exercise 5.9: What will this loop print out ?
 for i := 0; i < 5; i++ {

 var v int

 fmt.Printf(“%d “, v)

 v = 5

 }

Question 5.2: Describe the output of the following valid for-loops:

 1) for i := 0; ; i++ {

 fmt.Println(“Value of i is now:”, i)

 }

 2) for i := 0; i < 3; {

 fmt.Println(“Value of i:”, i)

 }

 3) s := “”

 for ; s != “aaaaa”; {

 fmt.Println(“Value of s:”, s)

 s = s + “a”

 }

 4) for i, j, s := 0, 5, “a”; i < 3 && j < 100 && s != “aaaaa”; i, j,

 s = i+1, j+1, s + “a” {

 fmt.Println(“Value of i, j, s:”, i, j, s)

 }

5.5—Break / continue

Using break, the code of the for-loop in for2.go could then be rewritten (clearly less elegant) as:

Listing 5.10—for3.go:

for {

 i = i - 1

 fmt.Printf(“The variable i is now: %d\n”, i)

122

Ivo Balbaert

 if i < 0 {

 break

 }

 }

So in every iteration a condition (here i < 0) has to be checked to see whether the loop should stop.
If the exit-condition becomes true, the loop is left through the break statement.

A break statement always breaks out of the innermost structure in which it occurs; it can be used
in any kind of for-loop (counter, condition,etc.), but also in a switch, or a select-statement (see ch
13). Execution is continued after the ending } of that structure.

In the following example with a nested loop (for4.go) break exits the innermost loop:

Listing 5.11—for4.go:

package main

func main() {

for i:=0; i<3; i++ {

for j:=0; j<10; j++ {

if j>5 {

 break

}

print(j)

}

print(“ ”)

}

}

// Output: 012345 012345 012345

The keyword continue skips the remaining part of the loop, but then continues with the next
iteration of the loop after checking the condition, see for example Listing 5.12—for5.go:

package main

func main() {

 for i := 0; i < 10; i++ {

 if i == 5 {

 continue

 }

 print(i)

 print(“ ”)

The Way to Go

123

 }

}

Output: 0 1 2 3 4 6 7 8 9

5 is skipped

The keyword continue can only be used within a for-loop.

5.6—Use of labels with break and continue—goto

A code line which starts a for, switch, or select statement can be decorated with a label of the form
identifier:

The first word ending with a colon : and preceding the code (gofmt puts it on the preceding line)
is a label, like LABEL1: in Listing 5.13—for6.go:

(The name of a label is case-sensitive, it is put in uppercase by convention to increase readability.)

package main

import “fmt”

func main() {

LABEL1:

for i := 0; i <= 5; i++ {

for j := 0; j <= 5; j++ {

if j == 4 {

continue LABEL1

}

fmt.Printf(“i is: %d, and j is: %d\n”, i, j)

}

}

}

Here continue points to LABEL1, the execution jumps to the label.

You see that cases j == 4 and j == 5 do not appear in the output: the label precedes the outer loop,
which starts i at its next value, causing the j in the inner for loop to reset to 0 at its initialization.
In the same way break LABEL can be used, not only from a for-loop, but also to break out of a
switch. There is even a goto keyword, which has to be followed by a label name; for example it can
be used to simulate a loop as in Listing 5.14—goto.go:

124

Ivo Balbaert

package main

func main() {

i:=0

HERE:

print(i)

i++

if i==5 {

return

}

goto HERE

}

which prints 01234.

But a backward goto quicky leads to unreadable ‘spaghetti’-code and should not be used, there is
always a better alternative.

!! The use of labels and certainly goto is discouraged: it can quickly lead to bad program design, the code
can almost always be written more readable without using them. !!

An example where the use of goto is acceptable is in program simple_tcp_server.go from § 15.1
:there goto is used to jump out of an infinite read-loop and close the connection with a client when
a read-error occurs on that connection.

Declaring a label and not using it is a compiler error (label … defined and not used)

If you really have to use goto, use it only with forward labels (a label appearing in the code a
number of lines after the goto), and do not declare any new variables between the goto and the
label, because this can lead to errors and unexpected results, like in Listing 5.15—goto2.go (does
not compile!)

func main() {

a := 1

goto TARGET // compile error:

 // goto TARGET jumps over declaration of b at goto2.go:8

b := 9

 TARGET:

b += a

fmt.Printf(“a is %v *** b is %v”, a, b)

}

The Way to Go

125

Output: a is 1 *** b is 4241844

Question 5.3: Describe the output of the following valid for-loops:

1) i := 0
 for { //since there are no checks, this is an infinite loop

 if i >= 3 { break }

 //break out of this for loop when this condition is met

 fmt.Println(“Value of i is:”, i)

 i++;

 }

 fmt.Println(“A statement just after for loop.”)

2) for i := 0; i<7 ; i++ {
 if i%2 == 0 { continue }

 fmt.Println(“Odd:”, i)

 }

126

Chapter 6—Functions

Functions are the basic building blocks in Go code: they are very versatile so that even can be said
that Go has a lot of characteristics of a functional language. In this chapter we elaborate on the
elementary function-description in § 4.2.2

6.1 Introduction

Every program consist of a number of functions: it is the basic code block.

Because Go code is compiled the order in which the functions are written in the program does not
matter; however for readability it is better to start with main() and write the functions in a logical
order (for example the calling order).

Their main purpose is to break a large problem which requires many code lines into a number of
smaller tasks (functions). Also the same task can be invoked several times, so a function promotes
code reuse.

(In fact a good program honors the DRY-principle, Don’t Repeat Yourself, meaning that the code
which performs a certain task may only appear once in the program.)

In § 4.2 the main characteristics of functions were described, but now we have more material to
build concrete and useful examples.

A function ends when it has executed its last statement (before }), or when it executes a return
statement, which can be with or without argument(s); these arguments are the values that the
functions returns from its computation (see § 6.2). A simple return can thus also be used to end an
infinite for-loop, or to stop a goroutine.

There are 3 types of functions in Go:

•	 Normal	functions	with	an	identifier
•	 Anonymous	or	lambda	functions (see § 6.8)
•	 Methods	(see	§	10.6)

The Way to Go

127

Any of these can have parameters and return values. The definition of all the function parameters
and return values, together with their types, is called the function signature.

And as a reminder, a syntax prerequisite:

This is invalid Go-code: func g()

 { // INVALID

 }

It must be: func g() { // VALID

 }

A function is called or invoked in code, in a general format like:

pack1.Function(arg1,arg2, . . . ,argn)

where Function is a function in package pack1, and arg1, etc. are the arguments: the values which
are passed into the parameters of the function (see § 6.2). When a function is invoked copies of the
arguments are made and these are then passed to the called function. The invocation happens in
the code of another function: the calling function. A function can call other functions as much as
needed, and these in turn call other functions, and this can go on with theoretically no limit (or
the stack upon which these function calls are placed is exhausted).

Here is the simplest example of a function calling another function:

Listing 6.1—greeting.go:

package main

func main() {

println(“In main before calling greeting”)

greeting()

println(“In main after calling greeting”)

}

func greeting() {

println(“In greeting: Hi!!!!!”)

}

Output: In main before calling greeting
 In greeting: Hi!!!!!
 In main after calling greeting

128

Ivo Balbaert

A function call can have another function call as its argument, provided that this function has the
same number and types of arguments in the correct order that the first function needs, e.g.:

Suppose f1 needs 3 arguments f1(a, b, c int), and f2 returns 3 arguments:

f2(a, b int) (int, int, int), then this can be a call to f1: f1(f2(a, b))

Function overloading, that is coding two or more functions in a program with the same function
name but a different parameter list and/or a different return-type(s), is not allowed in Go. It gives
the compiler error:

funcName redeclared in this block, previous declaration at lineno

The main reason is that overloading functions forces the runtime to do additional type matching
which reduces performance; no overloading means only a simple function dispatch is needed. So
you need to give your functions appropriate unique names, probably named according to their
signature (but see also §11.12.5).

To declarer a function implemented outside Go, such as an assembly routine, you simply give the
name and signature, and no body:

func flushICache(begin, end uintptr) // implemented externally

Functions can also be used in the form of a declaration, as a function type, like in:

type binOp func(int, int) int

In that case also the body { } is omitted.

Funtions are first-class values: they can be assigned to a variable, like in: add := binOp

The variable add gets a reference (points) to the function and it knows the signature of the function
it refers to, so it is not possible to assign to it a function with a different signature.

Function values can be compared: they are equal if they refer to the same function or if both are
nil. A function cannot be declared inside another function (no nesting), but this can be mimicked
by using anonymous functions (see § 6.8).

Go has until now no concept of generics, which means for example defining 1 function which
can be applied to a number of variable types. However most cases can be solved simply by using

The Way to Go

129

interfaces, especially the empty interface and a type switch (see § 11.12 and for examples ex.
11.10-11.12) and/or by using reflection (see § 11.10). Code complexity is increased using these
techniques and performance lowered, so when performance is very important it is better and will
produce more readable code to create the function explicitly for every type used.

6.2 Parameters and return values

A function can take parameters to use in its code, and it can return zero or more values (when
more values are returned one often speaks of a tuple of values). This is also a great improvement
compared to C, C++, Java and C#, and it is particularly handy when testing whether or not a
function execution has resulted in an error (see § 5.2)

Returning (a) value(s) is done with the keyword return . In fact every function that returns at least
1 value must end with return or panic (see chapter 13).

Code after return in the same block is not executed anymore. If return is used, then every code-path
in the function must end with a return statement.

Question 6.1: The following function does not compile, why not? Correct it.

func (st *Stack) Pop() int {

v := 0

for ix:= len(st)-1; ix>=0; ix-- {

if v=st[ix]; v!=0 {

st[ix] = 0

return v

}

}

}

Parameters normally have names, but a function can be defined in which no parameter has a name,
only a type, like: func f(int, int, float64)

A function with no parameters is called a niladic function, like main.main().

6.2.1 Call by value / Call by reference

The default way in Go is to pass a variable as an argument to a function by value: a copy is made
of that variable (and the data in it). The function works with and possibly changes the copy, the
original value is not changed: Function(arg1).

130

Ivo Balbaert

If you want Function to be able to change the value of arg1 itself (‘in place’), you have to pass the
memory address of that variable with &, this is call (pass) by reference: Function(&arg1); effectively
a pointer is then passed to the function. If the variable that is passed is a pointer, then the pointer
is copied, not the data that it points to; but through the pointer the function changes the original
value.

Passing a pointer (a 32bit or 64bit value) is in almost all cases cheaper than making a copy of the
object.

Reference types like slices (ch 7), maps (ch 8), interfaces (ch 10) and channels (ch 13) are pass by
reference by default (even though the pointer is not directly visible in the code).

Some functions just perform a task, and do not return values: they perform what is called a
side-effect, like printing to the console, sending a mail, logging an error, etc.

But most functions return values, which can be named or unnamed.

In the program simple_function.go the function takes 3 int parameters a,b and c and returns an int
(the commented lines show more verbose alternative code, where a local variable is used):

Listing 6.2—simple_function.go:

package main

import “fmt”

func main() {

fmt.Printf(“Multiply 2 * 5 * 6 = %d\n”, MultiPly3Nums(2, 5, 6))

// var i1 int = MultiPly3Nums(2, 5, 6)

// fmt.Printf(“Multiply 2 * 5 * 6 = %d\n”, i1)

}

func MultiPly3Nums(a int, b int, c int) int {

// var product int = a * b * c

// return product

return a * b * c

}

Output: Multiply 2 * 5 * 6 = 60

When it becomes necessary to return more than 4 or 5 values from a function, it is best to pass a
slice (see chapter 7) is the values are of the same type (homogeneous), or to use a pointer to a struct

The Way to Go

131

(see chapter 10) if they are of different type (heterogeneous). Passing a pointer like that is cheap
and allows to modify the data in place.

Question 6.2:

What difference if any is there between the following function calls:

(A) func DoSomething(a *A) {

 b = a

 }

and:
(B) func DoSomething(a A) {

 b = &a

 }

6.2.2 Named return variables

In the following program multiple_return.go the function takes one int parameter and returns 2
ints; the return values are filled in at the calling function in a parallel assignment.

The two functions getX2AndX3 and getX2AndX3_2 show how unnamed—or named return variables
are used. When there is more than 1 unnamed return variable, they must be enclosed within (),
like (int, int)

Named variables used as result parameters are automatically initialized to their zero-value, and once
they receive their value, a simple (empty) return statement is sufficient; furthermore even when
there is only 1 named return variable, it has to be put inside () (see § 6.6 fibonacci.go).

Listing 6.3—multiple_return.go:

package main

import “fmt”

var num int = 10

var numx2, numx3 int

func main() {

 numx2, numx3 = getX2AndX3(num)

 PrintValues()

 numx2, numx3 = getX2AndX3_2(num)

 PrintValues()

132

Ivo Balbaert

}

func PrintValues() {

fmt.Printf(“num = %d, 2x num = %d, 3x num = %d\n”, num, numx2, numx3)

}

func getX2AndX3(input int) (int, int) {

return 2 * input, 3 * input

}

func getX2AndX3_2(input int) (x2 int, x3 int) {

x2 = 2 * input

x3 = 3 * input

// return x2, x3

return

}

Output: num = 10, 2x num = 20, 3x num = 30

 num = 10, 2x num = 20, 3x num = 30

Caution: return or return var is ok,
but return var = expression gives a compiler error:
 syntax error: unexpected =, expecting semicolon or newline or }

Even with named return variables you can still ignore the names and return explicit values.

When any of the result variables has been shadowed (not a good practice!) the return-statement
must contain the result variable names.

!! Use named return variables: they make the code clearer, shorter and self-documenting !!

Exercise 6.1: mult_returnval.go

Write a function which accepts 2 integers and returns their sum, product and difference. Make a
version with unnamed return variables, and a 2nd version with named return variables.

Exercise 6.2: error_returnval.go

Write a function MySqrt which calculates the square root of a float64, but returns an error if this
number is negative; make a version with unnamed and a second one with named return variables.

The Way to Go

133

6.2.3 Blank identifier

The blank identifier _ can be used to discard values, effectively assigning the right-hand-side value
to nothing, as in blank_identifier.go.

The function ThreeValues has no parameters and 3 return-values, where only the first and the third
return value are captured in i1 and f1.

Listing 6.4—blank_identifier.go:

package main

import “fmt”

func main() {

var i1 int

var f1 float32

i1, _, f1 = ThreeValues()

fmt.Printf(“The int: %d, the float; %f\n”, i1, f1)

}

func ThreeValues() (int, int, float32) {

return 5, 6, 7.5

}

Output: The int: 5, the float; 7.500000

Another illustration of a function with 2 parameters and 2 return-values which calculates the
minimum and maximum value of the 2 parameters is presented in minmax.go.

Listing 6.5—minmax.go:

package main

import “fmt”

func main() {

 var min, max int

 min, max = MinMax(78, 65)

 fmt.Printf(“Minimum is: %d, Maximum is: %d\n”, min, max)

}

func MinMax(a int, b int) (min int, max int) {

 if a < b {

134

Ivo Balbaert

 min = a

 max = b

 } else { // a = b or a < b

 min = b

 max = a

 }

 return

}

// Output: Minimum is: 65, Maximum is: 78

6.2.4 Changing an outside variable

Passing a pointer to a function not only conserves memory because no copy of the value is made.
It has also as side-effect that the variable or object can be changed inside the function, so that the
changed object doesn’t have to be returned back from the function. See this in the following little
program, where reply, a pointer to an integer, is being changed in the function itself.

Listing 6.6—side_effect.go:

package main

import (

 “fmt”

)

// this function changes reply:

func Multiply(a, b int, reply *int) {

 *reply = a * b

}

func main() {

 n := 0

 reply := &n

 Multiply(10, 5, reply)

 fmt.Println(“Multiply:”, *reply) // Multiply: 50

}

This is only a didactic example, but it is much more useful to change a large object inside a
function. However this technique obscures a bit what is going on, the programmer should be very
much aware of this side-effect, and if necessary make it clear to users of the function through a
comment.

The Way to Go

135

6.3 Passing a variable number of parameters

If the last parameter of a function is followed by …type, this indicates that the function can deal
with a variable number of parameters of that type, possibly also 0: a so called variadic function:

func myFunc(a, b, arg ...int) {}

The function receives in effect a slice of the type (see chapter 7), which can be looped through with
the for _, v := range construct of § 5.4.4.

Given the function and call:
 func Greeting(prefix string, who ...string)

 Greeting(“hello:”, “Joe”, “Anna”, “Eileen”)

within Greeting, who will have the value []string{“Joe”, “Anna”, “Eileen”}

If the parameters are stored in an array arr, the function can be called with the parameter arr…

This is demonstrated in Listing 6.7—varnumpar.go:
package main
import “fmt”

func main() {
 x := Min(1, 3, 2, 0)
 fmt.Printf(“The minimum is: %d\n”, x)
 arr := []int{7,9,3,5,1}
 x = Min(arr...)
 fmt.Printf(“The minimum in the array arr is: %d”, x)
}

func Min(a ...int) int {
 if len(a)==0 {
 return 0
 }
 min := a[0]
 for _, v := range a {
 if v < min {
 min = v
 }
 }
 return min
}

136

Ivo Balbaert

Output: The minimum is: 0
 The minimum in the array arr is: 1

Exercise 6.3: varargs.go

 Make a function that has as arguments a variable number of ints and which prints
each integer on a separate line.

A function with a variadic parameter can give this parameter to other functions, like in the following
code snippet:

 function F1(s … string) {

 F2(s …)

 F3(s)

}

 func F2(s … string) { }

 func F3(s []string) { }

The variable number parameter can be passed as such or as a slice of its type.

But what if the variable parameters are not of the same type? To have to write say 5 parameters of
different type is not elegant. There are 2 possible solutions:

Use a struct: (see chapter 10)

Define a struct type, say Options, which gathers all possible parameters:

type Options struct {

 par1 type1,

 par2 type2,

 ...

}

A function F1 can then be called with its normal parameters a and b and with no optional parameters
as: F1(a, b, Options {})

If one or more of the optional parameters have values, call F1 as:
 F1(a, b, Options {par1:val1, par2:val2})

The Way to Go

137

Use of the empty interface:

If in a variadic parameter the type is not specified, it defaults to the empty interface { }

which can stand for any other type (see § 11.9). This could also be used if not only the number
of parameters is unknown, but also their type is not specified (perhaps they are each of a different
type. The function which receives this parameter can then do a for-range loop over the values, and
process them in a type-switch like so:

 func typecheck(..,..,values … interface{}) {

 for _, value := range values {

 switch v := value.(type) {

 case int: …

 case float: …

 case string: …

 case bool: …

 default: …

 }

 }

}

6.4 Defer and tracing

The defer keyword allows us to postpone the execution of a statement or a function until the end
of the enclosing (calling) function: it executes something (a function or an expression) when the
enclosing function returns (after every return and even when an error occurred in the midst of
executing the function, not only a return at the end of the function), but before the } (Why after?
Because the return statement itself can be an expression which does something instead of only
giving back 1 or more variables).

defer resembles the finally-block in OO-languages as Java and C#; in most cases it also serves to
free up allocated resources.

This is illustrated in Listing 6.8—defer.go :
package main

import “fmt”

func main() {

 Function1()

}

138

Ivo Balbaert

func Function1() {

 fmt.Printf(“In Function1 at the top\n”)

 defer Function2()

 fmt.Printf(“In Function1 at the bottom!\n”)

}

func Function2() {

 fmt.Printf(“Function2: Deferred until the end of the calling function!”)

}

Output: In Function1 at the top
 In Function1 at the bottom!
 Function2: Deferred until the end of the calling function!
 (compare the output when defer is removed)

If the defer has arguments they are evaluated at the line of the defer-statement; this is illustrated in
the following snippet, where the defer will print 0:

func a() {

 i := 0

 defer fmt.Println(i)

 i++

 return

}

When many defer’s are issued in the code, they are executed at the end of the function in the
inverse order (like a stack or LIFO): the last defer is first executed, and so on.

This is illustrated in the following contrived snippet:

func f() {

for i := 0; i < 5; i++ {

defer fmt.Printf(“%d “, i)

}

}

Which prints out: 4 3 2 1 0

defer allows us to guarantee that certain clean-up tasks are performed before we return from a
function, for example:

The Way to Go

139

1) closing a file stream:
 // open a file

 defer file.Close() (see § 12.2)

2) unlocking a locked resource (a mutex):
 mu.Lock()

 defer mu.Unlock() (see § 9.3)

3) printing a footer in a report:
 printHeader()

 defer printFooter()

4) closing a database connection:
 // open a database connection

 defer disconnectFromDB()

It can be helpful to keep the code cleaner and so often shorter.

The following listing simulates case 4):

Listing 6.9—defer_dbconn.go :

package main

import “fmt”

func main() {

 doDBOperations()

}

func connectToDB () {

 fmt.Println(“ok, connected to db”)

}

func disconnectFromDB () {

 fmt.Println(“ok, disconnected from db”)

}

func doDBOperations() {

 connectToDB()

 fmt.Println(“Defering the database disconnect.”)

 defer disconnectFromDB() //function called here with defer

140

Ivo Balbaert

 fmt.Println(“Doing some DB operations ...”)

 fmt.Println(“Oops! some crash or network error ...”)

 fmt.Println(“Returning from function here!”)

 return //terminate the program

 // deferred function executed here just before actually returning, even if

 there is a return or abnormal termination before

}

/* Output:

ok, connected to db

Defering the database disconnect.

Doing some DB operations ...

Oops! some crash or network error ...

Returning from function here!

ok, disconnected from db

*/

Tracing with defer:

A primitive but sometimes effective way of tracing the execution of a program is printing a message
when entering and leaving certain functions. This can be done with the following 2 functions:

func trace(s string) { fmt.Println(“entering:”, s) }

func untrace(s string) { fmt.Println(“leaving:”, s) }

where we will call untraced with the defer keyword, as in the following program

Listing 6.10—_defer_tracing.go:

package main

import “fmt”

func trace(s string) { fmt.Println(“entering:”, s) }

func untrace(s string) { fmt.Println(“leaving:”, s) }

func a() {

 trace(“a”)

 defer untrace(“a”)

 fmt.Println(“in a”)

}

The Way to Go

141

func b() {

 trace(“b”)

 defer untrace(“b”)

 fmt.Println(“in b”)

 a()

}

func main() {

 b()

}

which outputs: entering: b
 in b
 entering: a
 win a
 leaving: a
 leaving: b

This can be done more succinctly: as in Listing 6.11—_defer_tracing2.go:
package main
import “fmt”

func trace(s string) string {
 fmt.Println(“entering:”, s)
 return s
}
func un(s string) {
 fmt.Println(“leaving:”, s)
}

func a() {
 defer un(trace(“a”))
 fmt.Println(“in a”)
}

func b() {
 defer un(trace(“b”))
 fmt.Println(“in b”)
 a()
}
func main() {
 b()
}

142

Ivo Balbaert

Using defer to log parameter- and return values from within the function:

This is another possible use of defer which might come in handy while debugging:

Listing 6.12—_defer_logvalues.go:

package main

import (

 “log”

 “io”

)

func func1(s string) (n int, err error) {

 defer func() {

 log.Printf(“func1(%q) = %d, %v”, s, n, err)

 }()

 return 7, io.EOF

}

func main() {

 func1(“Go”)

}

// Output: 2011/10/04 10:46:11 func1(“Go”) = 7, EOF

6.5 Built-in functions

These are predefined functions which can be used as such, without having to import a package to
get access to them. They sometimes apply to different types, e.g. len, cap and append, or they have
to operate near system level like panic. That’s why they need support from the compiler.

Here is a list, they will be further discussed in the following chapters.

close Used in channel communication
len cap len gives the length of a number of types (strings, arrays, slices, maps,

channels); cap is the capacity, the maximum storage (only applicable to
slices and maps)

new make Both new and make are used for allocating memory:
new for value types and user-defined types like structs,
make for built-in reference types (slices, maps, channels)

The Way to Go

143

They are used like functions with the type as its argument: new(type),
make(type)

new(T) allocates zeroed storage for a new item of type T and returns
its address, so it returns a pointer to the type T (see also § 10.1: Using
new)
It can be used with primitive types as well:

v := new(int) // v has type *int

make(T) returns an initialized variable of type T, so it does more work
than new (see also §7.2.3/4, §8.1.1. and § 14.2.1)
!! new() is a function, don’t forget its parentheses !!

copy append used resp. for copying and concatenating slices (see § 7.5.5)
panic recover both are used in a mechanism for handling errors (see § 13.2)
print println low level printing functions (see § 4.2), use the fmt package in production

programs
complex real imag used for making and manipulating complex numbers (see § 4.5.2.2)

6.6 Recursive functions

A function that call itself in its body is called recursive. The proverbial example is the calculation
of the numbers of the Fibonacci sequence, in which each number is the sum of its two preceding
numbers.

The sequence starts with:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,

10946, …

This is done in the following program:

Listing 6.13—_ fibonacci.go:

package main

import “fmt”

func main() {

 result := 0

144

Ivo Balbaert

 for i:=0; i <= 10; i++ {

 result = fibonacci(i)

 fmt.Printf(“fibonacci(%d) is: %d\n”, i, result)

 }

}

func fibonacci(n int) (res int) {

 if n <= 1 {

 res = 1

 } else {

 res = fibonacci(n-1) + fibonacci(n-2)

 }

 return

}

Output: fibonacci(0) is: 1

 fibonacci(1) is: 1

 fibonacci(2) is: 2

 fibonacci(3) is: 3

 fibonacci(4) is: 5

 fibonacci(5) is: 8

 fibonacci(6) is: 13

 fibonacci(7) is: 21

 fibonacci(8) is: 34

 fibonacci(9) is: 55

 fibonacci(10) is: 89

Many problems have an elegant recursive solution, like the famous Quicksort algorithm.

An important problem when using recursive functions is stack overflow: this can occur when a large
number of recursive calls are needed and the programs runs out of allocated stack memory. This
can be solved by using a technique called lazy evaluation, implemented in Go with a channel and
a goroutine (see § 14.8). Exercise 14.12 solves the Fibonacci problem in this way.

Mutually recursive functions can also be used in Go: these are functions that call one another.
Because of the Go compilation process, these functions may be declared in any order. Here is a
simple example: even calls odd, and odd calls even.

Listing 6.14—_ mut_recurs.go:

package main

The Way to Go

145

import (

 “fmt”

)

func main() {

 fmt.Printf(“%d is even: is %t\n”, 16, even(16)) // 16 is even: is true

 fmt.Printf(“%d is odd: is %t\n”, 17, odd(17))

 // 17 is odd: is true

 fmt.Printf(“%d is odd: is %t\n”, 18, odd(18))

 // 18 is odd: is false

}

func even(nr int) bool {

 if nr == 0 {return true}

 return odd(RevSign(nr)-1)

}

func odd(nr int) bool {

 if nr == 0 {return false}

 return even(RevSign(nr)-1)

}

func RevSign(nr int) int {

 if nr < 0 {return -nr}

 return nr

}

EXERCISES:

Exercise 6.4: fibonacci2.go

Rewrite the Fibonacci program above to return 2 named variables (see § 6.2),
namely the value and the position of the Fibonacci-number, like 5 and 4 or 89
and 10.

Exercise 6.5: 10to1_recursive.go

Print the numbers from 10 to 1 in that order using a recursive function printrec(i
int)

Exercise 6.6: factorial.go
Write a program which prints the factorial (!) of the first 30 integers

146

Ivo Balbaert

The factorial n! of a number n is defined as: n! = n * (n-1)!, 0!=1

So this clearly a good candidate for a recursive function Factorial.

Make a 2nd version of Factorial with a named return variable.

Remark that when using type int the calculation is only correct up until 12!, this
is of course because an int can only contain integers which fit in 32 bit. Go doesn’t
warn against this overflow-error! How can you gset more correct results ?

The best solution is to use the big package (see § 9.4).

6.7 Functions as parameters

Functions can be used as parameters in another function, the passed function can then be called
within the body of that function, that is why it is commonly called a callback. To illustrate here is
a simple example:

Listing 6.15—_ function_parameter.go:

package main

import (

“fmt”

)

func main() {

callback(1, Add)

}

func Add(a,b int) {

fmt.Printf(“The sum of %d and %d is: %d\n”, a, b, a + b)

}

func callback(y int, f func(int, int)) {

f(y, 2) // this becomes Add(1, 2)

}

// Output: The sum of 1 and 2 is: 3

A good example of the use of a function as a parameter is the strings.IndexFunc() function:

The Way to Go

147

It has the signature func IndexFunc(s string, f func(c int) bool) int and returns the index
into s of the first Unicode character for which f(c) is true, or -1 if none do.

For example strings.IndexFunc(line, unicode.IsSpace) will return the index of the 1st whitespace
character in line. Of course you can make your own function f, e.g.:

func IsAscii(c int) bool {

 if c > 255 {

 return false

 }

 return true

}

In § 14.10.1 we will also discuss an example of a function which has another function as a parameter,
in the context of writing a client-server program:

type binOp func(a, b int) int

func run(op binOp, req *Request) { … }

Exercise 6.7: strings_map.go

The Map function in the package strings is also a good example of the use of higher order functions,
like strings.IndexFunc(). Look up its definition in the package documentation and make a little
test program with a map function that replaces all non-ASCII characters from a string with a ? or
a space. What do you have to do to delete these characters?

6.8 Closures (function literals)

Sometimes we do not want to give a function a name, then we make an anonymous function (also
known under the names of a lambda function, a function literal, or a closure), for example: func(x,
y int) int { return x + y }

Such a function cannot stand on its own (the compiler gives the error: non-declaration statement
outside function body) but it can be assigned to a variable which is a reference to that function:
fplus := func(x, y int) int { return x + y }

and then invoked as if fplus was the name of the function: fplus(3,4)

or it can be invoked directly: func(x, y int) int { return x + y } (3, 4)

148

Ivo Balbaert

Here is a call to a lambda function which calculates the sum of integer floats till 1 million, gofmt
reformats a lambda function in this way: func() {

 sum = 0.0

 for i := 1; i<= 1e6; i++ {

 sum += i

 }

 }()

The first () is the parameter-list and follows immediately after the keyword func because there is
no function-name. The { } comprise the function body, and the last pair of () represent the call of
the function.

Here is an example of assigning it to a variable, g in the following snippet (function_literal.go)
which is then of type function:

Listing 6.16—_ function_literal.go:

package main

import “fmt”

func main() {

f()

}

func f() {

for i := 0; i < 4; i++ {

g := func(i int) { fmt.Printf(“%d “, i) }

g(i)

fmt.Printf(“ - g is of type %T and has value %v\n”, g, g)

}

}

Output: 0 - g is of type func(int) and has value 0x681a80
 1 - g is of type func(int) and has value 0x681b00
 2 - g is of type func(int) and has value 0x681ac0
 3 - g is of type func(int) and has value 0x681400

We see that the type of g is func(int), its value is a memory address.

So in this assignment we have in fact a variable with a function value: lambda functions can be
assigned to variables and treated as values.

The Way to Go

149

Exercise 6.8: Write a program which in main() defines a lambda function which prints “Hello
World”. Assign it to a variable fv, call the function with as that value, and check
the type of fv (lambda_value.go)

Anonymous functions like all functions can be with- or without parameters; in the following
example there is a value v passed in the parameter u:

func (u string) {

fmt.Println(u)

…

}(v)

Consider this contrived example: what is the value of ret after return from f ?

Listing 6.17—_ return_defer.go:

package main

import “fmt”

func f() (ret int) {

defer func() {

ret++

}()

return 1

}

func main() {

fmt.Println(f())

}

The value is 2, because of the ret++, which is executed after return 1.

This can be convenient for modifying the error return value of a function.

defer and lambda functions:

The defer keyword (§ 6.4) is often used with a lambda function. It can then also change return
values, provided that you are using named result parameters.

Lambda functions can also be launched as a goroutine with go (see chapter 14 and § 16.9).

150

Ivo Balbaert

Lambda functions are also called closures (a term from the theory of functional languages): they
may refer to variables defined in a surrounding function. A closure is a function that captures
some external state—for example, the state of the function in which it is created. Another way
to formulate this is: a closure inherits the scope of the function in which it is declared. That state
(those variables) is then shared between the surrounding function and the closure, and the variables
survive as long as they are accessible; see the following examples in §6.9. Closures are often used
as wrapper functions: they predefine 1 or more of the arguments for the wrapped function; this is
also illustrated in the following § and in many examples to come.Another good application is using
closures in performing clean error-checking (see § 16.10.2)

6.9 Applying closures: a function returning another function

In program function_return.go we see functions Add2 and Adder which return another lambda
function func(b int) int:

func Add2() (func(b int) int)

func Adder(a int) (func(b int) int)

Add2 takes no parameters, but Adder takes an int as parameter.

We can make special cases of Adder and give them a name, like TwoAdder in listing 6.13.

Listing 6.18—_ function_return.go:

package main

import “fmt”

func main() {

 // make an Add2 function, give it a name p2, and call it:

 p2 := Add2()

 fmt.Printf(“Call Add2 for 3 gives: %v\n”, p2(3))

 // make a special Adder function, a gets value 3:

 TwoAdder := Adder(2)

 fmt.Printf(“The result is: %v\n”, TwoAdder(3))

}

func Add32() (func(b int) int) {

 return func(b int) int {

 return b + 2

 }

}

The Way to Go

151

func Adder(a int) (func(b int) int) {

 return func(b int) int {

 return a + b

 }

}

/* Output:

Call Add2 for 3 gives: 5

The result is: 5

*/

Here is (nearly) the same function used in a slightly different way:

Listing 6.19—_ function_closure.go:

package main

import “fmt”

func main() {

var f = Adder()

fmt.Print(f(1),” - “)

fmt.Print(f(20),” - “)

fmt.Print(f(300))

}

func Adder() func(int) int {

var x int

return func(delta int) int {

x += delta

return x

}

}

Adder() is now assigned to the variable f (which is then of type func(int) int)

The output is: 1 - 21 - 321

In the calls to f, delta in Adder() gets respectively the values 1, 20 and 300.

152

Ivo Balbaert

We see that between calls of f the value of x is retained, first it is 0 + 1 = 1, then it becomes 1 + 20
= 21, then 21 is added to 300 to give the result 321: the lambda function stores and accumulates
the values of its variables: it still has access to the (local) variables defined in the current function.

These local variables can also be parameters, like Adder(a int) in listing 6.13.

This demonstrates clearly that Go literal functions are closures.

The variables that the lambda function uses or updates can also be declared outside of the lambda,
like in this snippet: var g int

 go func(i int) {

 s := 0

 for j := 0; j < i; j++ { s += j }

 g = s

 }(1000) // Passes argument 1000 to the function literal.

The lambda function can be applied to all elements of a collection, updating these variables.
Afterwards these variables can be used to represent or calculate global values or averages.

Exercise 6.9: Write a non-recursive version of the Fibonacci program from § 6.6 using a function
as a closure: (fibonacci_closure.go)

Exercise 6.10: Study and comprehend the working of the following program: (compose.go)

A function returning another function can be used as a factory function. This can be useful when
you have to create a number of similar functions: write 1 factory function instead of writing them
all individually. The following function illustrates this: it returns functions that add a suffix to a
filename when this is not yet present:

func MakeAddSuffix(suffix string) func(string) string {
 return func(name string) string {
 if !strings.HasSuffix(name, suffix) {
 return name + suffix

 }
 return name

 }
}

Now we can make functions like: addBmp := MakeAddSuffix(“.bmp”)
 addJpeg := MakeAddSuffix(“.jpeg”)
and call them as: addBmp(“file”) // returns: file.bmp

 addJpeg(“file”) // returns: file.jpeg

The Way to Go

153

A function which can return another function and a function which has another function as a
parameter are called higher order functions, which is a hallmark of the category of languages called
functional languages. We have seen in §6.7 that functions are also values, so it is clear that Go possesses
some of the major characteristics of a functional language. Closures are used frequently in Go, often
in combination with goroutines and channels (see chapter 14 §14.8-9). In §11.14 program cars.go
we see the power of functions in Go in action in an example with concrete objects.

6.10 Debugging with closures

When analyzing and debugging complex programs with myriads of functions in different code-files
calling one another, it can often be useful to know at certain points in the program the file which is
executing and the line number in it. This can be done by using special functions from the packages
runtime or log. In package runtime the function Caller() provides this information, so a closure
where() could be defined which calls this, and then be invoked wherever it is needed:

where := func() {

 _, file, line, _ := runtime.Caller(1)

 log.Printf(“%s:%d”, file, line)

}

where()

// some code

where()

// some more code

where()

The same can be achieved by setting a flag in the log package:

log.SetFlags(log.Llongfile)

log.Print(“”)

or if you like the brevity of “where”:
var where = log.Print

func func1() {

where()

... some code

where()

... some code

where()

}

154

Ivo Balbaert

6.11 Timing a function

Sometimes it is interesting to know how long a certain computation took, e.g. for comparing and
benchmarking calculations. A simple way is to record the start-time before the calculation, and
the end-time after the calculation by using the function Now() from the time package; and the
difference between them can then be calculated with Sub(). In code, this goes like:

start := time.Now()

longCalculation()

end := time.Now()

delta := end.Sub(start)

fmt.Printf(“longCalculation took this amount of time: %s\n”, delta)

See it in action in the program Listing 6.20—fibonacci.go.

If you have optimized a piece of code always time the former version and the optimized version to
see that there is a significant (enough) advantage; in the following § we see an optimization applied
which is certainly worthwhile.

6.12 Using memoization for performance

When doing heavy computations one thing that can be done for increasing performance is not
to repeat any calculation that has already been done and that must be reused. Instead cache the
calculated value in memory, which is called memoization. A great example of this is the Fibonacci
program (see § 6.6 and 6.11):

to calculate the n-th Fibonacci number, you need the 2 preceding ones, which normally have
already been calculated. If you do not stock the preceding results, every higher Fibonacci number
results in an ever greater avalanche of recalculations, which is precisely what the version from
listing 6.11 (fibonnaci.go) does.

Simple stock the n-th Fibonacci number in an array at index n (see chapter 7), and before calculating
a fibonnaci-number, first look in the array if it has not yet been calculated.

This principle is applied in Listing 6.17 (fibonacci_memoization.go). The performance gain is
astounding, time both programs for the calculation up to the 40th Fibonnaci number:

normal (fibonacci.go): the calculation took this amount of time: 4.730270 s
with memoization: the calculation took this amount of time: 0.001000 s

The Way to Go

155

In this algorithm memoization is obvious, but it can often be applied in other computations as
well, perhaps using maps (see chapter 7) instead of arrays or slices.

Listing 6.21—_ fibonacci_memoization.go:

package main

import (

 “fmt”

 “time”

)

const LIM = 41

var fibs [LIM]uint64

func main() {

 var result uint64 = 0

 start := time.Now()

 for i:=0; i < LIM; i++ {

 result = fibonacci(i)

 fmt.Printf(“fibonacci(%d) is: %d\n”, i, result)

 }

 end := time.Now()

 delta := end.Sub(start)

 fmt.Printf(“longCalculation took this amount of time: %s\n”, delta)

}

func fibonacci(n int) (res uint64) {

 // memoization: check if fibonacci(n) is already known in array:

 if fibs[n] != 0 {

 res = fibs[n]

 return

 }

 if n <= 1 {

 res = 1

 } else {

 res = fibonacci(n-1) + fibonacci(n-2)

 }

 fibs[n] = res

 return

}

156

Ivo Balbaert

Memoization is useful for relatively expensive functions (not necessarily recursive as in the example)
that are called lots of times with the same arguments. It can also only be applied to pure functions,
these are functions that always produce the same result with the same arguments, and have no
side-effects.

157

Chapter 7—Arrays and Slices

In this chapter we start with examining data-structures that contain a number of items, so called
collections, such as arrays (slices) and maps. Here the Python influence is obvious.

The array-type, indicated by the [], notation is well-known in almost every programming
language as the basic workhorse in applications. The Go array is very much the same, but has a few
peculiarities. It is not as dynamic as in C, but for that Go has the slice type. This is an abstraction
built on top of Go’s array type, and so to understand slices we must first understand arrays. Arrays
have their place, but they are a bit inflexible, so you don’t see them too often in Go code. Slices,
though, are everywhere. They build on arrays to provide great power and convenience.

7.1 Declaration and initialization

7.1.1 Concept

An array is a numbered and fixed-length sequence of data items (elements) of the same single type
(it is a homogeneous data structure); this type can be anything from primitive types like integers,
strings to self-defined types. The length must be a constant expression, that must evaluate to a
non-negative integer value. It is part of the type of the array, so arrays declared as [5]int and [10]
int differ in type. Initialization of an array with values known at compile time is done with array
literals (see below).

Remark: If we would like the item type can be any type by using the empty interface as type
(see § 11.9). When using the values we would first have to do a type assertion (see § 11.3).

The items can be accessed (and changed) through their index (the position), the index starts from
0, so the 1st element has index 0, the 2nd index 1, etc. (arrays are zero-based as usual in the C-family
of languages). The number of items, also called the length len or size of the array, is fixed and must
be given when declaring the array (len has to be determined at compile time in order to allocate
the memory); the maximum array length is 2 Gb.

The format of the declaration is: var identifier [len]type

158

Ivo Balbaert

For example: var arr1 [5]int

which can be visualized in memory as:

arr1
index 0 1 2 3 4

Fig 7.1: Array in memory

Each compartment contains an integer; when declaring an array, each item in it is automatically
initialized with the default zero-value of the type, here all items default to 0.

The length of arr1 len(arr1) is 5, and the index ranges from 0 to len(arr1)-1.

The first element is given by arr1[0], the 3rd element is given by arr1[2] ; in general the element
at index i is given by arr1[i]. The last element is given by: arr1[len(arr1)-1]

Assigning a value to an array-item at index i is done by: arr[i] = value, so arrays are mutable.

Only valid indexes can be be used. When using an index equal to or greater than len(arr1): if the
compiler can detect this, the message index out of bounds is given; but otherwise the code compiles
just fine and executing the program will give the panic (see chapter 13):

runtime error: index out of range.

Because of the index, a natural way to loop over an array is to use the for-construct:

•	 for	initializing	the	items	of	the	array
•	 for	printing	the	values,	or	in	general:
•	 for	procession	each	item	in	succession.

A basic example is given in Listing 7.1—for_arrays.go:

package main

import “fmt”

func main() {

 var arr1 [5]int

 for i:=0; i < len(arr1); i++ {

The Way to Go

159

 arr1[i] = i * 2

 }

 for i:=0; i < len(arr1); i++ {

 fmt.Printf(“Array at index %d is %d\n”, i, arr1[i])

 }

}

Output: Array at index 0 is 0
 Array at index 1 is 2
 Array at index 2 is 4
 Array at index 3 is 6
 Array at index 4 is 8

Very important here is the condition in the for-loop: i < len(arr1)

i <= len(arr1) would give an index out of range-error.

IDIOM: for i:=0; i < len(arr1); i++ {

 arr1[i]= …

 }

The for-range construct is also useful:

IDIOM: for i:= range arr1 {

 …

 }

Here i is also the index in the array. Both for-constructs also work for slices (§ 7.2) of course.

Question 7.1: What is the output of the following code snippet?

 a := [...]string{“a”, “b”, “c”, “d”}

 for i := range a {

 fmt.Println(“Array item”, i, “is”, a[i])

 }

An array in Go is a value type (not a pointer to the first element like in C/C++), so it can be created
with new():

160

Ivo Balbaert

var arr1 = new([5]int)

What is the difference with: var arr2 [5]int ? arr1 is of type *[5]int, arr2 is of type [5]int .

The consequence is that when assigning an array to another, a distinct copy in memory of the array
is made. For example when:

arr2 := arr1

arr2[2] = 100

then the arrays have different values; changing arr2 after the assignment does not change arr1.

So when an array is passed as an argument to a function like in func1(arr1), a copy of the array is
made, and func1 cannot change the original array arr1.

If you want this to be possible or you want a more efficient solution, then arr1 must be passed by
reference with the &-operator, as in func1(&arr1), like in the following example

Listing 7.2—pointer_array.go:

package main

import “fmt”

func f(a [3]int) { fmt.Println(a) }

func fp(a *[3]int) { fmt.Println(a) }

func main() {

var ar [3]int

f(ar) // passes a copy of ar

fp(&ar) // passes a pointer to ar

}

Output: [0 0 0]
 &[0 0 0]

Another equivalent way is to make a slice of the array and pass that to the function (see Passing an
array to a function in § 7.1.4)

EXERCISES:

Exercise 7.1: array_value.go: Prove that when assigning an array to another, a distinct copy in
memory of the array is made.

The Way to Go

161

Exercise 7.2: for_array.go: Write the loop that fills an array with the loop-counter (from 0 to
15) and then prints that array to the screen.

Exercise 7.3: fibonacci_array.go: In § 6.6 we saw a recursive solution for calculating Fibonacci
numbers. But they can also be calculated in an imperative way, using a simple
array. Do this for the first 50 Fibonacci numbers.

7.1.2 Array literals

When the values (or some of them) of the items are known beforehand, a simpler initialization
exists using the { , , } notation called array literals (or constructors), instead of initializing every item
in the []= way. (All composite types have a similar syntax for creating literal values).

This is illustrated in the following code Listing 7.3—array_literals.go:

package main

import “fmt”

func main() {

var arrAge = [5]int{18, 20, 15, 22, 16}

var arrLazy = [...]int{5, 6, 7, 8, 22}

// var arrLazy = []int{5, 6, 7, 8, 22}

var arrKeyValue = [5]string{3: “Chris”, 4: “Ron”}

//var arrKeyValue = []string{3: “Chris”, 4: “Ron”}

for i := 0; i < len(arrKeyValue); i++ {

fmt.Printf(“Person at %d is %s\n”, i, arrKeyValue[i])

}

}

1st variant: var arrAge = [5]int{18, 20, 15, 22, 16}

Note that the [5]int can be omitted from the left-hand side

[10]int { 1, 2, 3 } : this is an array of 10 elements with the 1st
three different from 0.

2nd variant: var arrLazy = [...]int{5, 6, 7, 8, 22}

... indicates the compiler has to count the number of items to obtain the length of the
array.
But [...]int is not a type, so this is illegal:
 var arrLazy [...]int = [...]int{5, 6, 7, 8, 22}

The ... can also be omitted (technically speaking it then becomes a slice).

162

Ivo Balbaert

3rd variant: key: value syntax
 var arrKeyValue = [5]string{3: “Chris”, 4: “Ron”}

Only the items with indexes (keys) 3 and 4 get a real value, the others are set to empty
strings, as is shown in the output: Person at 0 is

Person at 1 is
Person at 2 is
Person at 3 is Chris
Person at 4 is Ron

Here also the length can be written as ... or even be omitted.

You can take the address of an array literal to get a pointer to a newly created instance, see Listing
7.4—pointer_array2.go:

package main

import “fmt”

func fp(a *[3]int) { fmt.Println(a) }

func main() {

for i := 0; i < 3; i++ {

fp(&[3]int{i, i * i, i * i * i})

}

}

Output: &[0 0 0]

 &[1 1 1]

 &[2 4 8]
Geometrical points (or mathematical vectors) are a classic example of the use of arrays. To clarify
the code often an alias is used: type Vector3D [3]float32

 var vec Vector3D

7.1.3 Multidimensional arrays

Arrays are always 1-dimensional, but they may be composed to form multidimensional arrays,
like: [3][5]int

 [2][2][2]float64

The inner arrays have always the same length. Go’s multidimensional arrays are rectangular (the
only exceptions can be arrays of slices, see § 7.2.5).

The Way to Go

163

Here is a code snippet which uses such an array:

Listing 7.5—multidim_array.go:

package main

const (

WIDTH =1920

HEIGHT = 1080

)

type pixel int

var screen [WIDTH][HEIGHT]pixel

func main() {

for y := 0; y < HEIGHT; y++ {

for x := 0; x < WIDTH; x++ {

screen[x][y] = 0

}

}

}

7.1.4 Passing an array to a function

Passing big arrays to a function quickly uses up much memory.

There are 2 solutions to prevent this:

1- Pass a pointer to the array
2- Use a slice of the array

The following example Listing 7.6—array_sum.go illustrates the first solution:
package main

import “fmt”

func main() {

 array := [3]float64{7.0, 8.5, 9.1}

 x := Sum(&array) // Note the explicit address-of operator

 // to pass a pointer to the array

 fmt.Printf(“The sum of the array is: %f”, x)

}

164

Ivo Balbaert

func Sum(a *[3]float64) (sum float64) {

 for _, v := range a { // dereferencing *a to get back to the array is

 not necessary!

 sum += v

 }

 return

}

// Output: The sum of the array is: 24.600000

But this is not idiomatic Go, solution 2 using slices is: see § 7.2.2

7.2 Slices

7.2.1 Concept

A slice is a reference to a contiguous segment(section) of an array (which we will call the underlying
array, and which is usually anonymous), so a slice is a reference type (thus more akin to the array
type in C/C++, or the list type in Python). This section can be the entire array, or a subset of the
items indicated by a start- and an end index (the item at the end-index is not included in the slice).
Slices provide a dynamic window onto the underlying array.

Slices are indexable and have a length given by the len()-function.

The slice-index of a given item can be less than the index of the same element in the underlying
array. Unlike an array, the length of a slice can change during execution of the code, minimally 0
and maximally the length of the underlying array: a slice is variable-length array.

The built-in capacity function cap() of a slice is a measure of how long a slice can become: it is the
length of the slice + the length of the array beyond the slice. If s is a slice cap is the size of the array
from s[0] to the end of the array. A slice’s length can never exceed its capacity, so the following
statement is always true for a slice s: 0 <= len(s) <= cap(s)

Multiple slices can share data if they represent pieces of the same array; multiple arrays can never
share data. A slice therefore shares storage with its underlying array and with other slices of the
same array, by contrast distinct arrays always represent distinct storage. Arrays are in fact building
blocks for slices.

The Way to Go

165

Advantage: Because slices are references, they don’t use up additional memory and so are more
efficient to use than arrays, so they are used much more than arrays in Go-code.

The format of the declaration is: var identifier []type no length is needed.

A slice that has not yet been initialized is set to nil by default, and has length 0.

Format of initialization of a slice: var slice1 []type = arr1[start:end]

This represents the subarray of arr1 (slicing the array, start:end is called a slice-expression) composed
of the items from index start to index end-1.So slice1[0] == arr1[start] is a true statement.
This can be defined even before the array arr1 is populated.

If one writes: var slice1 []type = arr1[:] then slice1 is equal to the complete array arr1 (so it is
a shortcut for arr1[0:len(arr1)]). Another way to write this is: slice1 = &arr1.

arr1[2:] is the same as arr1[2:len(arr1)] so contains all the items of the array from the 2nd till
the last.

arr1[:3] is the same as arr1[0:3], containing the array-items from the 1st till (not including) the
3rd .

If you need to cut the last element from slice1, use: slice1 = slice1[:len(slice1)-1]

A slice of the array with elements 1,2 and 3 can be made as follows: s := [3]int{1,2,3}[: or s
:= […]int{1,2,3}[:] or even shorter s := []int{1,2,3}

s2 := s[:] is a slice made out of a slice, having identical elements, but still refers to the same
underlying array.

A slice s can be expanded to its maximum size with: s = s[:cap(s)], any larger gives a run time
error (see listing 7.7).

For every slice (also for strings) the following is always true:

 s == s[:i] + s[i:] // i is an int: 0 <= i <= len(s)

 len(s) <= cap(s)

Slices can also be initialized like arrays: var x = []int{2, 3, 5, 7, 11}

166

Ivo Balbaert

What this does is create an array of length 5 and then create a slice to refer to it.

A slice in memory is in fact a structure with 3 fields: a pointer to the underlying array, the length of
the slice, and the capacity of the slice. This is illustrated in the following figure, where the slice y
is of length 2 and capacity 4.

y[0] = 3 and y[1] = 5. The slice y[0:4] contains the elements 3, 5, 7 and 11.

Fig 7.2: Slice in memory

Listing 7.7—array_slices.go shows us the basic usage:

package main

import “fmt”

func main() {

 var arr1 [6]int

 var slice1 []int = arr1[2:5] // item at index 5 not included!

 // load the array with integers: 0,1,2,3,4,5

 for i := 0; i < len(arr1); i++ {

 arr1[i] = i

 }

 // print the slice:

 for i := 0; i < len(slice1); i++ {

 fmt.Printf(“Slice at %d is %d\n”, i, slice1[i])

 }

 fmt.Printf(“The length of arr1 is %d\n”, len(arr1))

 fmt.Printf(“The length of slice1 is %d\n”, len(slice1))

The Way to Go

167

 fmt.Printf(“The capacity of slice1 is %d\n”, cap(slice1))

// grow the slice:

 slice1 = slice1[0:4]

 for i := 0; i < len(slice1); i++ {

 fmt.Printf(“Slice at %d is %d\n”, i, slice1[i])

 }

 fmt.Printf(“The length of slice1 is %d\n”, len(slice1))

 fmt.Printf(“The capacity of slice1 is %d\n”, cap(slice1))

// grow the slice beyond capacity:

// slice1 = slice1[0:7] // panic: runtime error: slice bounds out of range

}

Output: Slice at 0 is 2
Slice at 1 is 3
Slice at 2 is 4
The length of arr1 is 6
The length of slice1 is 3
The capacity of slice1 is 4
Slice at 0 is 2
Slice at 1 is 3
Slice at 2 is 4
Slice at 3 is 5
The length of slice1 is 4
The capacity of slice1 is 4

If s2 is a slice, then you can move the slice forward by one with s2 = s2[1:], but the end is not
moved. Slices can only move forward: s2 = s2[-1:] results in a compile error.

Slices cannot be re-sliced below zero to access earlier elements in the array.

!! Never use a pointer to a slice. A slice is already a reference type, so it is a pointer !!

Question 7.2: Given the slice of bytes b := []byte{‘g’, ‘o’, ‘l’, ‘a’, ‘n’, ‘g’}
 What are: b[1:4], b[:2], b[2:] and b[:] ?

168

Ivo Balbaert

7.2.2 Passing a slice to a function

If you have a function which must operate on an array, you probably always want to declare the
formal parameter to be a slice. When you call the function, slice the array to create (efficiently) a
slice reference and pass that. For example, here is a function that sums all elements in an array:

func sum(a []int) int {

s := 0

for i := 0; i < len(a); i++ {

s += a[i]

}

return s

}

func main {

var arr = [5]int{0,1,2,3,4}

sum(arr[:])

}

7.2.3 Creating a slice with make()

Often the underlying array is not yet defined, we can then make the slice together with the array
using the make() function: var slice1 []type = make([]type, len)

which can be shortened to: slice1 := make([]type, len)

where len is the length of the array and also the initial length of the slice.
So for the slice s2 made with: s2 := make([]int, 10)

the following is true: cap(s2) == len(s2) == 10

make takes 2 parameters: the type to be created, and the number of items in the slice.

If you want slice1 not to occupy the whole array (with length cap) from the start, but only a
number len of items, use the form: slice1 := make([]type, len, cap)

make has the signature: func make([]T, len, cap) []T with optional parameter cap.
So the following statements result in the same slice:
 make([]int, 50, 100)

 new([100]int)[0:50]

The following figure depicts the making of a slice in memory:

The Way to Go

169

Fig 7.2: Slice in memory

Example: Listing 7.8—make_slice.go:

package main

import “fmt”

func main() {

var slice1 []int = make([]int, 10)

// load the array/slice:

for i := 0; i < len(slice1); i++ {

slice1[i] = 5 * i

}

// print the slice:

for i := 0; i < len(slice1); i++ {

fmt.Printf(“Slice at %d is %d\n”, i, slice1[i])

}

fmt.Printf(“\nThe length of slice1 is %d\n”, len(slice1))

fmt.Printf(“The capacity of slice1 is %d\n”, cap(slice1))

}

Output: Slice at 0 is 0
Slice at 1 is 5
Slice at 2 is 10
Slice at 3 is 15
Slice at 4 is 20
Slice at 5 is 25
Slice at 6 is 30
Slice at 7 is 35
Slice at 8 is 40
Slice at 9 is 45
The length of slice1 is 10

170

Ivo Balbaert

The capacity of slice1 is 10

Because strings are in essence immutable arrays of bytes, they can be sliced too.

Exercise 7.4: fibonacci_funcarray.go: Starting from solution Ex 7.3, make a version in which
main calls a function with parameter the number of terms in the series. The
function returns a slice with the Fibonacci numbers up to that number.

7.2.4 Difference between new() and make()

This is often confusing at first sight: both allocate memory on the heap, but they do different
things and apply to different types.

▪ new(T) allocates zeroed storage for a new item of type T and returns its address,
a value of type *T: it returns a pointer to a newly allocated zero value of type T,
ready for use; it applies to value types like arrays and structs (see Chapter 10); it is
equivalent to &T{ }

▪ make(T) returns an initialized value of type T; it applies only to the 3 built-in
reference types: slices, maps and channels (see chapters 8 and 13).

In other words, new allocates; make initializes; the following figure illustrates this difference:

Fig 7.3: Difference between new() and make()

In the first drawing in fig 7.3:
 var p *[]int = new([]int) // *p == nil; with len and cap 0

or p := new([]int)

The Way to Go

171

which is only rarely useful.

In the lower figure: p := make([]int, 0)

our slice is initialized, but here points to an empty array.

Both these statements aren’t very useful, the following is:
var v []int = make([]int, 10, 50)

or v := make([]int, 10, 50)

This allocates an array of 50 ints and then creates a slice v with length 10 and capacity 50 pointing
to the first 10 elements of the array.

Question 7.3: Given s := make([]byte, 5), what is len(s) and cap(s) ?
 s = s[2:4], what is now len(s) and cap(s) ?

Question 7.4: Suppose s1 := []byte{‘p’, ‘o’, ‘e’, ‘m’} and s2 := d[2:]
 What is the value of s2 ?
 We do: s2[1] == ‘t’, what is now the value of s1 and s2 ?

7.2.5 Multidimensional slices

Like arrays, slices are always 1-dimensional but may be composed to construct higher-dimensional
objects. With slices of slices (or arrays of slices), the lengths may vary dynamically, so Go’s
multidimensional slices can be jagged. Moreover, the inner slices must be allocated individually
(with make).

7.2.6 The bytes package

Slices of bytes are so common that Go has a package bytes with manipulation functions for that
kind of type.

It is very analogous to the strings package (see. § 4.7). Moreover it contains a very handy type
Buffer: import “bytes”

 type Buffer struct {

 ...

 }

which is a variable-sized buffer of bytes with Read and Write methods, because reading and writing
an unknown number of bytes is best done buffered.

172

Ivo Balbaert

A Buffer can be created as a value as in: var buffer bytes.Buffer
or as a pointer with new as in: var r *bytes.Buffer = new(bytes.Buffer)

or created with the function: func NewBuffer(buf []byte) *Buffer

that creates and initializes a new Buffer using buf as its initial contents; it is best to use NewBuffer
only to read from buf.

Concatenating strings by using a buffer:

This works analogous to Java’s StringBuilder class.

Make a buffer, append each string s in it with the buffer.WriteString(s) method, and convert at
the end back to a string with buffer.String(), as in the following code snippet:

var buffer bytes.Buffer

for {

 if s, ok := getNextString(); ok { //method getNextString() not shown here

 buffer.WriteString(s)

 } else {

 break

 }

}

fmt.Print(buffer.String(), “\n”)

This method is much more memory and CPU-efficient than +=, especially if the number of strings
to concatenate is large.

EXERCISES:

Exercise 7.5: Given a slice sl we want to append a []byte data.
Write a function Append(slice, data[]byte) []byte which lets sl grow if it is not
big enough to accommodate data.

Exercise 7.6: Split a buffer buf into 2 slices: the header is the first n bytes, the tail is the rest; use
1 line of code.

7.3 For range construct

This construct can be applied to arrays and slices: for ix, value := range slice1 {

…

}

The Way to Go

173

The first return value ix is the index in the array or slice, the second is the value at that index; they
are local variables only known in the body of the for-statement, so value is a copy of the slice item
at that index and cannot be used to modify it!

Listing 7.9—slices_forrange.go:

package main

import “fmt”

func main() {

slice1 := make([]int, 4)

slice1[0] = 1

slice1[1] = 2

slice1[2] = 3

slice1[3] = 4

for ix, value := range slice1 {

fmt.Printf(“Slice at %d is: %d\n”, ix, value)

}

}

Listing 7.10—slices_forrange2.go presents an example with strings, only the important code is
shown here:

seasons := []string{“Spring”,“Summer”,“Autumn”,“Winter”}

for ix, season := range seasons {

fmt.Printf(“Season %d is: %s\n”, ix, season)

}

var season string

for _, season = range seasons {

fmt.Printf(“%s\n”, season)

}

_ can be used to discard the index.

If you only need the index, you can omit the 2nd variable, like in:

for ix := range seasons {

 fmt.Printf(“%d “, ix)

174

Ivo Balbaert

}

// Output: 0 1 2 3

Use this version if you want to modify seasons[ix]

for range with multidimensional slices:

It can be convenient to write the nested for-loops of §7.1.3 as simply counting the rows and
numbers of a matrix value, like in (taking the example of Listing 7.5—multidim_array.go):

for row := range screen {

 for column := range screen[0] {

 screen[row][column] = 1

 }

}

Question 7.5: Suppose we have the following slice:
 items := […]int{10, 20, 30, 40, 50}

a) If we code the following for-loop, what will be the value of items after the loop ?
for _, item := range items {

 item *= 2

}

Try it out if you are not sure.
b) If a) does not work, make a for-loop in which the values are doubled.

Question 7.6: Sum up the contexts in the Go syntax where the ellipsis operator … is used.

EXERCISES:

Exercise 7.7: sum_array.go:

a) Write a function Sum which has as parameter an array arrF of 4 floating-point
numbers, and which returns the sum of all the numbers in the array sum_array.go

How would the code have to be modified to use a slice instead of an array ?

The slice-form of the function works for arrays of different lengths!

The Way to Go

175

b) Write a function SumAndAverage which returns these two as unnamed variables
of type int and float32.

Exercise 7.8: min_max.go:

Write a minSlice function which takes a slice of ints and returns the minimum,
and a maxSlice function which takes a slice of ints and returns the maximum.

7.4 Reslicing

We saw that a slice is often made initially smaller than the underlying array, like this:
slice1 := make([]type, start_length, capacity)

with start_length of the slice and capacity the length of the underlying array.

This is useful because now our slice can grow till capacity.

Changing the length of the slice is called reslicing, it is done e.g. like: slice1 = slice1[0:end]
where end is another end-index (length) than before.

Resizing a slice by 1 can be done as follows: sl = sl[0:len(sl)+1] // extend length by 1

A slice can be resized until it occupies the whole underlying array.

This is illustrated in program Listing 7.11—reslicing.go:
package main

import “fmt”

func main() {

 slice1 := make([]int, 0, 10)

 // load the slice, cap(slice1) is 10:

 for i := 0; i < cap(slice1); i++ {

 slice1 = slice1[0:i+1] // reslice

 slice1[i] = i

 fmt.Printf(“The length of slice is %d\n”, len(slice1))

 }

 // print the slice:

 for i := 0; i < len(slice1); i++ {

 fmt.Printf(“Slice at %d is %d\n”, i, slice1[i])

 }

}

176

Ivo Balbaert

Output: The length of slice is 1
The length of slice is 2
The length of slice is 3
The length of slice is 4
The length of slice is 5
The length of slice is 6
The length of slice is 7
The length of slice is 8
The length of slice is 9
The length of slice is 10
Slice at 0 is 0
Slice at 1 is 1
Slice at 2 is 2
Slice at 3 is 3
Slice at 4 is 4
Slice at 5 is 5
Slice at 6 is 6
Slice at 7 is 7
Slice at 8 is 8
Slice at 9 is 9

Another example:

var ar = [10]int{0,1,2,3,4,5,6,7,8,9}

var a = ar[5:7] // reference to subarray {5,6} - len(a) is 2 and cap(a) is 5

reslicing a: a = a[0:4]
// ref of subarray {5,6,7,8} - len(a) is now 4 but cap(a) is still 5.

Question 7.7: 1) If s is a slice, what is the length of this reslice ? s[n:n]

 2) And what is the length of s[n:n+1]?

7.5 Copying and appending slices

To increase the capacity of a slice one must create a new, larger slice and copy the contents of
the original slice into it. The following code illustrates the functions copy for copying slices, and
append for appending new values to a slice.

The Way to Go

177

Listing 7.12—copy_append_slice.go:
package main

import “fmt”

func main() {

 sl_from := []int{1,2,3}

 sl_to := make([]int,10)

 n := copy(sl_to, sl_from)

 fmt.Println(sl_to) // output: [1 2 3 0 0 0 0 0 0 0]

fmt.Printf(“Copied %d elements\n”, n) // n == 3

 sl3 := []int{1,2,3}

 sl3 = append(sl3, 4, 5, 6)

 fmt.Println(sl3) // output: [1 2 3 4 5 6]

}

func append(s[]T, x ...T) []T

The function append appends zero or more values to a slice s and returns the resulting slice, with
the same type as s; the values of course have to be of same type as the element-type T of s. If the
capacity of s is not large enough to fit the additional values, append allocates a new, sufficiently
large slice that fits both the existing slice elements and the additional values. Thus, the returned
slice may refer to a different underlying array. The append always succeeds, unless the computer
runs out of memory.

If you want to append a slice y to a slice x, use the following form to expand the second argument
to a list of arguments: x = append(x, y...)

Remark: append is good for most purposes, however if you want complete control over the
process, you could use a function AppendByte like this:

func AppendByte(slice []byte, data ...byte) []byte {

 m := len(slice)

 n := m + len(data)

 if n > cap(slice) { // if necessary, reallocate

 // allocate double what’s needed, for future growth.

 newSlice := make([]byte, (n+1)*2)

 copy(newSlice, slice)

 slice = newSlice

178

Ivo Balbaert

 }

 slice = slice[0:n]

 copy(slice[m:n], data)

 return slice

}

func copy(dst, src []T) int

The function copy copies slice elements of type T from a source src to a destination dst, overwriting
the corresponding elements in dst, and returns the number of elements copied. Source and
destination may overlap. The number of arguments copied is the minimum of len(src) and len(dst).
When src is a string the element type is byte. If you want to continue working with the variable src,
put: src = dst after the copy.

Exercise 7.9: magnify_slice.go: Given a slice s []int and a factor of type int, enlarge s so that its
new length is len(s) * factor.

Exercise 7.10: filter_slice.go:
Using a higher order function for filtering a collection:
s is a slice of the first 10 integers. Make a function Filter which accepts s as 1st
parameter and a fn func(int) bool as 2nd parameter and returns the slice of the
elements of s which fulfil the function fn (make it true). Test this out with fn
testing if the integer is even.

Exercise 7.11: insert_slice.go:
Make a function InsertStringSlice that inserts a slice into another slice at a certain
index.

Exercise 7.12: remove_slice.go:
Make a function RemoveStringSlice that removes items from index start to end in
a slice.

7.6 Applying strings, arrays and slices

7.6.1 Making a slice of bytes from a string

If s is a string (so in fact an array of bytes) a slice of bytes c can immediately be made with c:=[]
byte(s). This can also be done with the copy-function: copy(dst []byte, src string)

The Way to Go

179

For-range can also be applied, example Listing 7.13—for_string.go:
package main

import “fmt”

func main() {

 s := “\u00ff\u754c”

 for i, c := range s {

 fmt.Printf(“%d:%c “, i, c)

 }

}

Output: 0:ÿ 2:界

We see that Unicode-characters take 2 bytes; some characters can even take 3 or 4 bytes. If erroneous
UTF-8 is encountered, the character is set to U+FFFD and the index advances by one byte. In
the same way the conversion c:=[]int(s) is allowed, then each int contains a Unicode code point:
every character from the string corresponds to one integer; similarly the conversion to runes can
be done with: r:=[]rune(s)

The number of characters in a string s is given by len([]int(s)), but utf8.RuneCountInString(s)
is faster (see Ex 4.6).

A string may be appended to a byte slice, like this:

var b []byte

var s string

b = append(b, s...)

7.6.2 Making a substring of a string

substr := str[start:end] takes the substring from str from the byte at index start to the byte
at index end—1. Also str[start:] is the substring starting from index start to len(str) – 1,
str[:end] is the substring starting from index 0 to end – 1.

7.6.3 Memory representation of a string and a slice

A string in memory is in fact a 2 word-structure consisting of a pointer to the string data and the
length (see Fig 7.4); the pointer is completely invisible in Go-code; so for all practical purposes we
can continue to see a string as a value type, namely its underlying array of characters. A substring
(slice) t = s[2:3] of the string s = “hello” can be represented in memory as:

180

Ivo Balbaert

Fig 7.4: String and slice in memory

7.6.4 Changing a character in a string

Strings are immutable. This means when str denotes a string that str[index] cannot be the left side
of an assignment: str[i] = ‘D’ where i is a valid index gives the error cannot assign to
str[i]

To do this you first have to convert the string to an array of bytes, then an array-item of a certain
index can be changed, and then the array must be converted back to a new string.

For example, change “hello” to “cello”:

s:=“hello”
c:=[]byte(s)
c[0]=’c’
s2:= string(c) // s2 == “cello”

So it is clear that string-extractions are very easy with the slice-syntax.

7.6.5 Comparison function for byte arrays

The following function Compare returns an integer comparing 2 byte arrays lexicographically.

The result is : 0 if a ==b, -1 if a < b, 1 if a > b

func Compare(a, b[]byte) int {
 for i:=0; i < len(a) && i < len(b); i++ {

The Way to Go

181

 switch {
 case a[i] > b[i]:
 return 1
 case a[i] < b[i]:
 return -1
 }
 }
 // Strings are equal except for possible tail
 switch {
 case len(a) < len(b):
 return -1
 case len(a) > len(b):
 return 1
 }
 return 0 // Strings are equal
}

7.6.6 Searching and sorting slices and arrays

Searching and sorting are very common operations and the standard library provides for these in
the package sort. To sort a slice of ints, import the package “sort” and simply call the function func
Ints(a []int) as in sort.Ints(arri), where arri is the array or slice to be sorted in ascending
order. To test if an array is sorted, use func IntsAreSorted(a []int) bool, which returns true or
false whether or not the array is sorted.

Similarly for float64 elements, you use the function func Float64s(a []float64) and for strings
there is the function func Strings(a []string).

To search an item in an array or slice, the array must first be sorted (the reason is that the
search-functions are implemented with the binary-search algorithm). Then you can use the
function func SearchInts(a []int, n int) int, which searches for n in the slice a, and returns its
index. And of course the equivalent functions for float64s and strings exist also:

func SearchFloat64s(a []float64, x float64) int

func SearchStrings(a []string, x string) int

Further details can be found in the official information: http://golang.org/pkg/sort/

This is how to use the sort-package functions. In §11.6 we discover the theory behind it, and we
implement ourselves the sort-functionality, much like in the package.

182

Ivo Balbaert

7.6.7 Simulating operations with append

The append method from § 7.5 is very versatile and can be used for all kinds of manipulations:

1) Append a slice b to an existing slice a: a = append(a, b...)

2) Copy a slice a to a new slice b: b = make([]T, len(a))

 copy(b, a)

3) Delete item at index i: a = append(a[:i], a[i+1:]...)

4) Cut from index i till j out of slice a: a = append(a[:i], a[j:]...)

5) Extend slice a with a new slice of length j: a = append(a, make([]T, j)...)

6) Insert item x at index i: a = append(a[:i], append([]T{x},

 a[i:]...)...)

7) Insert a new slice of length j at index i: a = append(a[:i], append(make([]T,

 j), a[i:]...)...)

8) Insert an existing slice b at index i: a = append(a[:i], append(b,

 a[i:]...)...)

9) Pop highest element from stack: x, a = a[len(a)-1], a[:len(a)-1]

10) Push an element x on a stack: a = append(a, x)

So to represent a resizable sequence of elements use a slice and the append-operation.

A slice is often called a vector in a more mathematical context. If this makes code clearer you can
define a vector alias for the kind of slice you need, Listing 10.11 (method2.go) shows a simple
example.

If you need something more elaborated go and have a look at the following packages written by
Eleanor McHugh: http://github.com/feyeleanor/slices, http://github.com/feyeleanor/chain, and
http://github.com/feyeleanor/lists.

7.6.8 Slices and garbage collection

A slice points to the underlying array; this array could potentially be very much bigger than the
slice as in the following example. As long as the slice is referred to, the full array will be kept in
memory until it is no longer referenced. Occasionally this can cause the program to hold all the
data in memory when only a small piece of it is needed.

Example: this FindDigits function loads a file into memory and searches it for the first group of
consecutive numeric digits, returning them as a new slice.

The Way to Go

183

var digitRegexp = regexp.MustCompile(“[0-9]+”)

func FindDigits(filename string) []byte {

 b, _ := ioutil.ReadFile(filename)

 return digitRegexp.Find(b)

}

This code works as described, but the returned []byte points into an array containing the entire file.
Since the slice references the original array, as long as the slice is kept around the garbage collector
can’t release the array; the few useful bytes of the file keep the entire contents in memory.

To fix this problem one can copy the interesting data to a new slice before returning it:

func FindDigits(filename string) []byte {

 b, _ := ioutil.ReadFile(filename)

 b = digitRegexp.Find(b)

 c := make([]byte, len(b))

 copy(c, b)

 return c

}

EXERCISES:

Exercise 7.12: string_split.go:

Write a function Split with parameters a string to split and the position to split,
which returns the two substrings.

Exercise 7.13: string_split2.go:
If str is a string, what then is str[len(str)/2:] + str[:len(str)/2]? Test it

Exercise 7.14: string_reverse.go:
Write a program that reverses a string, so “Google” is printed as ” elgooG”.
(Hint: use a slice of bytes and conversions.)
If you coded a solution with two slices, try a variant which uses only one (Hint:
use swapping)
If you want to be able to reverse Unicode-strings: use []int !

Exercise 7.15: uniq.go

Write a program that traverses an array of characters, and copies them to another
array only if the character is different from that which precedes it.

184

Ivo Balbaert

Exercise 7.16: bubblesort.go

Sort a slice of ints through a function which implements the Bubblesort-algorithm
(look up the definition of this algorithm at http://en.wikipedia.org/wiki/
Bubble_sort)

Exercise 7.17: map_function.go

In functional languages a map-function is a function which takes a function and a
list as arguments, and its result is a list where the argument-function is applied to
each element of the list, formally:
map (F(), (e1,e2, . . . ,en)) = (F(e1), F(e2), … F(en))
Write such a function mapFunc which takes as arguments:

- a (lambda) function that multiplies an int by 10
- a list of ints

and returns the list of all ints multiplied by 10.

185

Chapter 8—Maps

Maps are a special kind of data structure: an unordered collection of pairs of items, where one
element of the pair is the key, and the other element, associated with the key, is the data or the
value, hence they are also called associative arrays or dictionaries. They are ideal for looking up
values fast: given the key, the corresponding value can be retrieved very quickly.

This structure exists in many other programming languages under other names such as Dictionary
(dict in Python), hash, HashTable, etc.

8.1 Declaration, initialization and make

8.1.1 Concept

A map is a reference type and declared in general as: var map1 map[keytype]valuetype

e.g.: var map1 map[string]int

(A space is allowed between [keytype] valuetype, but gofmt removes this)

The length of the map doesn’t have to be known at declaration: a map can grow dynamically.

The value of an uninitialized map is nil.

The key type can be any type for which the operations == and != are defined, like string, int, float.
So arrays, slices and structs cannot be used as key type, but pointers and interface types can. One
way to use structs as a key is to provide them with a Key() or Hash() method, so that a unique
numeric or string key can be calculated from the struct’s fields.

The value type can be any type; by using the empty interface as type (see § 11.9), we could store
any value, but when using that value we would first have to do a type assertion (see § 11.3).

Maps are cheap to pass to a function: 4 bytes on a 32 bit machine, 8 bytes on a 64 bit machine,
no matter how much data they hold. Looking up a value in a map by key is fast, much faster

186

Ivo Balbaert

than a linear search, but still around 100x slower than direct indexing in an array or slice; so if
performance is very important try to solve the problem with slices.

A map with function values can also be used as a branching structure (see chapter 5): the keys are
used to select the branch which is a function that is executed.

If key1 is a key value of map map1, then map1[key1] is the value associated with key1, just like
the array-index notation (an array could be considered as a simple form of a map, where the keys
are integers starting from 0).

The value associated with key1 can be set to (or if already present changed to) val1 through the
assignment: map1[key1] = val1

The assignment v:= map1[key1] stores in v the value corresponding to key1; if key1 is not present
in the map, then v becomes the zero-value for the value type of map1.

As usual len(map1) gives the number of pairs in the map, which can grow or diminish because
map-pairs may be added or removed during runtime.

In Listing 8.1—make_maps.go a number of maps are shown:
package main
import “fmt”

func main() {
 var mapLit map[string]int
 //var mapCreated map[string]float32
 var mapAssigned map[string]int

 mapLit = map[string]int{“one”: 1, “two”: 2}
 mapCreated := make(map[string]float32)
 mapAssigned = mapLit

 mapCreated[“key1”] = 4.5
 mapCreated[“key2”] = 3.14159
 mapAssigned[“two”] = 3

 fmt.Printf(“Map literal at \“one\” is: %d\n”, mapLit[“one”])

 fmt.Printf(“Map created at \“key2\” is: %f\n”, mapCreated[“key2”])

 fmt.Printf(“Map assigned at \“two\” is: %d\n”, mapLit[“two”])

 fmt.Printf(“Map literal at \“ten\” is: %d\n”, mapLit[“ten”])
}

Output: Map literal at “one” is: 1
 Map created at “key2” is: 3.141590

The Way to Go

187

 Map assigned at “two” is: 3
 Map literal at “ten” is: 0

mapLit illustrates the use of map literals: a map can be initialized with the {key1: val1, key2:
val2} notation, just like arrays and structs.

Maps are reference types: memory is allocated with the make-function:

Initialization of a map: var map1[keytype]valuetype = make(map[keytype]valuetype)

or shorter with: map1 := make(map[keytype]valuetype)

mapCreated is made in this way: mapCreated := make(map[string]float)
which is equivalent to: mapCreated := map[string]float{}

Also mapAssigned is a reference to the same value as mapLit, changing mapAssigned also changes
mapLit as the program output shows.
!! Don’t use new, always use make with maps !!

Remark: If you by mistake allocate a reference object with new(), you receive a pointer to a nil
reference, equivalent to declaring an uninitialized variable and taking its address:

mapCreated := new(map[string]float)

Then we get in the statement: mapCreated[“key1”] = 4.5

the compiler error: invalid operation: mapCreated[“key1”] (index of type *map[string]

float).

To demonstrate that the value can be any type, here is an example of a map which has a func() int
as its value: Listing 8.2—map_func.go:

package main

import “fmt”

f unc main() {

 mf := map[int]func() int{

 1: func() int { return 10 },

 2: func() int { return 20 },

 5: func() int { return 50 },

 }

 fmt.Println(mf)

}

The output is: map[1:0x10903be0 5:0x10903ba0 2:0x10903bc0]: the integers are mapped to
addresses of functions.

188

Ivo Balbaert

8.1.2 Map capacity

Unlike arrays, maps dynamically grow to accommodate new key-values that are added, they have
no fixed or maximum size. But you can optionally indicate an initial capacity cap for the map, as
in make(map[keytype]valuetype, cap)

e.g.: map2 := make(map[string]float, 100)

When the map has grown to its capacity, and a new key-value is added, then the size of the map will
automatically increase by 1. So for large maps or maps that grow a lot, it is better for performance
to specify an initial capacity, even if this is only known approximately.

Here is a more concrete example of a map: map the name of a musical note to its frequency in Hz
(measuring frequencies in Hz for equal-tempered scale (A4 = 440Hz)):

noteFrequency := map[string]float32{

 “C0”: 16.35, “D0”: 18.35, “E0”: 20.60, “F0”: 21.83,

 “G0”: 24.50, “A0”: 27.50, “B0”: 30.87, “A4”: 440}

8.1.3 Slices as map values

When one key has only one associated value, the value can be a primitive type. What if a key
corresponds to many values ? For example, when we have to work with all the processes on a
Unix-machine, where a parent process as key (process-id pid is an int value) can have many child
processes (represented as a slice of ints with their pid’s as items). This can be elegantly solved by
defining the value type as a []int or a slice of another type.

Here are some examples defining such maps:

mp1 := make(map[int][]int)

mp2 := make(map[int]*[]int)

8.2 Testing if a key-value item exists in a map—Deleting an element

Testing the existence of key1 in map1:

We saw in § 8.1 that val1 = map1[key1] returns us the value val1 associated with key1. If key1 does
not exist in the map, val1 becomes the zero-value for the value’s type.

But this is ambiguous: now we can’t distinguish between this case, or the case where key1 does exist
and its value is the zero-value!

The Way to Go

189

In order to test this, we can use the following comma ok form: val1, isPresent = map1[key1]

isPresent returns a Boolean value: if key1 exists in map1, val1 will contain the value for key1, and
isPresent will be true; if key1 does not exist in map1, val1 will contain the zero-value for its type,
and isPresent will be false.

If you just want to check for the presence of a key and don’t care about its value, you could write:
_, ok := map1[key1] // ok == true if key1 is present, false otherwise

Or combined with an if: if _, ok := map1[key1]; ok {

 // …
 }

Deleting an element with key1 from map1:

This is done with: delete(map1, key1)

When key1 does not exist this statement doesn’t produce an error.

Both techniques are illustrated in the Listing 8.4—map_testelement.go:
package main

import “fmt”

func main() {

 var value int

 var isPresent bool

 map1 := make(map[string]int)

 map1[“New Delhi”] = 55

 map1[“Bejing”] = 20

 map1[“Washington”] = 25

 value, isPresent = map1[“Bejing”]

 if isPresent {

 fmt.Printf(“The value of \“Bejing\” in map1 is: %d\n”, value)

 } else {

 fmt.Println(“map1 does not contain Bejing”)

 }

 value, isPresent = map1[“Paris”]

 fmt.Printf(“Is \“Paris\” in map1 ?: %t\n”, isPresent)

190

Ivo Balbaert

 fmt.Printf(“Value is: %d\n”, value)

 // delete an item:

 delete(map1, “Washington”)

 value, isPresent = map1[“Washington”]

 if isPresent {

 fmt.Printf(“The value of \“Washington\” in map1 is: %d\n”, value)

 } else {

 fmt.Println(“map1 does not contain Washington”)

 }

}

Output: The value of “Bejing” in map1 is: 20
Is “Paris” in map1 ?: false
Value is: 0
map1 does not contain Washington

8.3 The for range construct

This construct can also be applied to maps: for key, value := range map1 {
…

}

The first return value key is the key of the map, thwe second is the value for that key; they are
local variables only known in the body of the for-statement. The first element in a map iteration is
chosen at random.If you are only interested in the values,
use the form: for _, value := range map1 {

 …

}

To get only the keys, you can use: for key := range map1 {

fmt.Printf(“key is: %d\n”, key)

}

Example: Listing 8.5—maps_forrange.go:
package main

import “fmt”

func main() {

 map1 := make(map[int]float32)

 map1[1] = 1.0

The Way to Go

191

 map1[2] = 2.0

 map1[3] = 3.0

 map1[4] = 4.0

for key, value := range map1 {

fmt.Printf(“key is: %d - value is: %f\n”, key, value)

 }

}

Output: key is: 3 - value is: 3.000000
key is: 1 - value is: 1.000000
key is: 4 - value is: 4.000000
key is: 2 - value is: 2.000000

We see that a map is not key-ordered, neither is it sorted on the values.

Question 8.1: What is the output of the following code snippet:
capitals := map[string] string {“France”:“Paris”, “Italy”:“Rome”,

“Japan”:“Tokyo” }

for key := range capitals {

 fmt.Println(“Map item: Capital of”, key, “is”, capitals[key])

}

Exercise 8.1: map_days.go

Make a map to hold together the number of the day in the week (1 -> 7) with its name.

Print them out and test for the presence of tuesday and hollyday.

8.4 A slice of maps

Suppose we want to make a slice of maps, then we must use make() 2 times, first for the slice, then
for each of the map-elements of the slice, like in Listing 8.3

But take care to use the map-items in the slice by index, as in version A. The item value in version
B is a copy of the map-value, so the real map-variables don’t get initialized.

Listing 8.3—slice_maps.go:
package main

import (

 “fmt”

192

Ivo Balbaert

)

func main() {

// Version A:

 items := make([]map[int]int, 5)

 for i := range items {

 items[i] = make(map[int]int, 1)

 items[i][1] = 2

 }

 fmt.Printf(“Version A: Value of items: %v\n”, items)

// Version B: NOT GOOD!

 items2 := make([]map[int]int, 5)

 for _, item := range items2 {

 item = make(map[int]int, 1)

 // item is only a copy of the slice element.

 item[1] = 2

 // This ‘item’ will be lost on the next iteration.

 }

 fmt.Printf(“Version B: Value of items: %v\n”, items2)

}

/* Output:

Version A: Value of items: [map[1:2] map[1:2] map[1:2] map[1:2] map[1:2]]

Version B: Value of items: [map[] map[] map[] map[] map[]]

*/

8.5 Sorting a map

By default a map isw not sorted, not even on the value of its keys (see listing 8.5)

If you want a sorted map, copy the keys (or values) to a slice, sort the slice (using the sort package,
see § 7.6.6), and then print out the keys and/or values using a for-range on the slice.

This is illustrated in the following program:

Listing 8.6—sort_map.go:
// the telephone alphabet:

package main

import (

 “fmt”

 “sort”

The Way to Go

193

)

var (

 barVal = map[string]int{“alpha”: 34, “bravo”: 56, “charlie”: 23,

 “delta”: 87, “echo”: 56, “foxtrot”: 12, “golf”: 34, “hotel”: 16,

 “indio”: 87, “juliet”: 65, “kilo”: 43, “lima”: 98}

)

func main() {

 fmt.Println(“unsorted:”)

 for k, v := range barVal {

 fmt.Printf(“Key: %v, Value: %v / “, k, v)

 }

 keys := make([]string, len(barVal))

 i := 0

 for k, _ := range barVal {

 keys[i] = k

 i++

 }

 sort.Strings(keys)

 fmt.Println()

 fmt.Println(“sorted:”)

 for _, k := range keys {

 fmt.Printf(“Key: %v, Value: %v / “, k, barVal[k])

 }

}

/* Output:

unsorted:

Key: indio, Value: 87 / Key: echo, Value: 56 / Key: juliet, Value: 65 / Key: charlie,

Value: 23 / Key: hotel, Value: 16 / Key: lima, Value: 98 / Key: bravo, Value: 56 / Key:

alpha, Value: 34 / Key: kilo, Value: 43 / Key: delta, Value: 87 / Key: golf, Value: 34 /

Key: foxtrot, Value: 12 /

sorted:

Key: alpha, Value: 34 / Key: bravo, Value: 56 / Key: charlie, Value: 23 / Key: delta,

Value: 87 / Key: echo, Value: 56 / Key: foxtrot, Value: 12 / Key: golf, Value: 34 / Key:

194

Ivo Balbaert

hotel, Value: 16 / Key: indio, Value: 87 / Key: juliet, Value: 65 / Key: kilo, Value: 43

/ Key: lima, Value: 98 /

*/

But if what you want is a sorted list you better use a slice of structs, which is more efficient:

type struct {

 key string

 value int

}

8.6 Inverting a map

By this we mean switching the values and keys. If the value type of a map is acceptable as a key
type, and the map values are unique, this can be done easily:

Listing 8.7—invert_map.go:
package main

import (

 “fmt”

)

var (

 barVal = map[string]int{“alpha”: 34, “bravo”: 56, “charlie”: 23,

 “delta”: 87, “echo”: 56, “foxtrot”: 12, “golf”: 34, “hotel”: 16,

 “indio”: 87, “juliet”: 65, “kilo”: 43, “lima”: 98}

)

func main() {

 invMap := make(map[int]string, len(barVal))

 for k, v := range barVal {

 invMap[v] = k

 }

 fmt.Println(“inverted:”)

 for k, v := range invMap {

 fmt.Printf(“Key: %v, Value: %v / “, k, v)

 }

}

/* Output:

inverted:

The Way to Go

195

Key: 12, Value: foxtrot / Key: 16, Value: hotel / Key: 87, Value: delta / Key: 23,

Value: charlie /

Key: 65, Value: juliet / Key: 43, Value: kilo / Key: 56, Value: bravo / Key: 98,

Value: lima /

Key: 34, Value: golf /

*/

This goes wrong of course when the original value items are not unique; in that case no error occurs,
but the processing of the inverted map is simply stopped when a nonunique key is encountered,
and it will most probably not contain all pairs from the original map! A solution is to carefully test
for the uniqueness and making use of a multi-valued map, in this case of type map[int][]string

Exercise 8.2: map_drinks.go

Construct a collection which maps English names of drinks to the French (or your native language)
translations; print first only the drinks available, and then print both (the name and the translation).
Then produce the same output, but this time the English names of the drinks must be sorted.

196

Chapter 9—Packages

A The standard library

9.1 Overview of the standard library.

The Go-distribution contains over 150 standard built-in packages for common functionality, like
fmt, os, . . . , as a whole designated as the standard library, for the most part (except some low level
routines) built in Go itself. They are documented at: http://golang.org/pkg/

In the examples and exercises throughout the book, we use the packages of the standard library; for
a quick index and practical examples, see: References in the text to Go—packages p. 350 . Here we
will discuss their general purpose of a number of them grouped by function, we will not go into
details about their inner structure.

unsafe: contains commands to step out of the Go type-safety, not needed in normal programs; can
be useful when interfacing with C/C++

syscall—os—os/exec:

os: gives us a platform-independent interface to operating-system functionality; its
design is Unix-like; it hides the differences between various operating systems to
give a consistent view of files and other OS-objects.

os/exec: gives you the possibility to run external OS commands and programs.
syscall: is the low-level, external package, which provides a primitive interface to the

underlying OS ‘s calls.

As an example of its power, here is a Go-program to make a Linux-machine reboot (start with sudo
./6.out):

The Way to Go

197

Listing 9.1 reboot.go:

package main

import (

“syscall”

)

const LINUX_REBOOT_MAGIC1 uintptr = 0xfee1dead

const LINUX_REBOOT_MAGIC2 uintptr = 672274793

const LINUX_REBOOT_CMD_RESTART uintptr = 0x1234567

func main() {

 syscall.Syscall(syscall.SYS_REBOOT,

 LINUX_REBOOT_MAGIC1,

 LINUX_REBOOT_MAGIC2,

 LINUX_REBOOT_CMD_RESTART)

}

archive/tar and /zip—compress: functionality for (de)compressing files.

fmt—io—bufio—path/filepath—flag:

fmt contains functionality for formatted input-output.
io: provides basic input-output functionality, mostly as a wrapper around os-functions.
bufio: wraps around io to give buffered input-output functionality.
path/filepath: routines for manipulating filename paths targeted at the OS used.
flag: functionality to work with command-line arguments

strings—strconv—unicode—regexp—bytes:

strings: for working with strings.
strconv: converting them to basic data types.
unicode: special functions for Unicode characters.
regexp: provides pattern-search functionality in complex strings.
bytes: contains functions for the manipulation of byte slices.
index/suffixarray: for very fast searching in strings.

math—math/cmath—math/big—math/rand—sort:

math: basic mathematical constands and functions.
math/cmath: manipulations with complx numbers.
math/rand: contains pseudo-random number generators.
sort functionality for sorting arrays and user-defined collections.
math/big: multiprecision arithmetic for working with arbitrarily large integers and rational
numbers.

198

Ivo Balbaert

container: /list—ring—heap: implement containers for manipulating collections:
list: to work with doubly linked lists.

For example, to iterate over a list(where l is a *List):
for e := l.Front(); e != nil; e = e.Next() {

// do something with e.Value

}

ring: to work with circular lists.

time—log:

time: basic functionality for working with times and dates.
log: functionality for logging information in a running program; we’ll use it throughout
examples in the following chapters.

encoding/json—encoding/xml—text/template:
encoding/json: implements the functions for reading/decoding as well as writing/encoding data
in JSON forwmat
encoding/xml: simple XML 1.0 parser; for examples of json and xml: see § 12.9/10
text/template: to make data-driven templates which can generate textual output mixed with data,
like HTML (see § 15.7)

net—net/http—html: (see chapter 15)
net: basic functions for working with network-data
http: functionality for parsing HTTP requests/replies, provides an extensible HTTP server and
a basic client.
html: parser for HTML5.

crypto—encoding—hash—…: a multitude of packages for en- and decrypting data.

runtime—reflect:

runtime: operations for interacting with the Go-runtime, such as the garbage collection and
goroutines.

reflect: implements runtime introspection, allowing a program to manipulate variables
with arbitrary types.

The package exp contains ‘experimental’ packages, that is new packages being build. When they
have matured enough they become independent packages at the next stable release. If a previous
version existed, then this is moved to package old, in fact a recycle bin for deprecated packages.
However the Go 1 release does not contain the old and exp packages.

The Way to Go

199

Exercise 9.1: dlinked_list.go

Use the package container/list to construct a double linked list, put the values 101,102,103 in it
and make a printout of the list.

Exercise 9.2: size_int.go

Use a function from the unsafe package to test the size of an int variable on your computer.

9.2 The regexp package.

For info about regular expressions and the syntax it uses, see: http://en.wikipedia.org/wiki/
Regular_expression

In the following program we want to search a string pattern pat in a string searchIn.

Testing if the pattern occurs is easy, just use Match: ok, _ := regexp.Match(pat, []

byte(searchIn))

where ok will be true or false, or use MatchString: ok, _ := regexp.MatchString(pat,

searchIn)

For more functionality, you must first make a (pointer to a) Regexp object from the pattern; this
is done through the Compile function. Then we have at our disposal a whole number of Match-,
Find- and Replace-functions.

Listing 9.2—pattern.go:

Package main

import (

 “fmt”

 “regexp”

 “strconv”

)

func main() {

 // string to search

 searchIn := “John: 2578.34 William: 4567.23 Steve: 5632.18”

 pat := “[0-9]+.[0-9]+” // pattern to search for in searchIn

 f := func (s string) string {

 v, _ := strconv.ParseFloat(s, 32)

200

Ivo Balbaert

 return strconv.FormatFloat(v * 2, ‘f’, 2, 32)

 }

 if ok, _ := regexp.Match(pat, []byte(searchIn)); ok {

 fmt.Println(“Match found!”)

 }

 re, _ := regexp.Compile(pat)

 // replace pat with “##.#”

 str := re.ReplaceAllString(searchIn, “##.#”)

 fmt.Println(str)

 // using a function :

 str2 := re.ReplaceAllStringFunc(searchIn, f)

 fmt.Println(str2)

}

/* Output:

Match found!

John: ##.# William: ##.# Steve: ##.#

John: 5156.68 William: 9134.46 Steve: 11264.36

*/

The Compile function also returns an error, which we have safely ignored here because we have
entered the pattern ourselves and know that it is a valid regular expression. Should the expression
be entered by the user or taken from a data source, then it is necessary to check this parsing error.
In this example we could also have used the function MustCompile which is like Compile but panics
(stopping the program with an error message, see § 13.2) when the pattern is not a valid regular
expression.

9.3 Locking and the sync package.

In more complex programs different parts of the application may execute simultaneously or
concurrently as this is technically called, usually by executing each part of the program on a different
thread of the operating system. When these different parts share and work with the same variables,
most likely problems occur: the order in which these shared variables are updated cannot be
predicted and hence also their values are unpredictable! (this is commonly called a race condition:
the threads race for the updates of the variables). This is of course intolerable in a correct program,
so how do we solve this issue?

The classic approach is to let only one thread at a time change the shared variable: the code in
which the variable is changed (called the critical section) is locked when a thread starts executing,

The Way to Go

201

so no other thread can start with it. Only when the executing thread has finished the section an
unlock occurs, so another thread can access it.

In particular the map type which we have studied in this chapter does not contain any internal
locking to achieve this effect (this is left out for performance reasons); it is said that the map type
is not thread-safe. So when concurrent accesses happen to a shared map datastructure, corrupted,
that means not correct, map data can result.

In Go this kind of locking is realized with the Mutex variable of the sync package . sync comes from
synchronized, here meaning the threads are synchronized to update the variable(s) in an orderly
fashion.

A sync.Mutex is a mutual exclusion lock: it serves to guard the entrance to the critical section of code
so that only one thread can enter the critical section at one time.

Suppose Info is a shared memory variable which must be guarded, then a typical technique is to
include a mutex in it, like:

import “sync”

type Info struct {

 mu sync.Mutex

 // … other fields, e.g.:

 Str string

}

A function which has to change this variable could then be written like:

func Update(info *Info) {

 info.mu.Lock()

 // critical section:

 info.Str = // new value

 // end critical section

 info.mu.Unlock()

}

An example of its usefulness is a shared buffer, which has to be locked before updating: the
SyncedBuffer: type SyncedBuffer struct{

 lock sync.Mutex

 buffer bytes.Buffer

 }

202

Ivo Balbaert

The sync package also has a RWMutex: a lock which allows many reader threads by using RLock(),
but only one writer thread. If Lock() is used, the section is locked for writing as with the normal
Mutex. It also contains a handy function once.Do(call) where once is a variabole of type Once,
which guarantees that the function call will only be invoked 1 time, regardless of how many once.
Do(call) ‘s there are.

For relatively simple situations using locking through the sync package so that only one thread at
a time can access the variable or the map will remedy this problem. If this slows done the program
too much or causes other problems, the solution must be rethought with goroutines and channels
in mind: this is the technology proposed by Go for writing concurrent applications. We will go
deeply into this in chapter 14, in § 14.7 we will also compare the two approaches.

9.4 Accurate computations and the big package.

We know that programmatically performed computations are sometimes not accurate. If you use
Go’s float64 type in floating point numbers computation, the results are accurate to about 15
decimal digits, enough for most tasks. When computing with very big whole numbers the range
of the types int64 or uint64 might also be too small. In that case float32 or float64 can be used if
accuracy is not a concern, but if it is we cannot use floating-point numbers because they are only
represented by approximation in memory.

For performing perfectly accurate computations with integer values Go provides the big package,
contained in the math package: big.Int for integers and big.Rat for rational numbers (these are
numbers than can be represented by a fraction like 2/5 or 3.1416, but not irrational numbers like
e or π) . These types can hold an arbitrary number of digits, only limited by the machine’s available
memory. The downside is the bigger memory usage and the processing overhead: they are a lot
slower to process than built-in integers.

A big integer is constructed with the function big.NewInt(n), where n is an int64; a big rational
number with big.NewRat(n, d) where both n (the numerator) and d (the denominator) are of type
int64. Because Go does not support operator overloading all the methods of the big types have
names, like Add() and Mul(). They are methods (see § 10.6) acting on the integer or rational as
receiver, and in most cases they modify their receiver and also return the receiver as result, so that
the operations can be chained and memory saved, because no temporary big.Int variables have to
be created to hold intermediate results.

We see this in action in listing 9.3:

The Way to Go

203

Listing 9.3—big.go:

package main

import (

“fmt”

“math”

“math/big”

)

func main() {

// Here are some calculations with bigInts:

im := big.NewInt(math.MaxInt64)

in := im

io := big.NewInt(1956)

ip := big.NewInt(1)

ip.Mul(im, in).Add(ip, im).Div(ip, io)

fmt.Printf(“Big Int: %v\n”, ip)

// Here are some calculations with bigInts:

rm := big.NewRat(math.MaxInt64, 1956)

rn := big.NewRat(-1956, math.MaxInt64)

ro := big.NewRat(19, 56)

rp := big.NewRat(1111, 2222)

rq := big.NewRat(1, 1)

rq.Mul(rm, rn).Add(rq, ro).Mul(rq, rp)

fmt.Printf(“Big Rat: %v\n”, rq)

}

/* Output:

Big Int: 43492122561469640008497075573153004

Big Rat: -37/112

*/

B Custom and external packages: use, build, test, document, install

9.5 Custom packages and visibility

Packages are the primary means in Go of organizing and compiling code. A lot of basic information
about them has already been given in chapter 4 § 4.2, most notably the Visibility rule. Now we will
see concrete examples of the use of packages that you write yourself. In the next sections we will
review some packages of the standard library. By custom packages we mean self-written packages
or otherwise external to the standard library.

204

Ivo Balbaert

When writing your own packages, use short, single-word, lowercase names without _ for the
filename(s). Here is a simple example as to how packages can find each other and how the Visibility
rule works:

Our current directory (code examples\chapter 9) contains the program package_test.go. It uses
code from a program pack1.go which is contained in the custom package pack1. This program
(together with its compiled-and- linked archived form pack1.a) resides in a subdirectory pack1 of
our current directory; so the linker links the object code of the package(s) together with the object
code of the main program.

Listing 9.4—pack1.go:

package pack1

var Pack1Int int = 42

var pack1Float = 3.14

func ReturnStr() string {

 return “Hello main!”

}

It exports an int variable Pack1Int and a function ReturnStr which returns a string. This program
does not do anything when it is run, because it does not contain a main()—function.

In the main program package_test.go the package is imported via the statement

import “./pack1/pack1”

The general format of the import is:

import “path or url to the package” like import “github.com/org1/pack1”

If it is a path it is relative to the directory of the current package.

Listing 9.5—package_test.go:

package main

import (

 “fmt”

 “./pack1/pack1”

)

The Way to Go

205

func main() {

 var test1 string

 test1 = pack1.ReturnStr()

 fmt.Printf(“ReturnStr from package1: %s\n”, test1)

 fmt.Printf(“Integer from package1: %d\n”, pack1.Pack1Int)

 // fmt.Printf(“Float from package1: %f\n”, pack1.pack1Float)

}

Output: ReturnStr from package1: Hello main!
 Integer from package1: 42

In case the package pack1 would be in the same map as our current program, it could be imported
with: import “./pack1”, but this is not considered a good practice.

The line fmt.Printf(“Float from package1: %f\n”, pack1.pack1Float), trying to access
an unexported variable or function, does not even compile. It gives the error:

cannot refer to unexported name pack1.pack1Float

The packages which are utilized by the main-program must be built before the compilation of the
main program. Every exported pack1-Item that is used in the main program must be qualified by
the package name: pack1.Item. For another example: see Listings 4.6 and 4.7 .

So by convention there is a close relationship between subdirectories and packages: each package
(all the go-files belonging to it) resides in its own subdirectory, which has the same name as the package.
For clarity different packages reside in different directories.

Import with . : import . “./pack1”

When using . as an alias, one can use the items from the package without qualifying with their
package names, as for example in: test1 = ReturnStr().

It imports pack1 in the current namespace, generally considered only good for testing purposes.

Import with _ : import _ “./pack1/pack1”

The package pack1 is imported for its side-effects only, that is: its init functions are executed and
global variables initialized.

206

Ivo Balbaert

Importing of installed external packages:

If you need one or more external packages in your application, you will first have to install them
locally on your machine with the go install command (see § 9.7).

Suppose you want to use a (fictional) package which resides at http://codesite.ext/author/
goExample/goex

where codesite could be googlecode, github, bitbucket, launchpad or others; ext = the extension,
like .com or .org, and goex is the package name (often these start with go, by no means a necessary
convention)

You install this with the command: go install codesite.ext/author/goExample/goex

This installs the code in the map codesite.ext/author/goExample/goex under $GOROOT/src/

Once installed, to import it in your code, use:

import goex “codesite.ext/author/goExample/goex”

So the import path will be the web-accessible URL for your project’s root followed by the
subdirectory.

The documention for go install at http://golang.org/cmd/goinstall/ lists the import paths for a
number of widely used code repositories on the web.

Initialization of a package:

Program execution begins by importing the packages, initializing the main package and then
invoking the function main().

A package with no imports is initialized by assigning initial values to all its package-level variables
and then calling any package-level init() function defined in its source. A package may contain
multiple init() functions, even within a single source file; they execute in unspecified order. It is
best practice if the determination of a package’s values only depend on other values or functions
found in the same package.

init() functions cannot be called.

The Way to Go

207

Imported packages are initialized before the initialization of the package itself (with the exception
of main), but initialization of a package occurs only once in the execution of a program.

Building and installing a package(see also § 9.7):

In Linux /OSX this can be done with an analogous Makefile script like in § 3.4(2):

include $(GOROOT)/src/Make.inc

TARG=pack1

GOFILES=\

 pack1.go\

 pack1b.go\

include $(GOROOT)/src/Make.pkg

and make it executable with chmod 777 ./Makefile.

The include statements pull in functionality that automatically detects the machine’s architecture
and uses the correct compiler and linker.

Then run make on the command-line or the gomake tool: both make a map _obj containing the
static library pack1.a.

The command go install (see § 9.7, the preferred way since Go 1) also copies pack1.a to the
official local packages map $GOROOT/pkg, in a submap with the name of the operating system
(e.g. linux).When this is done the package can be imported in a program simply by its name, like
import “pack1” instead of import “path to pack1”.

If this is not desirable or allowed, use the -I option while building with 6/8g:

6g—I map_pack1 package_test.go # where map_pack1 is the map which contains

pack1.a

(the flag—I lets the compiler search for packages in the map-name which follows the option.)

 and the—L option while linking with 6/8l :

6l—L map_pack1 package_test.6

208

Ivo Balbaert

We will come back to the topic of making and building your own package when we have encountered
the test-tool go test (chapter 13).

EXERCISES:

Question 9.1:

a) Can a package be divided over multiple source files ?
b) Can a single source file contain multiple packages ?

Exercise 9.3: Make a program main_greetings.go which can greet the user with “Good
Day”, or “Good Night”. The different greetings should be in a separate package
greetings.

In the same package, make a function IsAM() which returns a bool to indicate
whether the current time is AM (before 12h) or PM; also make functions
IsAfternoon() and IsEvening().

Use this in main_greetings to adapt your greeting.

(Hint: use the time package)

Exercise 9.4: Make a program main_oddeven.go which tests for the first 100 integers whether
they are even or not. The function which does the test is contained in a package
even.

Exercise 9.5: Using the Fibonacci-program from § 6.6:

(1) Place the Fibonacci-function in its own package fibo and call it from a main
program which stores the last input-value to the function in a global variable

(2) Expand the fibo-package so that the operation is also a variable, which is passed
through when calling Fibonacci. Experiment with + and *

main_fibo.go / fibonacci.go

9.6 Using godoc for your custom packages.

The godoc tool (§ 3.6) works also very nice for showing the comments in your own package: the
comments must start with // and precede the declarations (package, types, functions …) with no

The Way to Go

209

blank line in between. godoc will produce will produce a series of html-pages, one for each go
file.

For example:
in the map doc_example we have the go-files sort and sortmain from §11.7 with -
some comments in the sort file (the files need not be compiled);
navigate on the command-line to this map and start the command: -

 godoc -http=:6060 -path=”.”

 (. is the current map, the -path flag can be of the form /path/to/my/package1 where
the map package1 contains your sources, or accept a list of colon (:)-separated paths;
unrooted paths are relative to the current working directory.
open a browser at the address - http://localhost:6060

You then see the local godoc-page (see § 3.6) with left from the Packages link a link to your map
doc_example:

doc_example | Packages | Commands | Specification
Beneath it is an ordered overview of links to the source and all objects within it (so it is nice for
navigating and looking up in the source code), together with the documentation/commentary:

Package sort

func Float64sAreSorted
func IntsAreSortedfunc IsSortedfunc Sort
func SortFloat64s
func SortInts
func SortStrings
func StringsAreSorted
type Float64Array
func (Float64Array) Len
func (Float64Array) Less
func (Float64Array) Swap

type IntArray
func (IntArray) Len
func (IntArray) Less
func (IntArray) Swap
type Interface
type StringArray
func (StringArray) Len
func (StringArray) Less
func (StringArray) Swap
Other packages

import “doc_example”

Sorting using a general interface:

210

Ivo Balbaert

Package files

sort.go

func Float64sAreSorted[Top]
func Float64sAreSorted(a []float64) bool

func IntsAreSorted[Top]
func IntsAreSorted(a []int) bool

func IsSorted[Top]
func IsSorted(data Interface) bool

Test if data is sorted

func Sort[Top]
func Sort(data Interface)

General sort function

func SortInts[Top]
func SortInts(a []int)

Convenience wrappers for common cases

type IntArray[Top]
Convenience types for common cases: IntArray

type IntArray []int

Fig 9.1: Package documentation with godoc

If you work in a team and the source tree is stored on a network disk, you can start the godoc
process in it to give a continuous document support to all team members. With the—sync
and—sync_minutes= n, you can even make it automatically update your documentation every n
minutes!

9.7 Using go install for installing custom packages.

go install is Go’s automatic package installation tool: it installs packages, downloading them from
remote repositories over the internet if needed and installing them on the local machine: checkout,
compile and install in one go.

The Way to Go

211

It installs each of the packages given on the command line; it installs a package’s prerequisites before
trying to install the package itself and handles the dependencies automatically. The dependencies
of the packages residing in submaps are also installed, but documentation or examples are not: they
are browsable on the site.

The list of all installed packages can be found in $GOROOT/goinstall.log

It uses the variable GOPATH (see § 2.2).

Remote packages (see § 9.5):

Suppose we want to install the interesting package tideland (this contains a number of helpful
routines, see http://code.google.com/p/tideland-cgl/).

Because we need create directory rights on some submaps of the Go-installation, we need to issue
the command as root or su.

Make sure that the Go-environment variables are properly set in the .bashrc file of root.

Install with the command: go install tideland-cgl.googlecode.com/hg

This puts the executable file hg.a in the map $GOROOT/pkg/linux_amd64/tideland-cgl.
googlecode.com, and puts the Go source-files in $GOROOT/src/tideland-cgl.googlecode.com/
hg, and also hg.a in a submap _obj.

From then on the functionality of the package can be used in Go code, using for example as
package name cgl, by importing:

import cgl “tideland-cgl.googlecode.com/hg”

From Go 1 onwards go install will expect Google Code import paths to be of the form:

“code.google.com/p/ tideland-cgl”.

Updating to a new Go release:

After updating to a new Go release all package binaries of locally installed packages are deleted.
When invoking go install—a the tool reinstalls all previously installed packages, reading the list
from $GOROOT/goinstall.log. If you want to update, recompile, and reinstall all goinstalled
packages, use: go install —a –u –clean or go install –a –u –nuke

212

Ivo Balbaert

Because Go releases were frequent, care should be taken to verify the release against which the
package is build; after Go 1 it is enough to know it was build against it.

go install can also be used to compile/link and locally install your own packages: see § 9.8.2

More info can be found at http://golang.org/cmd/go/ and http://golang.org/cmd/goinstall/

9.8 Custom packages: map structure, go install and go test

For the purposes of demonstration, we take a simple package uc which has a function UpperCase
to turn a string into uppercase letters. This certainly is not worth while to make as your own
package, it wraps the same functionality from package “strings”, but the same techniques can be
applied to more complex packages.

9.8.1 Map-structure for custom packages

The following structure gives you a good start (where uc stands for a general package name; the
names in bold are maps, italicized is the executable):

/home/user/goprograms

ucmain.go (main program for using package uc)

Makefile (2—makefile for ucmain)

ucmain

src/uc (contains go code for package uc)

 uc.go

 uc_test.go

 Makefile (1—makefile for package)

 uc.a

 _obj

 uc.a

 _test

 uc.a

bin (contains the final executable files)

 ucmain

pkg/linux_amd64

 uc.a (object file of package)

The Way to Go

213

Put your projects somewhere in a map goprograms (you can create an environment variable
GOPATH for this, see §2.2/3: put the line export GOPATH=/home/user/goprograms in .profile
and .bashrc), and your packages as submaps of src. The functionality is implemented in uc.go,
belonging to the package uc:

Listing 9.6—uc.go:

package uc

import “strings”

func UpperCase(str string) string {

 return strings.ToUpper(str)

}

The package must always be accompanied by one or more testfiles, here we made uc_test.go, along
the lines explained and demonstrated in § 9.8

Listing 9.7—uc_test.go:

package uc

import “testing”

type ucTest struct {

 in, out string

}

var ucTests = []ucTest {

 ucTest{“abc”, “ABC”},

 ucTest{“cvo-az”, “CVO-AZ”},

 ucTest{“Antwerp”, “ANTWERP”},

}

func TestUC(t *testing.T) {

 for _, ut := range ucTests {

 uc := UpperCase(ut.in)

 if uc != ut.out {

 t.Errorf(“UpperCase(%s) = %s, must be %s.”, ut.in, uc,

 ut.out)

 }

 }

}

214

Ivo Balbaert

Build and install the package locally with the command: go install src/uc this copies uc.a to
pkg/linux_amd64.

Alternatively, using make: put in the map src/uc a Makefile (1) for the package with the following
content:

include $(GOROOT)/src/Make.inc

TARG=uc

GOFILES=\

 uc.go\

include $(GOROOT)/src/Make.pkg

On the command-line in this map invoke: gomake

This makes map _obj and puts the compiled package archive uc.a in it.

The package can then be tested with: go test

This makes the map _test with uc.a in it; the output gives: PASS, so the tests are OK.

In § 13.8 we give another example of gotest and delve a little deeper.

Remark: It is possible that your current account doesn’t have enough rights to run go
install (permission denied error). In that case, switch to the root user su. Make sure that the
Go-environment variables and the path to the Go-binaries are also set for su, as for your normal
account (see § 2.3)

Then we make our main starting program as ucmain.go:

Listing 9.8—ucmain.go:
package main
import (
 “fmt”
 “./uc/uc”
)

func main() {
 str1 := “USING package uc!”
 fmt.Println(uc.UpperCase(str1))
}

The Way to Go

215

Then simply issue the command go install in this map.

Alternatively, copy uc.a in map uc and put a Makefile (2) alongside it with the text:

include $(GOROOT)/src/Make.inc
TARG=ucmain

GOFILES=\

 ucmain.go\

include $(GOROOT)/src/Make.cmd

Issuing gomake compiles ucmain.go to ucmain.

Running ./ucmain gives: USING package uc!

9.8.2 Locally installing the package

Local packages in user map:

Using the given map-structure, the following commands can be used to install local packages from
source:

go install /home/user/goprograms/src/uc # build and install uc

cd /home/user/goprograms/uc

go install ./uc # build and install uc (= does same as previous command)

cd ..

go install . # build and install ucmain

Installing under $GOROOT:

If we want the package to be used from any Go-program on the system, it must be installed under
$GOROOT.

To do this, set GOPATH = $GOROOT in .profile and .bashrc; then go install uc wil:

1) copy the source code to $GOROOT/src/pkg/linux_amd64/uc
2) copy the package archive to $GOROOT/pkg/linux_amd64/uc

It can then be imported in any Go-source as: import uc

216

Ivo Balbaert

9.8.3 OS dependent code

It is very rare that your program should code differently according to the operating system on
which it is going to run: in the vast majority of cases the language and standard library handle most
portability issues.

You could have a good reason to write platform-specific code, such as assembly-language support.
In that case it is reasonable to follow this convention:

prog1.go

prog1_linux.go

prog1_darwin.go

prog1_windows.go

prog1.go defines the common code interface above different operating systems, and put the
OS-specific code in its own Go-file named prog1_os.go

For the go tool you can then specify: prog1_$GOOS.go or prog1_$GOARCH.go

or in the platform Makefile: prog1_$(GOOS).go\ or prog1_$(GOARCH).go\

Exercise 9.6: package strev

Apply all the techniques from the previous paragraph (§ 9.7) to the package strev from Exercise 9.2

9.9 Using git for distribution and installation.

9.9.1 Installing to github

All this is fine for a local package, but how do we distribute it to the programmer community ?
Then we need a source version-control system in the cloud, like the popular git.

git is default installed on a Linx or OS X machine, for Windows you must first install it, see: http://
help.github.com/win-set-up-git/

I will lead you through creating a git-repository for the package uc from § 9.8:

Go to the package directory uc and create a git repository in it: git init .

The message appears: Initialized empty git repository in …/uc

The Way to Go

217

Every git project needs a README file with a description of the package. So open your text editor
(gedit, notepad, LiteIde) and put some comments there.

Then add all the files to the repository with: git add README uc.go uc_test.go Makefile

and mark it as the first version: git commit -m “initial revision”

Now go to the github-website: https://github.com where you must login.

But probably you don’t have a login yet, so go to https://github.com/plans where you can create a
free account for open source projects. Choose a username and password, give a valid email-address
and go further Create an Account. Then you will get a list with the git commands; we have already
done the commands for the local repository. An excellent help system http://help.github.com/ will
guide you if you encounter any problems.

For creating a new repository uc in the cloud; issue the instructions (substitute NNNN with your
username): git remote add origin git@github.com:NNNN/uc.git

 git push -u origin master

Then you’re done: go check the github page of your package: https://github.com/NNNN/uc

9.9.2 Installing from github

If somebody wants to install your cloud-project to a local machine, open a terminal session with su
and execute: go install github.com/NNNN/uc

where NNNN is your username on github.

This copies the:

 package uc.a in the map $GOROOT/pkg/linux_amd64/github.com
 source in $GOROOT/src/pkg/github.com/NNNN/uc

so the package is now available on that machine for any other Go-application with the import
path: “github.com/NNNN/uc” instead of “./uc/uc”

This can be shortened to: import uc “github.com/NNNN/uc”

Then adapt your Makefile: replace TARG=uc with TARG=github.com/NNNN/uc

Gomake (and go install) will now work with the local version under $GOROOT.

218

Ivo Balbaert

Hosting sites and version control systems: other possibilities

Here are the major code hosting sites (between () the version control systems it uses) are:

bitbucket (hg),
github (git),
googlecode (hg/git/svn),

and launchpad (bzr).

Choose whichever version control system you are familiar with or in which your code is versioned
locally on your machine. Mercurial (hg) is the version control system used by the central Go
repository, so it is the closest to a guarantee as you can get that a developer wanting to use your
project will have the right software. Git is also very popular, and so is often available. If you have
never used version control before, these websites have some nice HOWTOs and you can find
many great tutorials by searching Google for “{name} tutorial” where {name} is the name of the
version control system you would like to learn.

9.10 Go external packages and projects.

We now know how to use Go and its standard library, but the Go-ecosystem is bigger than this.
When embarking on our own Go-projects, it is best to search first if we cannot use some existing
3rd party Go package(s) or project(s). Most of these can be installed with the go install tool.

The first place to look is the tab Projects on the Package Dashboard at the Go-website (hosted in
Google App Engine): http://godashboard.appspot.com/project; this is the manually curated
list.

Classified by categories, like Build Tools, Compression, Data Structures, Databases and Storage,
Development Tools, etc., this contains a wealth of more than 500 projects, giving for each its name,
a short description, and a download link. These can be found on the following code repository
sites, with the source control systems used mentioned between ():

- on Google Code, e.g. http://code.google.com/p/goprotobuf/, (Mercurial(hg) or Subversion)
- on Github: e.g. https://github.com/kr/pretty.go, (Git)
- on BitBucket, e.g. https://bitbucket.org/binet/igo/ (Mercurial(hg))
- on Launchpad, e.g. http:// launchpad.net/mgo (Bazaar)

or on other popular code sharing sites, or the website of the author(s).

In the repositories you can also submit your own project after moderation by an administrator.

The Way to Go

219

If you want to see the actual Project-activity look at the tab Packages on Package Dashboard at the
Go-website http://godashboard.appspot.com/package

This gives an overview of the “Most Installed Packages” (this week and all time) and the Recently
Installed Packages, with in the column count the number of installations by external developers.
If column build has status ok, then this indicates that the package is goinstallable with the
latest release of Go.

The “Go Projects” and “Go Packages” pages aren’t related. If a package appears on one it may not
necessarily appear on the other.

Other collections (partly overlapping with the Package Dashboard) are:

http://go-lang.cat-v.org/dev-utils (Developer-oriented)
http://go-lang.cat-v.org/go-code (Programs and applications)
http://go-lang.cat-v.org/library-bindings (Library bindings)
http://go-lang.cat-v.org/pure-go-libs (Pure Go libraries)

There are already many great external libraries, such as for:

•	 MySQL	 (GoMySQL), PostgreSQL(go-pgsql), MongoDB (mgo, gomongo), CouchDB
(couch-go), ODBC (godbcl), Redis (redis.go) and SQLite3 (gosqlite) database drivers,

•	 SDL	bindings,
•	 Google’s	Protocol	Buffers	(goprotobuf),
•	 XML-RPC	(go-xmlrpc),
•	 Twitter	(twitterstream),
•	 OAuth	libraries,	(GOAuth)
 and much more.

9.11 Using an external library in a Go program.

(This § builds a web application and its Google App Engine version, which are explained respectively
in chapters 19 and 21. You can come back to this example after having worked through these
chapters.)

When starting a new project or adding new functionalities to an existing project you could save
development time by incorporating an already existing Go-library into your application. In order
to do that you have to understand the API (Application Programming Interface) of the library, that
is: which methods you can call in this library and how to call them. It could indeed be possible

220

Ivo Balbaert

that you do not have the source of this library, but the makers will then surely have documented
the API and detailed how to use it.

As an example we will write a small program using the urlshortener from Google APIs: you can
try it out at http://goo.gl/. Enter a URL like http://www.destandaard.be and you will see a shorter
URL returned like http://goo.gl/O9SUO, which is much easier to embed, say, in a service like
twitter. Documentation for the Google urlshortener service can be found at http://code.google.
com/apis/urlshortener/. (In chapter 19 we will develop our own version of an urlshortener.)

Google makes this technology available to other developers as an API that we can call from our
own applications (free up to a specified limit). They have also generated a Go client-library to make
it even easier.

Remark: Google has made life easier for Go developers to use their services by providing
them with Google API Go clients. The Go-client programs where automatically generated from
the JSON-description of the Google libraries. You can read more about it at http://code.google.
com/p/google-api-go-client/.

Downloading and installing the Go client library:

This will be accomplished with the go install-tool (see § 9.7). But first verify that the GOPATH
variable is set in your environment, because the external source code will be downloaded into the
directory $GOPATH/src and the packages also will be installed under this directory $GOPATH/
pkg/“machine_arch”/.

Then we install the API by invoking the following command in the console:

go install google-api-go-client.googlecode.com/hg/urlshortener/v1

go install will download the source code, compile it and install the package.

(In Linux Ubuntu with 6g r60 9481 installation works fine, installed package is beneath pkg/
linux_amd64.)

A web program to use the urlshortener service:

We can now use the installed package in our programs by importing it and giving it an alias (to
type less): import urlshortener “google-api-go-client.googlecode.com/hg/urlshortener/v1”

The Way to Go

221

We now write a web application (see chapter 15 § 15.4-8) that shows a web form where you can
give in a long url and ask for a short url, and the inverse. For this we use the templating package
and we write 3 handler functions: the root handler shows the form by executing the form template,
the short handler (for urls of the form /short) add to this by taking a long url and returns the short
url, and the long handler (urls of the form /long) does the inverse.

To invoke the urlshortener API first you have to make a service- instance urlshortenerSvc with:

urlshortenerSvc, _ := urlshortener.New(http.DefaultClient)

by using the default client that is available in the http package.

To get the short url we fill in the Url data structure with the given long url and call the service’s
Url.Insert method by calling Do():

url, _ := urlshortenerSvc.Url.Insert(&urlshortener.Url{LongUrl: longUrl,}).Do()

The Id of the url returned is then the short url which we asked for.

To get the long url we fill in the Url data structure with the short url and call the service’s Url.Get
method by calling Do() url, err := urlshortenerSvc.Url.Get(shortUrl).Do()

The LongUrl of the url returned is then the original url.

Here is the program:

Listing 9.9—use_urlshortener.go:

package main

import (

 “fmt”

 “net/http”

 “text/template”

 urlshortener “google-api-go-client.googlecode.com/hg/urlshortener/v1”

)

func main() {

 http.HandleFunc(“/”, root)

 http.HandleFunc(“/short”, short)

 http.HandleFunc(“/long”, long)

222

Ivo Balbaert

 http.ListenAndServe(“localhost:8080”, nil)

}

// the template used to show the forms and the results web page to the user

var rootHtmlTmpl = template.Must(template.New(“rootHtml”).Parse(`

<html><body>

<h1>URL SHORTENER</h1>

{{if .}}{{.}}

{{end}}

<form action=”/short” type=“POST”>

Shorten this: <input type=“text” name=“longUrl” />

<input type=“submit” value=“Give me the short URL” />

</form>

<form action=”/long” type=“POST”>

Expand this: http://goo.gl/<input type=“text” name=“shortUrl” />

<input type=“submit” value=“Give me the long URL” />

</form>

</body></html>

`))

func root(w http.ResponseWriter, r *http.Request) {

 rootHtmlTmpl.Execute(w, nil)

}

func short(w http.ResponseWriter, r *http.Request) {

 longUrl := r.FormValue(“longUrl”)

 urlshortenerSvc, _ := urlshortener.New(http.DefaultClient)

 url, _ := urlshortenerSvc.Url.Insert(&urlshortener.Url{LongUrl:

 longUrl,}).Do()

 rootHtmlTmpl.Execute(w, fmt.Sprintf(“Shortened version of %s is : %s”,

 longUrl, url.Id))

}

func long(w http.ResponseWriter, r *http.Request) {

 shortUrl := “http://goo.gl/” + r.FormValue(“shortUrl”)

 urlshortenerSvc, _ := urlshortener.New(http.DefaultClient)

 url, err := urlshortenerSvc.Url.Get(shortUrl).Do()

 if err != nil {

 fmt.Println(“error: %v”, err)

 return

 }

The Way to Go

223

 rootHtmlTmpl.Execute(w, fmt.Sprintf(“Longer version of %s is : %s”,

 shortUrl, url.LongUrl))

}

Compile this code with: 6g -I $GOPATH/pkg/linux_amd64 urlshortener.go

and link it with: 6l -L $GOPATH/pkg/linux_amd64 urlshortener.6

To execute it: ./6.out

(ensure that you do not have any other applications running on http://localhost:8080 or this step
will fail). To test it navigate to the web page: http://localhost:8080/

For brevity of code the error returns were not checked, but this should be done for a real production
application!

Turning it into a Google App-Engine application:
The only things in the code in the previous listing which have to change are:
 package main package urlshort
 func main() func init()

Create a map with the same name as the package: urlshort

Copy into this map the source code from the 2 following installed maps:

google-api-go-client.googlecode.com/hg/urlshortener

google-api-go-client.googlecode.com/hg/google-api

Furthermore you need a configuration file app.yaml, with content like:
application: urlshort

version: 0-1-test

runtime: go

api_version: 3

handlers:

- url: /.*

 script: _go_app

Now go to your project map and run in the console: dev_appserver.py urlshort

and start a web client for your application in the browser: http://localhost:8080

224

Chapter 10—Structs and Methods

Go supports user-defined or custom types in the form of alias types or structs. A struct tries to
represent a real-world entity with its properties. Structs are composite types, to use when you want
to define a type which consist of a number of properties, each having their own type and value,
grouping pieces of data together. Then one can access that data as if it were part of a single entity.
They are also value types and so are constructed with the new function.

The component pieces of data that constitute the struct type are called fields. A field has a type and
a name; field names within a struct must be unique.

The concept was called ADT (Abstract Data Type) in older texts on software engineering, it was
called a record in older languages like Cobol, and it also exists under the same name of struct in
the C-family of languages, in the OO languages as a lightweight-class without methods. However
because Go does not have the concept of a class, the struct type has a much more important place
in Go.

10.1 Definition of a struct

The general format of the definition of a struct is as follows:

type identifier struct {

 field1 type1

 field2 type2

 …

}

Also type T struct { a, b int } is legal syntax, and more suited for simple structs.

The fields in this struct have names, like field1, field2, etc. If the field is never used in code, it can
be named _.

The Way to Go

225

These fields can be of any type, even structs themselves (see § 10.5), functions or interfaces (see
Chapter 11). Because a struct is a value, we can declare a variable of the struct type, and give its
fields values, like:

var s T

s.a = 5

s.b = 8

An array could be seen as a sort of struct but with indexed rather than named fields.

Using new:

Memory for a new struct variable is allocated with the new function, which returns a pointer to the
allocated storage: var t *T = new(T), which can be put on different lines if needed (e.g.
when the declaration has to be package scope, but the allocation is not needed at the start):

var t *T

t = new(T)

The idiom to write this shorter is: t := new(T), the variable t is a pointer to T: at this point the
fields contain the zero-values according to their types.

However declaring var t T also allocates and zero-initializes memory for t, but now t is of type T.
In both cases t is commonly called an instance or object of the type T.

A very simple example is given in Listing 10.1—structs_fields.go:
package main

import “fmt”

type struct1 struct {

 i1 int

 f1 float32

 str string

}

func main() {

 ms := new(struct1)

 ms.i1 = 10

 ms.f1 = 15.5

 ms.str = “Chris”

226

Ivo Balbaert

 fmt.Printf(“The int is: %d\n”, ms.i1)

 fmt.Printf(“The float is: %f\n”, ms.f1)

 fmt.Printf(“The string is: %s\n”, ms.str)

 fmt.Println(ms)

}

Output: The int is: 10

 The float is: 15.500000

 The string is: Chris

 &{10 15.5 Chris}

The default (so %v) printout of a struct with fmt.Println() nicely shows its content.

The fields can be given a different value by using the dot-notation, as is custom in OO-languages:
structname.fieldname = value

The values of the struct-fields can be retrieved with the same notation: structname.fieldname

This is called a selector in Go. In order to access the fields of a struct, whether the variable is of the
struct type or a pointer to the struct type, we use the same selector-notation:

type myStruct struct { i int }

var v myStruct // v has struct type

var p *myStruct // p is a pointer to a struct

v.i

p.i

An even shorter notation and the idiomatic way to initialize a struct instance (a struct-literal) is the
following: ms := &struct1{10, 15.5, “Chris”}
 // this means that ms is of type *struct1

or: var mt struct1

 mt = struct1{10, 15.5, “Chris”}

The composite literal syntax &struct1{a, b, c} is a shorthand; under the covers it still calls
new(); the values must be given in field-order. In the following example we see that you can also
initialize values by preceding them with the fieldnames. So new(Type) and &Type{} are equivalent
expressions.

A typical example of a struct is a time-interval (with start- and end time expressed here in
seconds): type Interval struct {

The Way to Go

227

 start int

 end int

 }

And here are some initializations: inter := Interval{0,3} (A)

inter2 := Interval{end:5, start:1} (B)

inter3 := Interval{end:5} (C)

In case (A) the values given in the literal must be exactly in the same order as the fields are defined
in the struct, the & is not mandatory. Case (B) shows another possibility where the fieldnames
with a : precede the value; in that case their sequence must not be the same, and fields could also
be omitted, like in case (C).

The naming of the struct type and its fields adheres to the Visibility-rule (§ 4.2); it is possible that
an exported struct type has a mix of fields: some exported, others not.

The following figure clarifies the memory layout of a struct value and a pointer to a struct for the
following struct type: type Point struct { x, y int }

Initialized with new:

Initialized as a struct literal:

Fig 10.1: Memory layout of a struct

228

Ivo Balbaert

A type struct1 must be unique in the package pack1 in which it is defined, its complete type name
is: pack1.struct1

The following example Listing 10.2—person.go shows a struct Person, a method upPerson which
has a parameter of type *Person (so that the object itself can be changed!) and 3 different ways of
calling this method:

package main

import (

 “fmt”

 “strings”

)

type Person struct {

 firstName string

 lastName string

}

func upPerson (p *Person) {

 p.firstName = strings.ToUpper(p.firstName)

 p.lastName = strings.ToUpper(p.lastName)

}

func main() {

// 1- struct as a value type:

 var pers1 Person

 pers1.firstName = “Chris”

 pers1.lastName = “Woodward”

 upPerson(&pers1)

 fmt.Printf(“The name of the person is %s %s\n”, pers1.firstName, pers1.

 lastName)

// 2—struct as a pointer:

 pers2 := new(Person)

 pers2.firstName = “Chris”

 pers2.lastName = “Woodward”

 (*pers2).lastName = “Woodward” // this is also valid

 upPerson(pers2)

 fmt.Printf(“The name of the person is %s %s\n”, pers2.firstName, pers2.

 lastName)

The Way to Go

229

// 3—struct as a literal:

 pers3 := &Person{“Chris”,“Woodward”}

 upPerson(pers3)

 fmt.Printf(“The name of the person is %s %s\n”, pers3.firstName, pers3.

 lastName)

}

/* Output:

The name of the person is CHRIS WOODWARD

The name of the person is CHRIS WOODWARD

The name of the person is CHRIS WOODWARD

*/

In case 2 we see that setting a value through a pointer like in pers2.lastName = “Woodward” works,
there is no -> operator necessary like in C++: Go does the conversion automatically.

Note that we can also set the value by dereferencing the pointer:

(*pers2).lastName = “Woodward”

Structs and memory layout:

Structs in Go and the data they contain, even when a struct contains other structs, form a continuous
block in memory: this gives a huge performance benefit. This is unlike in Java with its reference
types, where an object and its contained objects can be in different parts of memory; in Go this is
also the case with pointers.This is clearly illustrated in the following example:

type Rect1 struct { Min, Max Point }

type Rect2 struct { Min, Max *Point }

Fig 10.2: Memory layout of a struct of structs

230

Ivo Balbaert

Recursive structs:

A struct type can be defined in terms of itself. This is particularly useful when the struct variable is
an element of a linked list or a binary tree, commonly called a node. In that case the node contains
links (the addresses) to the neighbouring nodes; su for a list and le, ri for a tree are pointers to
another Node-variable.

Linked list: data su head su tail nil

Fig. 10.3: Linked list as recursive struct

where the the data field contains the useful information (for example a float64), and su points to
the successor node;

in Go-code: type Node struct {

 data float64

 su *Node

 }

The first element of the list is called the head, it points to the 2nd element; the last element is called
the tail, it doesn’t point to any successor, so its su field has value nil. Of course in a real list we
would have many data-nodes, the list can grow or shrink dynamically.

In the same way you could define a doubly linked list with a predecessor node field pr and a
successor field su.

type Node struct {

 pr *Node

 data float64

 su *Node

}

Binary tree:
 le data ri

S

le data ri
S

le data ri
S

nil data nil
S

Fig 10.4: Binary tree as recursive struct

The Way to Go

231

Here every node can at most have links to two other nodes: the left (le) and the right (ri); both of
them can propagate this further. The top element of the tree is called the root; the bottom layer of
nodes which have no more nodes beneath them are called the leaves; a leave node has nil-values for
the le- and ri pointers. Such a node is a tree in itself, so we could write:

in Go-code: type Tree struct {

 le *Tree

 data float64

 ri *Tree

 }

Conversion of structs:

As we have already seen conversion in Go follows strict rules. When we have a struct type and
define an alias type for it, both types have the same underlying type and can be converted into
one another as illustrated in Listing 10.3, but also note the compile-error cases which denote
impossible assignments or conversions:

Listing 10.3—struct_conversions.go:
package main
import “fmt”

type number struct {
 f float32
}

type nr number // alias type

func main() {
 a := number{5.0}
 b := nr{5.0}
 // var i float32 = b // compile-error: cannot use b (type nr) as type
 float32 in assignment
 // var i = float32(b) // compile-error: cannot convert b (type nr) to
 type float32
 // var c number = b // compile-error: cannot use b (type nr) as type
 number in assignment
 // needs a conversion:
 var c = number(b)
 fmt.Println(a, b, c)
}

// output: {5} {5} {5}

232

Ivo Balbaert

EXERCISES:

Exercise 10.1: vcard.go: Define a struct Address and a struct VCard. The latter contains a
person’s name, a number of addresses, a birth date, a photo. Try to find the right
data types. Make your own vcard and print its contents.

Hint: VCard must contain addresses, will they be included as values or as pointers ?

The 2nd choice is better, consuming less memory. So an Address struct with a name
and two pointers to addresses could be printed out with %v as:

{Kersschot 0x126d2b80 0x126d2be0}

Exercise 10.2: Make a version of personex1.go where the parameter of upPerson is not a pointer.
Explain the difference in behavior.

Exercise 10.3 point.go:

Define a 2 dimensional Point with coordinates X and Y as a struct. Do the same
for a 3 dimensional point, and a Polar point defined with its polar coordinates.
Implement a function Abs() that calculate the length of the vector represented by
a Point, and a function Scale that multiplies the coordinates of a point with a scale
factor(hint: use function Sqrt from package math).

Exercise 10.4: rectangle.go:

Define a struct Rectangle with int properties length and width. Give this type methods Area() and
Perimeter() and test it out.

10.2 Creating a struct variable with a Factory method

10.2.1 A factory for structs

Go doesn’t support constructors as in the OO-languages, but constructor-like factory functions are
easy to implement. Often a factory is defined for the type for convenience; by convention its name
starts with new or New. Suppose we define a File struct type:

type File struct {

 fd int // file descriptor number

The Way to Go

233

 name string // file name

}

Then the factory, which returns a pointer to the struct type, would be:

func NewFile(fd int, name string) *File {

 if fd < 0 {

 return nil

 }

 return &File{fd, name}

}

Often a Go constructor can be written succinctly using initializers within the factory function.

An example of calling it: f := NewFile(10, “./test.txt”)

If File is defined as a struct type, the expressions new(File) and &File{} are equivalent.

Compare this with the clumsy initializations in most OO languages: File f = new File(…)

In general we say that the factory instantiates an object of the defined type, just like in the class-based
OO languages.

If you have a struct type T and you quickly want to see how many bytes an instance occupies in
memory, use: size := unsafe.Sizeof(T{})

How to force using the factory method:

By applying the Visibility rule (§ 4.2.1, § 9.5) we can force the use of the factory method and
forbid using new, effectively making our type private as it is called in OO-languages.

package matrix

type matrix struct {

 …

}

function NewMatrix(params) *matrix {

 m := new(matrix)

 // m is initialized

234

Ivo Balbaert

 return m

}

Because of the m of matrix we need to use the factory method in another package:

package main

import “matrix”

…

wrong := new(matrix.matrix) // will NOT compile (matrix is private)

right := matrix.NewMatrix(…) // the ONLY way to instantiate a matrix

10.2.2 new() and make() revisited for maps and structs:

The difference between these two built-in functions was clearly defined in § 7.2.4 with an example
for slices.

By now we have seen 2 of the 3 types for which make() can be used:

 slices / maps / channels (see chapter 14).

To illustrate the difference in behavior for maps and the possible errors, experiment with the
following program:

Listing 10.4—new_make.go (does not compile!):

package main

type Foo map[string]string

type Bar struct {

 thingOne string

 thingTwo int

}

func main() {

 // OK:

 y := new(Bar)

 (*y).thingOne = “hello”

 (*y).thingTwo = 1

 // not OK:

 z := make(Bar) // compile error: cannot make type Bar

 z.thingOne = “hello”

The Way to Go

235

 z.thingTwo = 1

 // OK:

 x := make(Foo)

 x[“x”] = “goodbye”

 x[“y”] = “world”

 // not OK:

 u := new(Foo)

 (*u)[“x”] = “goodbye” // !! panic !!: runtime error: assignment to entry

 in nil map

 (*u)[“y”] = “world”

}

To try to make() a struct variable is not so bad, the compiler gets the error; but newing a map and
trying to fill it with data gives a runtime error! new(Foo) is a pointer to a nil, not yet allocated,
map: so be very cautious with this!

10.3 Custom package using structs

Here is an example where in main.go a struct is used from a package structPack in submap
struct_pack.

Listing 10.5—structPack.go:

package structPack

type ExpStruct struct {

 Mi1 int

 Mf1 float

}

Listing 10.6—main.go:

package main

import (

 “fmt”

 “./struct_pack/structPack”

)

func main() {

 struct1 := new(structPack.ExpStruct)

 struct1.Mi1 = 10

236

Ivo Balbaert

 struct1.Mf1 = 16.

 fmt.Printf(“Mi1 = %d\n”, struct1.Mi1)

 fmt.Printf(“Mf1 = %f\n”, struct1.Mf1)

}

Output: Mi1 = 10
 Mf1 = 16.000000

10.4 Structs with tags

A field in a struct can, apart from a name and a type, also optionally have a tag: this is a string attached
to the field, which could be documentation or some other important label. The tag-content cannot
be used in normal programming, only the package reflect can access it. This package which we
explore deeper in the next chapter (§ 11.10), can investigate types, their properties and methods in
runtime, for example: reflect.TypeOf() on a variable gives the right type; if this is a struct type, it
can be indexed by Field, and then the Tag property can be used.

The program Listing 10.7—struct_tag.go shows how this works:
package main

import (

 “fmt”

 “reflect”

)

type TagType struct { // tags

 field1 bool “An important answer”

 field2 string “The name of the thing”

 field3 int “How much there are”

}

func main() {

 tt := TagType{true, “Barak Obama”, 1}

 for i:= 0; i < 3; i++ {

 refTag(tt, i)

 }

}

func refTag(tt TagType, ix int) {

 ttType := reflect.TypeOf(tt)

 ixField := ttType.Field(ix)

The Way to Go

237

 fmt.Printf(“%v\n”, ixField.Tag)

}

/* Output:

An important answer

The name of the thing

How much there are */

10.5 Anonymous fields and embedded structs

10.5.1 Definition

Sometimes it can be useful to have structs which contain one or more anonymous (or embedded) fields,
that is fields with no explicit name. Only the type of such a field is mandatory and the type is then also
its name. Such an anonymous field can also be itself a struct: structs can contain embedded structs.

This compares vaguely to the concept of inheritance in the OO-languages, and as we will see it
can be used to simulate a behavior very much like inheritance. This is obtained by embedding or
composition, so we can say that in Go composition is of favoured over inheritance.

Consider the following program Listing 10.8—structs_anonymous_fields.go:
package main

import “fmt”

type innerS struct {

 in1 int

 in2 int

}

type outerS struct {

 b int

 c float32

 int // anonymous field

 innerS // anonymous field

}

func main() {

 outer := new(outerS)

 outer.b = 6

 outer.c = 7.5

238

Ivo Balbaert

 outer.int = 60

 outer.in1 = 5

 outer.in2 = 10

 fmt.Printf(“outer.b is: %d\n”, outer.b)

 fmt.Printf(“outer.c is: %f\n”, outer.c)

 fmt.Printf(“outer.int is: %d\n”, outer.int)

 fmt.Printf(“outer.in1 is: %d\n”, outer.in1)

 fmt.Printf(“outer.in2 is: %d\n”, outer.in2)

// with a struct-literal:

 outer2 := outerS{6, 7.5, 60, innerS{5, 10}}

 fmt.Println(“outer2 is: “, outer2)

}

Output: outer.b is: 6

 outer.c is: 7.500000

 outer.int is: 60

 outer.in1 is: 5

 outer.in2 is: 10

 outer2 is: {6 7.5 60 {5 10}}

To store data in an anonymous field or get access to the data we use the name of the data type:
outer.int; a consequence is that we can only have one anonymous field of each data type in a
struct.

10.5.2 Embedded structs

As a struct is also a data type, it can be used as an anonymous field; see the example above. The
outer struct can directly access the fields of the inner struct with outer.in1; this is even the case
when the embedded struct comes from another package. The inner struct is simply inserted or
“embedded” into the outer. This simple ‘inheritance’ mechanism provides a way to derive some or
all of your implementation from another type or types.

Here is another example Listing 10.9—embedd_struct.go:
package main

import “fmt”

type A struct {

 ax, ay int

The Way to Go

239

}

type B struct {

 A

 bx, by float32

}

func main() {

 b := B{A{1, 2}, 3.0, 4.0}

 fmt.Println(b.ax, b.ay, b.bx, b.by)

 fmt.Println(b.A)

}

Output: 1 2 3 4
 {1 2}

Exercise 10.5: anonymous_struct.go

Make a struct with 1 named float field, and 2 anonymous fields of type int and
string. Create an instance of the struct with a literal expression and print the
content.

10.5.3 Conflicting names

What are the rules when there are two fields with the same name (possibly a type-derived name)?

1) An outer name hides an inner name. This provides a way to override a field or method.
2) If the same name appears twice at the same level, it is an error if the name is used by the

program. (If it’s not used, it doesn’t matter.) There are no rules to resolve the ambiguity; it
must be fixed.

Examples: type A struct { a int }

 type B struct { a, b int }

 type C struct { A; B }

 var c C;

rule (2) When we use c.a it is an error, what is meant: c.A.a or c.B.a?
 the compiler error is: ambiguous DOT reference c.a
 disambiguate with either c.A.a or c.B.a

240

Ivo Balbaert

 type D struct { B; b float32 }

 var d D;

rule (1) Using d.b is ok: it is the float32, not the b from B; if we want the
inner b we can get at it by d.B.b.

10.6 Methods

10.6.1 What is a method?

Structs look like a simple form of classes, so an OO programmer might ask: where are the methods
of the class? Again Go has a concept with the same name and roughly the same meaning: a Go
method is a function that acts on variable of a certain type, called the receiver. So a method is a special
kind of function.

The receiver type can be (almost) anything, not only a struct type: any type can have methods,
even a function type or alias types for int, bool, string or array. The receiver also cannot be an
interface type (see Chapter 11), since an interface is the abstract definition and a method is the
implementation; trying to do so generates the compiler error: invalid receiver type…

Lastly it cannot be a pointer type, but it can be a pointer to any of the allowed types.

The combination of a (struct) type and its methods is the Go equivalent of a class in OO. One
important difference is that the code for the type and the methods binding to it are not grouped
together; they can exist in different source files, the only requirement is that they have to be in the
same package.

The collection of all the methods on a given type T (or *T) is called the method set of T (or *T).

Methods are functions, so again there is no method overloading: for a given type, there is only one
method with a given name. But based on the receiver type, there is overloading: a method with the
same name can exist on 2 of more different receiver types,e.g. this is allowed in the same package:
func (a *denseMatrix) Add(b Matrix) Matrix

func (a *sparseMatrix) Add(b Matrix) Matrix

Also an alias of a certain type doesn’t have the methods defined on that type.

The Way to Go

241

The general format of a method is:

func (recv receiver_type) methodName(parameter_list) (return_value_list) { … }

The receiver is specified in () before the method name after the func keyword.

If recv is the receiver instance and Method1 the method name, then the call or invocation of the
method follows the traditional object.method selector notation: recv.Method1()

In this expression if recv is a pointer, then it is automatically dereferenced.

If the method does not need to use the value recv, you can discard it by subsituting a _, as in:

func (_ receiver_type) methodName(parameter_list) (return_value_list) { … }

recv is like the this- or self existing in OO-languages, but in Go there is no specified keyword for it;
if you like you can use self or this as name for the receiver variable, but you can choose freely. Here
is a simple example of methods on a struct in Listing 10.10—method.go:

package main

import “fmt”

type TwoInts struct {

 a int

 b int

}

func main() {

 two1 := new(TwoInts)

 two1.a = 12

 two1.b = 10

 fmt.Printf(“The sum is: %d\n”, two1.AddThem())

 fmt.Printf(“Add them to the param: %d\n”, two1.AddToParam(20))

 two2 := TwoInts{3, 4}

 fmt.Printf(“The sum is: %d\n”, two2.AddThem())

}

func (tn *TwoInts) AddThem() int {

242

Ivo Balbaert

 return tn.a + tn.b

}

func (tn *TwoInts) AddToParam(param int) int {

 return tn.a + tn.b + param

}

Output: The sum is: 22
 Add them to the param: 42
 The sum is: 7

And here is an example of methods on a non struct type Listing 10.11—method2.go:

package main

import “fmt”

type IntVector []int

func (v IntVector) Sum() (s int) {

 for _, x := range v {

 s += x

 }

 return

}

func main() {

 fmt.Println(IntVector{1, 2, 3}.Sum()) // Output: 6

}

Exercise 10.6: employee_salary.go

Define a struct employee with a field salary, and make a method giveRaise for this type to increase
the salary with a certain percentage.

Exercise 10.7: iteration_list.go

What’s wrong with the following code ?

package main

import “container/list”

The Way to Go

243

func (p *list.List) Iter() {

 // …

}

func main() {

 lst := new(list.List)

 for _ = range lst.Iter() {

 }

}

A method and the type on which it acts must be defined in the same package, that’s why you
cannot define methods on type int, float or the like. Trying to define a method on an int type gives
the compiler error:

cannot define new methods on non-local type int

For example if you want to define the following method on time.Time:

func (t time.Time) first3Chars() string {

 return time.LocalTime().String()[0:3]

}

You get the same error for a type defined in another, thus also non-local, package.

But there is a way around: you can define an alias for that type (int, float, …), and then define
a method for that type. Or embed the type as an anonymous type in a new struct like in the
following example. Of course this method is then only valid for the alias type.

Listing 10.12—method_on_time.go:

package main

import (

 “fmt”

 “time”

)

type myTime struct {

 time.Time //anonymous field

}

func (t myTime) first3Chars() string {

244

Ivo Balbaert

 return t.Time.String()[0:3]

}

func main() {

 m := myTime{time.Now()}

 //calling existing String method on anonymous Time field

 fmt.Println(“Full time now:”, m.String())

 //calling myTime.first3Chars

 fmt.Println(“First 3 chars:”, m.first3Chars())}

/* Output:

Full time now: Mon Oct 24 15:34:54 Romance Daylight Time 2011

First 3 chars: Mon

*/

10.6.2 Difference between a function and a method

A function has the variable as a parameter: Function1(recv)
A method is called on the variable: recv.Method1()

A method can change the values (or the state) of the receiver variable provided this is a pointer,
just as is the case with functions (a function can also change the state of its parameter when this is
passed as a pointer: call by reference).

!! Don’t forget the () after Method1, or you get the compiler error: method recv.Method1 is not
an expression, must be called !!

The receiver must have an explicit name, and this name must be used in the method.

receiver_type is called the (receiver) base type, this type must be declared within the same package
as all of its methods.

In Go the methods attached to a (receiver) type are not written inside of the structure, as is the
case with classes; the coupling is much more loose: the association between method and type is
established by the receiver.

Methods are not mixed with the data definition (the structs): they are orthogonal to types; representation
(data) and behavior (methods) are independent.

The Way to Go

245

10.6.3 Pointer or value as receiver

recv is most often a pointer to the receiver_type for performance reasons (because we don’t make
a copy of the instance, as would be the case with call by value), this is especially true when the
receiver type is a struct.

Define the method on a pointer type if you need the method to modify the data the receiver points
to. Otherwise, it is often cleaner to define the method on a normal value type.

This is illustrated in the following example pointer_value.go: change() receives a pointer to B, and
changes its internal field; write() only outputs the contents of the B variable and receives its value
by copy. Notice in main() that Go does plumbing work for us, we ourselves do not have to figure
out whether to call the methods on a pointer or not, Go does that for us. b1 is a value and b2 is a
pointer, but the methods calls work just fine.

Listing 10.13—pointer_value.go:

package main

import (

 “fmt”

)

type B struct {

 thing int

}

func (b *B) change() { b.thing = 1 }

func (b B) write() string { return fmt.Sprint(b) }

func main() {

 var b1 B // b1 is a value

 b1.change()

 fmt.Println(b1.write())

 b2 := new(B) // b2 is a pointer

 b2.change()

 fmt.Println(b2.write())

}

/* Output:
{1}

246

Ivo Balbaert

{1}
*/

Try to make write() change its receiver value b: you will see that it compiles fine, but the original
b is not changed!

We saw that a method does not require a pointer as a receiver, as in the following example, where
we only need the values of Point3 to compute something:

type Point3 struct { x, y, z float }

// A method on Point3:

func (p Point3) Abs() float {

 return math.Sqrt(p.x*p.x + p.y*p.y + p.z*p.z)

}

This is a bit expensive, because Point3 will always be passed to the method by value and so copied,
but it is valid Go. In this case the method can also be invoked on a pointer to the type (there is
automatic dereferencing).

Suppose p3 is defined as a pointer: p3 := &Point3{ 3, 4, 5 }

Then you can write p3.Abs() instead of (*p3).Abs()

And a method with a receiver type *TwoInts like AddThem () in listing 10.11 (method1.go) can be
invoked on an addressable value of type TwoInts; there is automatic indirection.

So two2.AddThem() can be used instead of (&two2).AddThem()

Calling methods on values and pointers:

There can be methods attached to the type, and other methods attached to a pointer to the type.

But it does not matter: if for a type T a method Meth() exists on *T and t is a variable of type T, then
t.Meth() is automatically translated to (&t).Meth()

Pointer and value methods can both be called on pointer or non-pointer values, this is illustrated in the
following program, where the type List has a method Len() on the value and a method Append()
on a pointer to List, but we see that both methods can be called on variables of both types.

The Way to Go

247

Listing 10.14—methodset1.go:

package main

import (

 “fmt”

)

type List []int

func (l List) Len() int { return len(l) }

func (l *List) Append(val int) { *l = append(*l, val) }

func main() {

 // A bare value

 var lst List

 lst.Append(1)

 fmt.Printf(“%v (len: %d)\n”, lst, lst.Len()) // [1] (len: 1)

 // A pointer value

 plst := new(List)

 plst.Append(2)

 fmt.Printf(“%v (len: %d)\n”, plst, lst.Len()) // &[2] (len: 1)

}

10.6.4 Methods and not-exported fields

Consider the beginning of a package person in person2.go: the type Person is clearly exported, but
its fields are not! For example the statement p.firstname in use_person2.go is an error. How can we
change, or even read the name of a Person object in another program ?

This is accomplished by a well known technique from OO-languages: provide getter- and
setter-methods FirstName and SetFirstName. For the setter-method we use the prefix Set, for the
getter-method we only use the fieldname.

Listing 10.15—person2.go:

package person

type Person struct {

 firstName string

 lastName string

}

248

Ivo Balbaert

func (p *Person) FirstName() string {

 return p.firstName

}

func (p *Person) SetFirstName(newName string) {

 p.firstName = newName

}

Listing 10.16—use_person2.go:

package main

import (

 “fmt”

 “./person” // package in same map

)

func main() {

 p := new(person.Person)

 // error: p.firstName undefined

// (cannot refer to unexported field or method firstName)

 // p.firstName = “Eric”

 p.SetFirstName(“Eric”)

 fmt.Println(p.FirstName()) // Output: Eric

}

Concurrent access to objects:

It should not be possible that the fields (properties) of an object can be changed by 2 or more
different threads at the same time. If this can occur in your application then in order to make
concurrent acces safe you can use the methods of the package sync (see § 9.3). In § 14.17 we
explore an alternative way by using goroutines and channels.

10.6.5 Methods on embedded types and inheritance

When an anonymous type is embedded in a struct, the visible methods of that type are embedded
as well—in effect, the outer type inherits the methods: to subtype something, you put the parent type
within the subtype. This mechanism offers a simple way to emulate some of the effects of subclassing
and inheritance found in classic OO-languages; it is also very analogous to the mixins of Ruby.

Here is an illustrative example (which you can work out further in Exercise 10.8): suppose we have
an interface type Engine, and a struct type Car that contains an anonymous field of type Engine:

The Way to Go

249

type Engine interface {

 Start()

 Stop()

}

type Car struct {

 Engine

}

We could then construct the following code:

func (c *Car) GoToWorkIn {

 // get in car

 c.Start();

 // drive to work

 c.Stop();

 // get out of car

}

In the following complete example method3.go it is shown that a method on an embedded struct
can be called directly on an instance of the embedding type.

Listing 10.17—method3.go:

package main

import (

 “fmt”

 “math”

)

type Point struct {

 x, y float64

}

func (p *Point) Abs() float64 {

 return math.Sqrt(p.x*p.x + p.y*p.y)

}

type NamedPoint struct {

 Point

 name string

250

Ivo Balbaert

}

func main() {

 n := &NamedPoint{Point{3, 4}, “Pythagoras”}

 fmt.Println(n.Abs()) // prints 5

}

Embedding injects fields and methods of an existing type into another type: methods associated
with the anonymous field are promoted to become methods of the enclosing type. Of course a
type can have methods which act only on variables of that type, not on variables of the embedded
‘parent’ type.

Also overriding (just as with fields) is implemented for methods: a method in the embedding type
with the same name as a method in an embedded type overrides this. In Listing 10.18—method4.
go we have just added:

func (n *NamedPoint) Abs() float64 {

 return n.Point.Abs() * 100.

}

And now the line: fmt.Println(n.Abs()) prints 500.

Because a struct can embed multiple anonymous types, we have in effect a simple version of
multiple inheritance, like in: type Child struct { Father; Mother }

This is further explored in § 10.6.7

Structs embedding structs from the same package have full access to one another’s fields and
methods.

Exercise 10.8: inheritance_car.go

Make a working example for the Car and Engine code above; also give the Car type a field
wheelCount and a method numberOfWheels() to retrieve this.

Make a type Mercedes which embeds Car, an object of type Mercedes and use the methods.

Then construct a method sayHiToMerkel() only on type Mercedes and invoke it.

The Way to Go

251

10.6.6 How to embed functionality in a type

There are basically 2 ways for doing this:

A Aggregation (or composition): include a named field of the type of the wanted
functionality

B Embedding: Embed (anonymously) the type of the wanted functionality, like demonstrated
in the previous § 10.6.5

To make it concrete suppose we have a type Customer and we want to include a Logging
functionality with a type Log, which simply contains an accumulated message (of course this
could be elaborated). If you want to equip all your domain types with a logging capability, you
implement such a Log and add it as a field to your type as well as a method Log() returning a
reference to this log.

Way A could be implemented as follows (we use the String() functionality from § 10.7):

Listing 10.19—embed_func1.go:

package main

import (

 “fmt”

)

type Log struct {

 msg string

}

type Customer struct {

Name string

log *Log

}

func main() {

 c := new(Customer)

 c.Name = “Barak Obama”

 c.log = new(Log)

 c.log.msg = “1 - Yes we can!”

 // shorter:

 c := &Customer{“Barak Obama”, &Log{“1 - Yes we can!”}}

 // fmt.Println(c) // &{Barak Obama 1 - Yes we can!}

252

Ivo Balbaert

 c.Log().Add(“2 - After me the world will be a better place!”)

 //fmt.Println(c.log)

 fmt.Println(c.Log())

}

func (l *Log) Add(s string) {

 l.msg += “\n” + s

}

func (l *Log) String() string {

 return l.msg

}

func (c *Customer) Log() *Log {

 return c.log

}

/* Output of the log:

1 - Yes we can!

2 - After me the world will be a better place!

*/

Way B on the contrary would be like:

Listing 10.20—embed_func2.go:

package main

import (

 “fmt”

)

type Log struct {

 msg string

}

type Customer struct {

Name string

Log

}

func main() {

 c := &Customer{“Barak Obama”, Log{“1 - Yes we can!”}}

The Way to Go

253

 c.Add(“2 - After me the world will be a better place!”)

 fmt.Println(c)

}

func (l *Log) Add(s string) {

 l.msg += “\n” + s

}

func (c *Customer) String() string {

 return c.Name + “\nLog:” + fmt.Sprintln(c.Log)

}

func (l *Log) String() string {

 return l.msg

}

/* Output:

Barak Obama

Log:{1 - Yes we can!

2 - After me the world will be a better place!}

*/

The embedded type does not need to a pointer, Customer does not need an Add method anymore
because it uses the method from Log, Customer can have its own String-method and using in it
the log String() method.

This also works if the embedded type itself embeds another type, and the methods of the embedded
type can be used directly by the embedding type.

So a good strategy is to build small reusable types as a toolbox for the composition of the own
domain types.

10.6.7 Multiple inheritance

Multiple inheritance is the ability for a type to obtain the behaviors of more than one parent
class. In classic OO languages it is usually not implemented (exceptions are C++ and Python),
because in class-based hierarchies it introduces additional complexities for the compiler. But in
Go it can be implemented simply by embedding all the necessary ‘parent’ types in the type under
construction.

254

Ivo Balbaert

As an example suppose you want to have a type CameraPhone, with which you can Call() and
with which you can TakeAPicture(), but the first method belongs to type Phone, and the second
to type Camera.

Embedding both types solves the problem, as is illustrated in the following program:

Listing 10.21—mult_inheritance.go:
package main

import “fmt”

type Camera struct { }

func (c *Camera) TakeAPicture() string {

 return “Click”

}

type Phone struct { }

func (p *Phone) Call() string {

 return “Ring Ring”

}

// multiple inheritance

type CameraPhone struct {

 Camera

 Phone

}

func main() {

 cp := new(CameraPhone)

 fmt.Println(“Our new CameraPhone exhibits multiple behaviors ...”)

 fmt.Println(“It exhibits behavior of a Camera: “, cp.TakeAPicture())

 fmt.Println(“It works like a Phone too: “, cp.Call())

}

/* Output:

Our new CameraPhone exhibits multiple behaviors ...

It exhibits behavior of a Camera: Click

It works like a Phone too: Ring Ring

*/

The Way to Go

255

EXERCISES:

Exercise 10.9: point_methods.go:

Start from point.go (exercise from § 10.1): now implement the functions Abs()
and Scale() as methods with the receiver type Point. Also implement Abs() for
Point3 and Polar as methods. Do the same things as in point.go, but now use the
methods.

Exercise 10.10: inherit_methods.go

Define a struct type Base which contains an id-field, and methods Id() to return
the id and SetId() to change the id. The struct type Person contains Base, and
fields FirstName and LastName. The struct type Employee contains a Person and
a salary.

Make an employee instance and show its id.

Exercise 10.11: magic.go

Predict the outcome and then try out the following program:

package main
import “fmt”

type Base struct{}

func (Base) Magic() { fmt.Print(“base magic “) }

func (self Base) MoreMagic() {

 self.Magic()

 self.Magic()

}

type Voodoo struct {

 Base

}

func (Voodoo) Magic() { fmt.Println(“voodoo magic”) }

256

Ivo Balbaert

func main() {

 v := new(Voodoo)

 v.Magic()

 v.MoreMagic()

}

10.6.8 Universal methods and method naming

In programming a number of basic operations appear over and over again, like opening, closing,
reading, writing, sorting, etc. Moreover they have a general meaning to them: opening can be
applied for a file, a network connection, a database connection, etc. The implementation details
are in each case very different, but the general idea is the same. In Go this is applied extensively in
the standard library through the use of interfaces (see Chapter 11), wherein such generic methods
get canonical names as Open(), Read(), Write(), etc. If you want to write idiomatic Go, you should
follow this convention, giving your methods where appropriate the same names and signatures as
those ‘canonical’ methods. This makes Go software more consistent and readable. For example: if
you need a convert-to-string method, name it String() and not ToString() (see § 10.7).

10.6.9 Comparison between Go types and methods and other object-oriented languages.

Methods in OO languages like C++, Java, C# or Ruby are defined in the context of classes and
inheritance: when a method is invoked on an object, the runtime sees whether its class ore any of
its superclasses have a definition for that method, otherwise an exception results.

In Go such an inheritance hierarchy is not at all needed: if the method is defined for that type it
can be invoked, independent of whether or not the method exists for other types; so in that sense
there is a greater flexibility.

This is nicely illustrated in the following schema:

The Way to Go

257

Fig 10.4: Methods in Go and OO-languages

Go doesn’t require an explicit class definition as Java, C++, C#, etc do. Instead, a “class” is implicitly
defined by providing a set of methods which operate on a common type. This type may be a struct
or any other user-defined type.

For example: say we would like to define our own Integer type to add some possible methods for
working with integers, like a tostring-conversion. In Go we would define this as:

type Integer int

func (i *Integer) String() string {

 return strconv.Itoa(i)

}

In Java or C# the type and the func would be placed together in a class Integer; in Ruby you could
just write the method on the basic type int.

Summarized: in Go types are basically classes (data and associated methods). Go doesn’t know
inheritance like class oriented OO languages. Inheritance has two main benefits: code reuse and
polymorphism.

Code reuse in Go is achieved through composition and delegation, and polymorphism through the
use of interfaces: it implements what is sometimes called component programming.

258

Ivo Balbaert

Many developers say that Go’s interfaces provide a more powerful and yet simpler polymorphic
behaviour than class inheritance.

Remark: If you really need more OO capabilities, take a look at the goop—package (“Go
Object-Oriented Programming”) from Scott Pakin (https://github.com/losalamos/goop): it provides
Go with JavaScript-style objects (prototype-based objects) but supports multiple inheritance and
type-dependent dispatch so you can probably implement most of your favorite constructs from
other programming languages.

Question 10.1: We call a method on a variable of a certain type with the dot-notation: variable.
method(); where have we encountered that OO dot notation before in Go ?

Question 10.2: a) Suppose we define: type Integer int

Fill in the body of the get() function: func (p Integer) get() int { … }

b) Defined are: func f(i int) { }
 var v Integer

How would you call f with as parameter v ?

c) Suppose Integer is define as : type Integer struct { n int }
Now fill in the body of the get() function: func (p Integer) get() int { … }

d) Same question as in b) for the Integer struct type.

10.7 The String()-method and format specifiers for a type

When you define a type with a lot of methods, chances are you will want to make a customized
string-output for it with a String() method, in other words: a human-readable and printable
output. This is because if String() is defined for a certain type, then this method will be used in
fmt.Printf() to produce the default output: the one which is produced with the format specifier
%v. Also fmt.Print() and fmt.Println() will automatically use the String() method.

We test this out with the type of the program in § 10.4, Listing 10.22—method_string.go:
package main

import (

 “fmt”

 “strconv”

)

type TwoInts struct {

The Way to Go

259

 a int

 b int

}

func main() {

 two1 := new(TwoInts)

 two1.a = 12

 two1.b = 10

 fmt.Printf(“two1 is: %v\n”, two1) // output: two1 is: (12 / 10)

 fmt.Println(“two1 is:”, two1) // output: two1 is: (12 / 10)

 fmt.Printf(“two1 is: %T\n”, two1)

 // output: two1 is: *main.TwoInts

 fmt.Printf(“two1 is: %#v\n”, two1)

 // output: &main.TwoInts{a:12, b:10}

}

func (tn *TwoInts) String() string {

 return “(“+ strconv.Itoa(tn.a) +” / “+ strconv.Itoa(tn.b) + “)”

}

So whenever you will be using extensively a certain type that you made yourself, it is convenient
to make a String()-method for it. We also see that the format specifier %T gives us the complete
type specification and %#v gives us a complete output of the instance with its fields (it can also be
useful in generating Go code programmatically).

Remark: Don’t make the mistake of defining String() in terms of itself, like in the following
snippet. Then the program does an infinite recursion (TT.String() calls fmt.Sprintf which calls
TT.String() …) and quickly gives an out of memory error:

 type TT float64

 func (t TT) String() string {

 return fmt.Sprintf(“%v”, s)

 }

 t.String()

260

Ivo Balbaert

EXERCISES:

Exercise 10.12: type_string.go:

Given a struct type T: type T struct {

 a int

 b float32

 c string

}

 and a value t: t := &T{ 7, -2.35, “abc\tdef” }
 make a String() method for T so that for fmt.Printf(“%v\n”, t)
 the following format is send to the output: 7 / -2.350000 / “abc\tdef”

Exercise 10.13: celsius.go

Make an alias type Celsius for float64 and define a String() method for it which
prints out the temperature with 1 decimal and °C.

Exercise 10.14: days.go:

Make an alias type Day for int. Define an array of strings with the daynames.
Define a String() method for type Day which shows the dayname.
Make an enum const type with iota for all the days of the week (MO, TU, …)

Exercise 10.15: timezones.go:

Make an alias type TZ for int. Define a few constants which define timezones like
UTC and a map which maps these abbreviations to the full name, like:

 UTC -> “Universal Greenwich time”

Define a String() method for type TZ which shows the full name of the
timezone.

Exercise 10.16: stack_arr.go / stack_struct.go

Implement the stack datastructure:
 l

k

j

i

The Way to Go

261

It has cells to contain data, for example integers i, j, k, l, etc. the cells are indexed
from the bottom (index 0) to the top (index n). Let’s assume n=3 for this exercise,
so we have 4 places.

A new stack contains 0 in all cells.

A new value is put in the highest cell which is empty (contains 0), on top: this is
called push.

To get a value from the stack, take the highest value which is not 0: this is called pop.
So we can understand why a stack is called a Last In First Out (LIFO) structure.

Define a new type Stack for this datastructure. Make 2 methods Push and Pop.
Make a String() method (for debugging purposes) which shows the content of the
stack as: [0:i] [1:j] [2:k] [3:l]

(1) take as underlying data structure an array of 4 ints: stack_arr.go
(2) take as underlying data structure a struct containing an index and an array of

int, the index contains the first free position: stack_struct.go
(3) generalize both implementations by making the number of elements 4 a

constant LIMIT.

10.8 Garbage collection and SetFinalizer

The Go developer doesn’t have to code the release of memory for variables and structures which
are not used anymore in the program. A separate process in the Go runtime, the garbage collector,
takes care of that. It starts now and then, searches for variables which are not listed anymore and
frees that memory. Functionality regarding this process can be accessed via the runtime package.

Garbage collection can be called explicitly by invoking the function runtime.GC(), but this is
only useful in rare cases, e.g. when memory resources are scarce, a great chunk of memory could
immediately be freed at that point in the execution, and the program can take a momentary
decrease in performance (because of the garbage collection-process).

If you want to know the current memory status, use:

fmt.Printf(“%d\n”, runtime.MemStats.Alloc/1024)

This will give you the amount of allocated memory by the program in Kb. For further measurements:
see http://golang.org/pkg/runtime/#MemStatsType

262

Ivo Balbaert

Suppose special action needs to be taken right before an object obj is removed from memory, like
writing to a log-file. This can be achieved by calling the function:

runtime.SetFinalizer(obj, func(obj *typeObj))

where func(obj *typeObj) is a function which takes a pointer-parameter of the type of obj which
performs the additional action. func could also be an anonymous function.

SetFinalizer does not execute when the program comes to an normal end or when an error occurs,
before the object was chosen by the garbage collection process to be removed.

Exercise 10.17: Starting from exercise 10.13 (the struct implementation of a stack datastructure),
create a separate package stack for the stack implementation (stack_struct.go) and call it from a
main program main_stack.go

263

Chapter 11—Interfaces and reflection

11.1 What is an interface?

Go is not a ‘classic’ OO language: it doesn’t know the concept of classes and inheritance.

However it does contain the very flexible concept of interfaces, with which a lot of aspects of
object-orientation can be made available. Interfaces in Go provide a way to specify the behavior of
an object: if something can do this, then it can be used here.

An interface defines a set of methods (the method set), but these methods do not contain code: they
are not implemented (they are abstract). Also an interface cannot contain variables.

An interface is declared in the format: type Namer interface {

 Method1(param_list) return_type

 Method2(param_list) return_type

 …

 }

where Namer is an interface type.

The name of an interface is formed by the method name plus the [e]r suffix, such as Printer, Reader,
Writer, Logger, Converter, etc., thereby giving an active noun as a name. A less used alternative
(when ..er is not so appropriate) is to end it with able like in Recoverable, or to start it with an I
(more like in .NET or Java) .

Interfaces in Go are short, they usually have from 0—max 3 methods.

Unlike in most OO languages, in Go interfaces can have values, a variable of the interface type or
an interface value: var ai Namer

264

Ivo Balbaert

 ai is a multiword data structure with an uninitialized value of nil. Allthough not completely the
same thing, it is in essence a pointer. So pointers to interface values are illegal; they would be
completely useless and give rise to errors in code.

ai :
 receiver

value

method
table ptr

Fig 11.1: Interface value in memory

Its table of method pointers is build through the runtime reflection capability.

Types (like structs) can have the method set of the interface implemented; the implementation
contains for each method real code how to act on a variable of that type: they implement the
interface, the method set forms the interface of that type. A variable of a type that implements
the interface can be assigned to ai (the receiver value), the method table then has pointers to the
implemented interface methods. Both of these of course change when a variable of another type
(that also implements the interface) is assigned to ai.

A type doesn’t have to state explicitly that it implements an interface: interfaces are satisfied implicitly.
Multiple types can implement the same interface.

A type that implements an interface can also have other functions.

A type can implement many interfaces.

An interface type can contain a reference to an instance of any of the types that implement the interface
(an interface has what is called a dynamic type)

Even if the interface was defined later than the type, in a different package, compiled separately: if
the object implements the methods named in the interface, then it implements the interface.

All these properties allow for a lot of flexibility.

As a first example, look at Listing 11.1—interfaces.go:
package main

import “fmt”

type Shaper interface {

 Area() float32

The Way to Go

265

}

type Square struct {

 side float32

}

func (sq *Square) Area() float32 {

 return sq.side * sq.side

}

func main() {

 sq1 := new(Square)

 sq1.side = 5

 // var areaIntf Shaper

 // areaIntf = sq1

 // shorter, without separate declaration:

 // areaIntf := Shaper(sq1)

 // or even:

 areaIntf := sq1

 fmt.Printf(“The square has area: %f\n”, areaIntf.Area())

}

Output: The square has area: 25.000000

The program defines a struct Square and an interface Shaper, with one method Area().

In main() an instance of Square is constructed. Outside of main we have an Area() method with a
receiver type of Square where the area of a square is calculated: the struct Square implements the
interface Shaper.

Because of this we can assign a variable of type Square to a variable of the interface type:
areaIntf = sq1

Now the interface variable contains a reference to the Square variable and through it we can call
the method Area() on Square. Of course you could call the method immediately on the Square
instance sq1.Area(), but the novel thing is that we can call it on the interface instance, thereby
generalizing the call. The interface variable both contains the value of the receiver instance and a
pointer to the appropriate method in a method table.

266

Ivo Balbaert

This is Go’s version of polymorphism, a well known concept in OO software: the right method is
chosen according to the current type, or put otherwise: a type seems to exhibit different behaviors
when linked to different instances.

If Square would not have an implementation of Area(), we would receive the very clear compiler
error:

cannot use sq1 (type *Square) as type Shaper in assignment:

*Square does not implement Shaper (missing Area method)

The same error would occur if Shaper had another method Perimeter(), and Square would not
have an implementation for that, even if Perimeter() was not called on a Square instance.

We know expand the example with a type Rectangle which also implements Shaper. We can now
make an array with elements of type Shaper, and show polymorphism in action by using a for range
on it and calling Area() on each item:

Listing 11.2—interfaces_poly.go:

package main

import “fmt”

type Shaper interface {

 Area() float32

}

type Square struct {

 side float32

}

func (sq *Square) Area() float32 {

 return sq.side * sq.side

}

type Rectangle struct {

 length, width float32

}

func (r Rectangle) Area() float32 {

 return r.length * r.width

}

The Way to Go

267

func main() {

 r := Rectangle{5, 3} // Area() of Rectangle needs a value

 q := &Square{5 // Area() of Square needs a pointer

 // shapes := []Shaper{Shaper(r), Shaper(q)}

 // or shorter:

 shapes := []Shaper{r, q, c}

 fmt.Println(“Looping through shapes for area ...”)

 for n, _ := range shapes {

 fmt.Println(“Shape details: “, shapesArr[n])

 fmt.Println(“Area of this shape is: “, shapes[n].Area())

 }

}

/* Output:

Looping through shapes for area ...

Shape details: {5 3}

Area of this shape is: 15

Shape details: &{5}

Area of this shape is: 25

*/

At the point of calling shapes[n].Area()) we only know that this is a Shaper object, under the
cover it ‘morphs’ into a Square or a Rectangle and behaves accordingly.

Perhaps you can now begin to see how interfaces can produce cleaner, simpler, and more scalable
code. In § 11.12.3 we will see how easy it is to add new interfaces for our types later on in the
development.

Here is a another more concrete example: we have 2 types stockPosition and car, both have a
method getValue(); realizing that we can define an interface valuable with this method. And the
we can define methods that take a parameter of type valuable and which are usable by all types that
implement this interface, like showValue():

Listing 11.3—valuable.go:

package main

import “fmt”

type stockPosition struct {

 ticker string

 sharePrice float32

268

Ivo Balbaert

 count float32

}

/* method to determine the value of a stock position */

func (s stockPosition) getValue() float32 {

 return s.sharePrice * s.count

}

type car struct {

 make string

 model string

 price float32

}

/* method to determine the value of a car */

func (c car) getValue() float32 {

 return c.price

}

/* contract that defines different things that have value */

type valuable interface {

 getValue() float32

}

/* anything that satisfies the “valuable” interface is accepted */

func showValue(asset valuable) {

 fmt.Printf(“Value of the asset is %f\n”, asset.getValue())

}

func main() {

 var o valuable = stockPosition{ “GOOG”, 577.20, 4 }

 showValue(o)

 o = car{ “BMW”, “M3”, 66500 }

 showValue(o)

}

/* Output:
Value of the asset is 2308.800049

Value of the asset is 66500.000000

*/

The Way to Go

269

An example from the standard library:

The io package contains an interface type Reader:

type Reader interface {

 Read(p []byte) (n int, err error)

}

If we define a variable r as: var r io.Reader

then the following is correct code: r = os.Stdin // see § 12.1

r = bufio.NewReader(r)

r = new(bytes.Buffer)

f, _ := os.Open(“test.txt”)

r = bufio.NewReader(f)

because the right-hand side objects each implement a Read() method with the exact same signature.
The static type of r is io.Reader.

Remark:
Sometimes the word interface is also used in a slightly different way: seen from the standpoint of a
certain type, the interface of that type is the set of exported methods defined for that type, without
there having to be an explicit interface type defined with these methods.

Exercise 11.1: simple_interface.go

Define an interface Simpler with methods Get() which returns an integer, and Set() which has an
integer as parameter. Make a struct type Simple which implements this interface.

Then define a function which takes a parameter of the type Simpler and calls both methods upon
it. Call this function from main to see if it all works correctly.

Exercise 11.2-3: interfaces_poly2.go
a) Expand the example interfaces_poly.go to a type Circle: interfaces_poly2.go
b) Now we will implement the same functionality by using an ‘abstract’ type Shape (abstract

because it has no fields) which implements Shaper, and embedding his type in the other
types. Now demonstrate that overriding is used as explained in § 10.6.5: interfaces_
poly3.go

270

Ivo Balbaert

11.2 Interface embedding interface(s)

An interface can contain the name of one (or more) other interface(s), which is equivalent to
explicitly enumerating the methods of the embedded interface in the containing interface.

For example interface File contains all the methods of ReadWrite and Lock, in addition to a
Close() method.

type ReadWrite interface {

 Read(b Buffer) bool

 Write(b Buffer) bool

}

type Lock interface {

 Lock()

 Unlock()

}

type File interface {

 ReadWrite

 Lock

 Close()

}

11.3 How to detect and convert the type of an interface variable: type
assertions

An interface type variable varI can contain a value of any type; we must have a means to detect this
dynamic type, that is the actual type of the value stored in the variable at run time. The dynamic
type may vary during execution, but is always assignable to the type of the interface variable itself.
In general we can test if varI contains at a certain moment a variable of type T with the type
assertion test:

v := varI.(T) // unchecked type assertion

varI must be an interface variable, if not the compiler signals the error: invalid type assertion:
varI.(T) (non-interface type (type of varI) on left)

The Way to Go

271

A type assertion may not be valid; the compiler does its utmost best to see if the conversion is valid,
but cannot foresee all possible cases. If this conversion fails while running the program a runtime
error occurs! A safer way is to use the following form:

if v, ok := varI.(T); ok { // checked type assertion

 Process(v)

 return

}

// varI is not of type T

If this conversion is valid, v will contain the value of varI converted to type T and ok will be true,
otherwise v is the zero value for T and ok is false, so no runtime error occurs!

!! Always use the comma, ok form for type assertions !!

In most cases you would want to test the value of ok in an if; then it is most convenient to use the
form: if v, ok := varI.(T); ok {

 // …

 }

In this form shadowing the variable varI by giving varI and v the same name is sometimes done.

An example can be seen in Listing 11.4—type_interfaces.go:
package main

import (

 “fmt”

 “math”

)

type Square struct {

 side float32

}

type Circle struct {

 radius float32

}

type Shaper interface {

 Area() float32

}

272

Ivo Balbaert

func main() {

 var areaIntf Shaper

 sq1 := new(Square)

 sq1.side = 5

 areaIntf = sq1

 // Is Square the type of areaIntf ?

 if t, ok := areaIntf.(*Square); ok {

 fmt.Printf(“The type of areaIntf is: %T\n”, t)

 }

 if u, ok := areaIntf.(*Circle); ok {

 fmt.Printf(“The type of areaIntf is: %T\n”, u)

 } else {

 fmt.Println(“areaIntf does not contain a variable of type

 Circle”)

 }

}

func (sq *Square) Area() float32 {

 return sq.side * sq.side

}

func (ci *Circle) Area() float32 {

 return ci.radius * ci.radius * math.Pi

}

Output: The type of areaIntf is: *main.Square

 areaIntf does not contain a variable of type Circle

 Type Square *main.Square with value &{5}

A new type Circle is defined, which also implements Shaper. In the line t, ok := areaIntf.

(*Square) we test that areaIntf contains a variable of type Square, this is the case; then we test that
it does not contain a variable of type Circle.

Remark: if we omit the * in areaIntf.(*Square) we get the compiler-error:
impossible type assertion: areaIntf (type Shaper) cannot have dynamic type

Square (missing Area method)

The Way to Go

273

11.4 The type switch

The type of an interface variable can also be tested with a special kind of switch: the type-switch
(this is the 2nd part of Listing 11.2):

switch t := areaIntf.(type) {

case *Square:

fmt.Printf(“Type Square %T with value %v\n”, t, t)

case *Circle:

fmt.Printf(“Type Circle %T with value %v\n”, t, t)

case float32:

fmt.Printf(“Type float32 with value %v\n”, t)

case nil:

fmt.Println(“nil value: nothing to check?”)

default:

fmt.Printf(“Unexpected type %T”, t)

}

Output: Type Square *main.Square with value &{5}

The variable t receives both value and type from areaIntf. All of the listed types (except nil) have
to implement the interface (Shaper in this case); if the current type is none of the case-types, the
default clause is executed.

Fallthrough is not permitted. With a type-switch a runtime type analysis can be done.

Of course all the built-in types as int, bool and string can also be tested in a type switch.

If you only need to test the type of the variable in the switch and don’t need the value, the assignment
can be left out, like:

switch areaIntf.(type) {

case *Square:

 fmt.Printf(“Type Square %T with value %v\n”, t, t)

case *Circle:

 fmt.Printf(“Type Circle %T with value %v\n”, t, t)

 …

default:

 fmt.Printf(“Unexpected type %T”, t)

}

274

Ivo Balbaert

In the following code snippet a type classifier function is shown which accepts an array with a
variable number of arguments of any type, and that executes something according to the determined
type:

func classifier(items ...interface{}) {

 for i, x := range items {

 switch x.(type) {

 case bool: fmt.Printf(“param #%d is a bool\n”, i)

 case float64: fmt.Printf(“param #%d is a float64\n”, i)

 case int, int64: fmt.Printf(“param #%d is an int\n”, i)

 case nil: fmt.Printf(“param #%d is nil\n”, i)

 case string: fmt.Printf(“param #%d is a string\n”, i)

 default: fmt.Printf(“param #%d’s type is unknown\n”, i)

 }

 }

}

This function could be called e.g. as classifier(13, -14.3, “BELGIUM”, complex(1, 2),nil,
false).

When dealing with data of unknown type from external sources type testing and conversion to Go
data types can be very useful, e.g. parsing data that are JSON- or XML-encoded.

In listing 12.17 (xml.go) we use a type switch while parsing an XML-document.

Exercise 11.4: simple_interface2.go

Continuing with exercise 11.1, make a second type RSimple which also implements the interface
Simpler.

Expand the function fI so that it can distinguish between variables of both types.

11.5 Testing if a value implements an interface

This is a special case of the type assertion from § 11.3: suppose v is a value and we want to test
whether it implements the Stringer interface, this can be done as follows:

type Stringer interface { String() string }

if sv, ok := v.(Stringer); ok {

 fmt.Printf(“v implements String(): %s\n”, sv.String()); // note: sv, not v

}

The Way to Go

275

This is how the Print functions check if the type can print itself.

An interface is a kind of contract which the implementing type(s) must fulfill. Interfaces describe
the behavior of types, what they can do. They completely separate the definition of what an object
can do from how it does it, allowing distinct implementations to be represented at different times
by the same interface variable, which is what polymorphism essentially is.

Writing functions so that they accept an interface variable as a parameter makes them more
general.

!! Use interfaces to make your code more generally applicable !!

This is also ubiquitously applied in the code of the standard library. It is impossible to understand
how it is build without a good grasp of the interface-concept.

In the following paragraphs we discuss 2 important examples. Try to understand them deep enough
so that you can apply this principle as well.

11.6 Using method sets with interfaces

In § 10.6.3 and example program methodset1.go we saw that methods on variables in fact do
not distinguish between values or pointers. When storing a value in an interface type it is slightly
more complicated because a concrete value stored in an interface is not addressable, but luckily the
compiler flags an error on improper use. Consider the following program:

Listing 11.5—methodset2.go:

package main

import (

 “fmt”

)

type List []int

func (l List) Len() int { return len(l) }

func (l *List) Append(val int) { *l = append(*l, val) }

type Appender interface {

 Append(int)

}

func CountInto(a Appender, start, end int) {

276

Ivo Balbaert

 for i := start; i <= end; i++ {

 a.Append(i)

 }

}

type Lener interface {

 Len() int

}

func LongEnough(l Lener) bool {

 return l.Len()*10 > 42

}

func main() {

// A bare value

 var lst List

// compiler error:

// cannot use lst (type List) as type Appender in function argument:

// List does not implement Appender (Append method requires pointer // receiver)

 // CountInto(lst, 1, 10)

 if LongEnough(lst) { // VALID: Identical receiver type

 fmt.Printf(“- lst is long enough”)

 }

 // A pointer value

 plst := new(List)

 CountInto(plst, 1, 10) // VALID: Identical receiver type

 if LongEnough(plst) {

 // VALID: a *List can be dereferenced for the receiver

 fmt.Printf(“- plst is long enough”)

 // - plst2 is long enoug

 }

}

Discussion:

CountInto called with the value lst gives a compiler error because CountInto takes an Appender,
and Append() is only defined for a pointer. LongEnough on value lst works because Len() is
defined on a value.

The Way to Go

277

CountInto called with the pointer plst works because CountInto takes an Appender, and Append()
is defined for a pointer. LongEnough on pointer plst works because a pointer can be dereferenced
for the receiver.

Summarized: when you call a method on an interface, it must either have an identical receiver type
or it must be directly discernible from the concrete type: P

•	 Pointer	methods	can	be	called	with	pointers.	
•	 Value	methods	can	be	called	with	values.
•	 	Value-receiver	methods	can	be	called	with	pointer	values	because	they	can	be	dereferenced	

first.
•	 Pointer-receiver	methods	cannot be called with values, however, because the value stored

inside an interface has no address.

When assigning a value to an interface, the compiler ensures that all possible interface methods
can actually be called on that value, and thus trying to make an improper assignment will fail on
compilation.

11.7 1st example: sorting with the Sorter interface

A very good example comes from the Go-library itself, namely the package sort. To sort a collection
of numbers and strings, you only need the number of elements Len(), a way to compare items i and
j Less(i, j) and a method to swap items with indexes i and j Swap(i, j)

The Sort-function in sort has an algorithm that only uses these methods on a collection data (to
implement it we use here a bubble sort (see Ex. 7.12) but any sort-algorithm could be used):

func Sort(data Sorter) {

 for pass:=1; pass < data.Len(); pass++ {

 for i:=0; i < data.Len() - pass; i++ {

 if data.Less(i+1, i) {

 data.Swap(i, i+1)

 }

 }

 }

}

so Sort can accept a general parameter of an interface type Sorter which declares these methods:
type Sorter interface {

 Len() int

 Less(i, j int) bool

278

Ivo Balbaert

 Swap(i, j int)

}

The type int in Sorter does not mean that the collection data must contain ints, i and j are integer
indices, and the length is also an integer.

Now if we want to be able to sort an array of ints, all we must do is to define a type and implement
the methods of Interface:

type IntArray []int

func (p IntArray) Len() int { return len(p) }

func (p IntArray) Less(i, j int) bool { return p[i] < p[j] }

func (p IntArray) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

Here is the code to call the sort-functionality in a concrete case:

data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586}

a := sort.IntArray(data) //conversion to type IntArray from package sort

sort.Sort(a)

The complete working code can be found in sort.go and sortmain.go.

To illustrate the power of the concept, the same principle is applied for an array of floats, of strings,
and an array of structs dayArray representing the days of the week.

Listing 11.6—sort.go:

package sort

type Sorter interface {

 Len() int

 Less(i, j int) bool

 Swap(i, j int)

}

func Sort(data Sorter) {

 for pass:=1; pass < data.Len(); pass++ {

 for i:=0; i < data.Len() - pass; i++ {

 if data.Less(i+1, i) {

 data.Swap(i, i+1)

 }

The Way to Go

279

 }

 }

}

func IsSorted(data Sorter) bool {

 n := data.Len()

 for i := n - 1; i > 0; i-- {

 if data.Less(i, i-1) {

 return false

 }

 }

 return true

}

// Convenience types for common cases

type IntArray []int

func (p IntArray) Len() int { return len(p) }

func (p IntArray) Less(i, j int) bool { return p[i] < p[j] }

func (p IntArray) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

type StringArray []string

func (p StringArray) Len() int { return len(p) }

func (p StringArray) Less(i, j int) bool { return p[i] < p[j] }

func (p StringArray) Swap(i, j int) { p[i], p[j] = p[j], p[i] }

// Convenience wrappers for common cases

func SortInts(a []int { Sort(IntArray(a)) }

func SortStrings(a []string) { Sort(StringArray(a)) }

func IntsAreSorted(a []int) bool { return IsSorted(IntArray(a)) }

func StringsAreSorted(a []string) bool { return IsSorted(StringArray(a)) }

Listing 11.7—sortmain.go:

package main

import (

 “fmt”

 “./sort”

)

func ints() {

data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586}

 a := sort.IntArray(data) //conversion to type IntArray

280

Ivo Balbaert

 sort.Sort(a)

 if !sort.IsSorted(a) {

 panic(“fail”)

 }

 fmt.Printf(“The sorted array is: %v\n”, a)

}

func strings() {

 data := []string{“monday”, “friday”, “tuesday”, “wednesday”, “sunday”,

 “thursday”, “”, “saturday”}

 a := sort.StringArray(data)

 sort.Sort(a)

 if !sort.IsSorted(a) {

 panic(“fail”)

 }

 fmt.Printf(“The sorted array is: %v\n”, a)

}

type day struct {

 num int

 shortName string

 longName string

}

type dayArray struct {

 data []*day

}

func (p *dayArray) Len() int { return len(p.data) }

func (p *dayArray) Less(i, j int) bool { return p.data[i].num < p.data[j].num }

func (p *dayArray) Swap(i, j int) { p.data[i], p.data[j] = p.data[j],

p.data[i] }

func days() {

 Sunday := day{0, “SUN”, “Sunday”}

 Monday := day{1, “MON”, “Monday”}

 Tuesday := day{2, “TUE”, “Tuesday”}

 Wednesday := day{3, “WED”, “Wednesday”}

 Thursday := day{4, “THU”, “Thursday”}

 Friday := day{5, “FRI”, “Friday”}

 Saturday := day{6, “SAT”, “Saturday”}

The Way to Go

281

 data := []*day{&Tuesday, &Thursday, &Wednesday, &Sunday, &Monday,

 &Friday, &Saturday}

 a := dayArray{data}

 sort.Sort(&a)

 if !sort.IsSorted(&a) {

 panic(“fail”)

 }

 for _, d := range data {

 fmt.Printf(“%s “, d.longName)

 }

 fmt.Printf(“\n”)

}

func main() {

 ints()

 strings()

 days()

}

Output:

The sorted array is: [-5467984 -784 0 0 42 59 74 238 905 959 7586 7586 9845]

The sorted array is: [friday monday saturday sunday thursday tuesday wednesday]

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Remark: panic(“fail”) is a way to stop the program in a situation which could not occur
in common circumstances (see chapter 13 for details of its use); we could also have printed a
message and then used os.Exit(1).

This example has given us a better insight in the significance and use of interfaces. For sorting
the primitive types we know that we don’t have to write this code ourselves, the standard library
provides for this (§ 7.6.6). For general sorting the sort package defines a

type Interface interface {

 Len() int

 Less(i, j int) bool

 Swap(i, j int)

}

which sums up the abstract methods needed for sorting, and a func Sort(data Interface) that
can act on such a type. These can be used in implementing sorting for other kinds of data. In fact

282

Ivo Balbaert

that is exactly what we did in the example above, using this for ints and strings, but also for a user
defined type dayArray, to sort an internal array of strings.

Exercise 11.5: interfaces_ext.go: a) Expanding the same program, define a type Triangle, and
let it implement AreaInterface. Test this by calculation the area of a specific triangle (area of a
triangle = 0.5 * (base * height))

b) Define a new interface PeriInterface which defines a
method Perimeter(). Let type Square also implement this interface and test it with our square
instance.

Exercise 11.6: point_interfaces.go: Continue working on the exercise point_methods.go of
§10.3. Define an interface Magnitude with a function Abs(). With the methods from §10.3,
Point, Point3 and Polar implement that interface. Do the same things as in point.go, but now use
the methods through a variable of the interface type.

Exercise 11.7: float_sort.go / float_sortmain.go

Analogous as in § 11.7 and Listings 11.3/4 define a package float64 and in it a type Float64Array,
and let this type implement the Sorter interface to sort an array of float64.

Also provide the following methods:

a NewFloat64Array-method for making a variable with 25 elements (see § 10.2) -
a List()-method returning a string for pretty-printing the array, wrap this in a -
String()-method so that you don’t have to call List() explicitly (see § 10.7)
a Fill() method for creating such an array with 10 random floats (see § 4.5.2.6) -

In the main-program create a variable of that type, sort it and test that.

Exercise 11.8: sort.go / sort_persons.go

Define a struct Person with firstName and LastName, and a type Persons as a []Person.

Implement the Sorter interface for Persons and test it.

11.8 2nd example: Reading and Writing

Reading and writing are universal activities in software: reading and writing files comes to mind
first, reading and writing to buffers (e.g. to slices of bytes or to strings), and to the standard input,

The Way to Go

283

output, and error streams, network connections, pipes, etc.—or to our own custom types. To make
the codebase as generic as possible, Go takes a consistent approach to reading and writing data.

The package io provides us with the interfaces for reading an writing, io.Reader and io.Writer:

type Reader interface {

 Read(p []byte) (n int, err error)

}

type Writer interface {

 Write(p []byte) (n int, err error)

 }

You can read from and write to any type as long as the type provides the methods Read() and
Write(), necessary to satisfy the reading and writing interfaces. For an object to be readable it must
satisfy the io.Reader interface. This interface specifies a single method with signature, Read([]byte)
(int, error). The Read() method reads data from the object it is called on and puts the data read into
the given byte slice. It returns the number of bytes read and an error object which will be nil if no
error occurred, or io.EOF (“end of file”) if no error occurred and the end of the input was reached,
or some other non-nil value if an error occurred. Similarly, for an object to be writable it must
satisfy the io.Writer interface. This interface specifies a single method with signature, Write([]byte)
(int, error). The Write() method writes data from the given byte slice into the object the method
was called on, and returns the number of bytes written and an error object (which will be nil if no
error occurred).

io Readers and Writers are unbuffered; the package bufio provides for the corresponding buffered
operations and so are especially useful for reading and writing UTF-8 encoded text files. We see
this in action in the many examples of chapter 12.

Through using as much as possible these interfaces in the signature of methods, they become as
generic as possible: every type that implements these interfaces can use these methods.

For example the function which implements a JPEG decoder takes a Reader as a parameter, and
thus can decode from disk, network connection, gzipped http, etc.

284

Ivo Balbaert

11.9 Empty Interface

11.9.1 Concept

The empty or minimal interface has no methods and so doesn’t make any demands at all.

type Any interface{}

So any variable, any type implements it (not only reference types as Object in Java/C#), and any or
Any is really a good name as alias and abbreviation!

(It is analogous to the class Object in Java and C#, the base class of all classes, so Obj also fits.)

A variable of that interface type var val interface{} can through assignment receive a variable of
any type. This is illustrated in the program Listing 11.8—empty_interface.go:

package main

import “fmt”

var i = 5

var str = “ABC”

type Person struct {

 name string

 age int

}

type Any interface{}

func main() {

 var val Any

 val = 5

 fmt.Printf(“val has the value: %v\n”, val)

 val = str

 fmt.Printf(“val has the value: %v\n”, val)

 pers1 := new(Person)

 pers1.name = “Rob Pike”

 pers1.age = 55

 val = pers1

The Way to Go

285

 fmt.Printf(“val has the value: %v\n”, val)

 switch t := val.(type) {

 case int:

 fmt.Printf(“Type int %T\n”, t)

 case string:

 fmt.Printf(“Type string %T\n”, t)

 case bool:

 fmt.Printf(“Type boolean %T\n”, t)

 case *Person:

 fmt.Printf(“Type pointer to Person %T\n”, *t)

 default:

 fmt.Printf(“Unexpected type %T”, t)

 }

}

Output: val has the value: 5

 val has the value: ABC

 val has the value: &{Rob Pike 55}

 Type pointer to Person main.Person

An int, a string and a Person instance are assigned to an interface variable val. A type-switch tests
for its type. Each interface{} variable takes up 2 words in memory: one word for the type of what
is contained, the other word for either the contained data or a pointer to it.

Program emptyint_switch.go shows an example of usage of the empty interface in a type switch
(see § 11.4) combined with a lambda function:

Listing 11.9—emptyint_switch.go:

package main

import “fmt”

type specialString string

var whatIsThis specialString = “hello”

func TypeSwitch() {

 testFunc := func(any interface{}) {

switch v := any.(type) {

case bool:

fmt.Printf(“any %v is a bool type”, v)

case int:

fmt.Printf(“any %v is an int type”, v)

286

Ivo Balbaert

case float32:

fmt.Printf(“any %v is a float32 type”, v)

case string:

fmt.Printf(“any %v is a string type”, v)

case specialString:

fmt.Printf(“any %v is a special String!”, v)

default:

fmt.Println(“unknown type!”)

 }

 }

 testFunc(whatIsThis)

}

func main() {

 TypeSwitch()

}

// Output: any hello is a special String!

Exercise 11.9: simple_interface3.go

Continuing on Exercise 11.2, add a function gI which, instead of an Simpler type, accepts a
empty interface parameter. The function then tests with a type assertion if the parameter fulfills
the Simpler type. Now call this gI function instead of the fI function. Make your code as safe as
possible.

11.9.2 Constructing an array of a general type or with variables of different types

In § 7.6.6 we saw how arrays of ints, floats and strings can be searched and sorted. But what about
arrays of other types, do we have to program that for ourselves ?

If we would like to we now know that this is possible by using the empty interface, let us give it the
alias Element: type Element interface {}

Then define a container struct Vector, which contains a slice of Element-items:

type Vector struct {

 a []Element

}

The Way to Go

287

Vectors can contain anything because any type implements the empty interface; in fact every
element could be of different type. We can define a method At() that returns the ith element:

func (p *Vector) At(i int) Element {

 return p.a[i]

}

And a function Set() that sets the ith element:

func (p *Vector) Set(i int, Element e) {

 p.a[i] = e

}

Everything in the vector is stored as an Element, to get the original type back (unboxing) we need
to use type-assertions. The compiler rejects assertions guaranteed to fail, but type assertions always
execute at run time and so can produce run-time errors!

Exercise 11.10: min_interface.go / minmain.go

Analogous to the Sorter interface we developed in § 11.7, make a Miner interface with the necessary
operations, and a function Min which has as a parameter a variable which is a collection of type
Miner and which calculates and returns the minimum element in that collection.

11.9.3 Copying a data-slice in a slice of interface{}

Suppose you have a slice of data of myType and you want to put them in a slice of empty interface,
like in:

var dataSlice []myType = FuncReturnSlice()

var interfaceSlice []interface{} = dataSlice

This doesn’t work, the compiler gives you the error: cannot use dataSlice (type []myType) as
type []interface { } in assignment

The reason is that the memory layout of both variables is not the same (try to reason this yourself
or see http://code.google.com/p/go-wiki/wiki/InterfaceSlice) .

288

Ivo Balbaert

The copy must be done explicitly with a for-range statement, like in:

var dataSlice []myType = FuncReturnSlice()

var interfaceSlice []interface{} = make([]interface{}, len(dataSlice))

for ix, d := range dataSlice {

 interfaceSlice[i] = d

}

11.9.4 Node structures of general or different types

In §10.1 we encountered data-structures like lists and trees, using a recursive struct type called
a node. The nodes contained a data field of a certain type. Now with the empty interface at our
disposal, data can be of that type, and we can write generic code. Here is some starting code for
a binary tree structure: the general definition, a method NewNode for creating such an empty
structure, and a method SetData for giving the data a value:

Listing 11.10—node_structures.go:

package main

import “fmt”

type Node struct {

 le *Node

 data interface{}

 ri *Node

}

func NewNode(left, right *Node) *Node {

 return &Node{left, nil, right}

}

func (n *Node) SetData(data interface{}) {

 n.data = data

}

func main() {

 root := NewNode(nil,nil)

 root.SetData(“root node”)

 // make child (leaf) nodes:

 a := NewNode(nil,nil)

 a.SetData(“left node”)

 b := NewNode(nil,nil)

The Way to Go

289

 b.SetData(“right node”)

 root.le = a

 root.ri = b

 fmt.Printf(“%v\n”, root) // Output: &{0x125275f0 root node 0x125275e0}

}

11.9.5 Interface to interface

An interface value can also be assigned to another interface value, as long as the underlying value
implements the necessary methods. This conversion is checked at runtime, and when it fails a
runtime error occurs: this is one of the dynamic aspects of Go, comparable to dynamic languages
like Ruby and Python.

Suppose: var ai AbsInterface // declares method Abs()

type SqrInterface interface { Sqr() float }

var si SqrInterface

pp := new(Point) // say *Point implements Abs, Sqr

var empty interface{}

Then the following statements and type assertions are valid:

empty = pp; // everything satisfies empty

ai = empty.(AbsInterface); // underlying value pp implements Abs()

 // (runtime failure otherwise)

si = ai.(SqrInterface); // *Point has Sqr() even though AbsInterface doesn’t

empty = si; // *Point implements empty set

 // Note: statically checkable so type assertion not necessary.

Here is an example with a function call:

type myPrintInterface interface {

 print()

}

func f3(x myInterface) {

 x.(myPrintInterface).print() // type assertion to myPrintInterface

}

The conversion to myPrintInterface is entirely dynamic: it will work as long as the underlying type
of x (the dynamic type) defines a print method.

290

Ivo Balbaert

11.10 The reflect package

11.10.1 Methods and types in reflect

In §10.4 we saw how reflect can be used to analyse a struct. Here we elaborate further on its
powerful possibilities. Reflection in computing is the ability of a program to examine its own
structure, particularly through the types; it’s a form of metaprogramming. reflect can be used to
investigate types and variables at runtime, e.g. its size, its methods, and it can also call these methods
‘dynamically’. It can also be useful to work with types from packages of which you do not have the
source. It’s a powerful tool that should be used with care and avoided unless strictly necessary.

Basic information of a variable is its type and its value: there are represented in the reflection
package by the types Type, which represents a general Go type, and Value which is the reflection
interface to a Go value.

Two simple functions, reflect.TypeOf and reflect.ValueOf, retrieve Type and Value pieces out of any
value. For example if x is defined as: var x float64 = 3.4

then reflect.TypeOf(x) gives float64 and reflect.ValueOf(x) returns <float64 Value>.

In fact reflection works by examing an interface value, the variable is first converted to the empty
interface. This becomes apparent if you look at the signatures of both of these functions:

func TypeOf(i interface{}) Type

func ValueOf(i interface{}) Value

The interface value then contains a type and value pair.

Reflection goes from interface values to reflection objects and back again as we will see.

Both reflect.Type and reflect.Value have lots of methods to let us examine and manipulate them.
One important example is that Value has a Type method that returns the Type of a reflect.Value.
Another is that both Type and Value have a Kind method that returns a constant indicating what
sort of item is stored: Uint, Float64, Slice, and so on. Also methods on Value with names like Int
and Float let us grab values (as int64 and float64) stored inside. The different Kinds of Type are
defined as constants: type Kind uint8

The Way to Go

291

const (

Invalid Kind = iota

Bool

Int

Int8

Int16

Int32

Int64

Uint

Uint8

Uint16

Uint32

Uint64

Uintptr

Float32

Float64

Complex64

Complex128

Array

Chan

Func

Interface

Map

Ptr

Slice

String

Struct

UnsafePointer

)

For our variable x if v:= reflect.ValueOf(x) then v.Kind() is float64, so the following is true:
v.Kind() == reflect.Float64

The Kind is always the underlying type: if you define:

type MyInt int

var m MyInt = 5

v := reflect.ValueOf(m)

then v.Kind() returns reflect.Int

292

Ivo Balbaert

The Interface() method on a Value recovers the (interface) value, so to print a Value v do this:
fmt.Println(v.Interface())

Experiment with these possibilities with the following code:

Listing 11.11—reflect1.go:

package main

import (

 “fmt”

 “reflect”

)

func main() {

var x float64 = 3.4

fmt.Println(“type:”, reflect.TypeOf(x))

v := reflect.ValueOf(x)

fmt.Println(“value:”, v)

fmt.Println(“type:”, v.Type())

fmt.Println(“kind:”, v.Kind())

fmt.Println(“value:”, v.Float())

fmt.Println(v.Interface())

fmt.Printf(“value is %5.2e\n”, v.Interface())

y := v.Interface().(float64)

fmt.Println(y)

}

/* output:

type: float64

value: <float64 Value>

type: float64

kind: float64

value: 3.4

3.4

value is 3.40e+00

3.4

*/

Knowing x is a float64 value, reflect.ValueOf(x).Float() returns its value as a float64; the same
works with Int(), Bool(), Complex() and String().

The Way to Go

293

11.10.2 Modifying (setting) a value through reflection

Continuing with the previous example (see Listing 11.9 reflect2.go), suppose we want to modify
the value of x to say 3.1415. Value has a number of Set methods to do this, but here we must be
careful: v.SetFloat(3.1415)

produces an Error: will panic: reflect.Value.SetFloat using unaddressable value

Why is this? The problem is that v is not settable (not that the value 7.1 is not addressable).
Settability is a property of a reflection Value, and not all reflection Values have it: it can be tested
with the CanSet() method.

In our case we see that this is false: settability of v: false

When v was created with v := reflect.ValueOf(x) a copy of x was passed to the function,
so it is logical that you can’t change the original x through v.

In order to change x through v we need to pass the address of x: v = reflect.ValueOf(&x)

Through Type() we see that v is now of type *float64 and still not settable.

To make it settable we need to let the Elem() function work on it which indirects through the
pointer: v = v.Elem()

Now v.CanSet() gives true and v.SetFloat(3.1415) works!

Listing 11.12—reflect2.go:

package main

import (

“fmt”

“reflect”

)

func main() {

var x float64 = 3.4

v := reflect.ValueOf(x)

// setting a value:

// Error: will panic: reflect.Value.SetFloat using unaddressable value

// v.SetFloat(3.1415)

fmt.Println(“settability of v:”, v.CanSet())

294

Ivo Balbaert

v = reflect.ValueOf(&x) // Note: take the address of x.

fmt.Println(“type of v:”, v.Type())

fmt.Println(“settability of v:”, v.CanSet())

v = v.Elem()

fmt.Println(“The Elem of v is: “, v)

fmt.Println(“settability of v:”, v.CanSet())

v.SetFloat(3.1415) // this works!

fmt.Println(v.Interface())

fmt.Println(v)

}

/* Output:

settability of v: false

type of v: *float64

settability of v: false

The Elem of v is: <float64 Value>

settability of v: true

3.1415

<float64 Value>

*/

Reflection Values need the address of something in order to modify what they represent.

11.10.3 Reflection on structs

Some of the possibilities for structs are demonstrated in listing 11.10. We see that NumField() gives
us the number of fields in the struct; with a for-loop we can go through each of them indexed by
I with Field(i).

We can also call its methods, e.g. method n where n is its index with: Method(n).Call(nil)

Listing 11.13—reflect_struct.go

package main

import (

“fmt”

“reflect”

)

type NotknownType struct {

s1, s2, s3 string

}

The Way to Go

295

func (n NotknownType) String() string {

return n.s1 + “-” + n.s2 + “-” + n.s3

}

// variable to investigate:

var secret interface {} = NotknownType{“Ada”, “Go”, “Oberon”}

func main() {

value := reflect.ValueOf(secret) // <main.NotknownType Value>

typ := reflect.TypeOf(secret) // main.NotknownType

// alternative:

// typ := value.Type() // main.NotknownType

fmt.Println(typ)

knd := value.Kind() // struct

fmt.Println(knd)

// iterate through the fields of the struct:

for i:= 0; i < value.NumField(); i++ {

fmt.Printf(“Field %d: %v\n”, i, value.Field(i))

//value.Field(i).SetString(“C#”)

}

// call the first method, which is String():

results := value.Method(0).Call(nil)

fmt.Println(results) // [Ada - Go - Oberon]

}

/* Output:

main.NotknownType

struct

Field 0: Ada

Field 1: Go

Field 2: Oberon

[Ada - Go - Oberon]

*/

But if we try to change a value, we get a runtime error:

panic: reflect.Value.SetString using value obtained using unexported field

So we see that only exported fields (starting with a capital letter) of a struct are settable; this is
demonstrated in listing 11.11:

296

Ivo Balbaert

Listing 11.14—reflect_struct2.go:

package main

import (

 “fmt”

 “reflect”

)

type T struct {

 A int

 B string

}

func main() {

 t := T{23, “skidoo”}

 s := reflect.ValueOf(&t).Elem()

 typeOfT := s.Type()

 for i := 0; i < s.NumField(); i++ {

 f := s.Field(i)

 fmt.Printf(“%d: %s %s = %v\n”, i,

 typeOfT.Field(i).Name, f.Type(), f.Interface())

 }

 s.Field(0).SetInt(77)

 s.Field(1).SetString(“Sunset Strip”)

 fmt.Println(“t is now”, t)

}

/* Output:

0: A int = 23

1: B string = skidoo

t is now {77 Sunset Strip}

*/

Ref. 37 presents an insightful overview of these laws of reflection.

11.11 Printf and reflection.

The capabilities of the reflection package discussed in the previous section are heavily used in the
standard library, for example the function Printf etc. uses it to unpack its ... arguments, Printf is
declared as:

func Printf(format string, args ... interface{}) (n int, err error)

The Way to Go

297

The ... argument inside Printf (or anywhere else) has type interface{}, and Printf uses the reflection
package to unpack it and discover the argument list. As a result, Printf knows the actual types of
their arguments. Because they know if the argument is unsigned or long, there is no %u or %ld,
only %d. This is also how Print and Println can print the arguments nicely without a format
string.

To make this more concrete, we implement a simplified version of such a generic print-function in
the following example, which uses a type-switch to deduce the type, and according to this prints
the variable out (we used the code from exercises 10.7b en 10.8).

Listing 11.15—print.go:

package main

import (

 “os”

 “strconv”

)

type Stringer interface {

 String() string

}

type Celsius float64

func (c Celsius) String() string {

 return strconv.FormatFloat(float64(c),’f’, 1, 64) + “°C”

}

type Day int

var dayName = []string{“Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”,

“Saturday”, “Sunday”}

func (day Day) String() string {

 return dayName[day]

}

func print(args ...interface{}) {

 for i, arg := range args {

 if i > 0 {os.Stdout.WriteString(“ ”)}

 switch a := arg.(type) { // type switch

298

Ivo Balbaert

 case Stringer: os.Stdout.WriteString(a.String())

 case int: os.Stdout.WriteString(strconv.Itoa(a))

 case string: os.Stdout.WriteString(a)

 // more types

 default: os.Stdout.WriteString(“???”)

 }

 }

}

func main() {

 print(Day(1), “was”, Celsius(18.36)) // Tuesday was 18.4 °C

}

In § 12.8 we explain how the same interfacing principle works for fmt.Fprintf() .

11.12 Interfaces and dynamic typing

11.12.1 Dynamic typing in Go

In classic OO languages (like C++, Java and C#) data and the methods which act upon that data
are united in the class-concept: a class contains them both, they cannot be separated.

In Go there are no classes: data (structures, or more general types) and methods are treated
orthogonally, they are much more loosely coupled.

Interfaces in Go are similar to their Java/C# counterparts: both specify a minimum set of methods
that an implementer of an interface must provide. But they are also more fluid and generic: any
type that provides code for the methods of an interface implicitly implements that interface, without
having to say explicitly that it does.

Compared to other languages Go is the only one which combines interface values, static type
checking (does a type implement the interface?), dynamic runtime conversion and no requirement
for explicitly declaring that a type satisfies an interface. This property also allows interfaces to be
defined and used without having to modify existing code.

A function which has a (one or more) parameter of an interface type can be called with a variable
whose type implements that interface. Types implementing an interface can be passed to any function
which takes that interface as an argument.

The Way to Go

299

This resembles much more the duck typing in dynamic languages like Python and Ruby; this can be
defined to mean that objects can be handled (e.g., passed to functions), based on the methods they
provide, regardless of their actual types: what they are is less important than what they can.

This is illustrated in the program duck_dance.go, where the function DuckDance takes a variable
of interface type IDuck. The program only compiles when DuckDance is called on a variable of a
type which implements IDuck.

Listing 11.16—duck_dance.go:

package main

import “fmt”

type IDuck interface {

 Quack()

 Walk()

}

func DuckDance(duck IDuck) {

 for i := 1; i <= 3; i++ {

 duck.Quack()

 duck.Walk()

 }

}

type Bird struct {

 // ...

}

func (b *Bird) Quack() {

 fmt.Println(“I am quacking!”)

}

func (b *Bird) Walk() {

 fmt.Println(“I am walking!”)

}

func main() {

 b := new(Bird)

 DuckDance(b)

}

Output: I am quacking!

300

Ivo Balbaert

I am walking!

I am quacking!

I am walking!

I am quacking!

I am walking!

If type Bird however does not implement Walk() (comment it out), then we get a compiler error:

cannot use b (type *Bird) as type IDuck in function argument:

*Bird does not implement IDuck (missing Walk method)

If we call the function DuckDance() for a cat, Go gives a compiler error, whereas Python or Ruby
end in a runtime error!

11.12.2 Dynamic method invocation

However in Python, Ruby and the like duck-typing is performed as late binding (during runtime):
methods are simply called on those arguments and variables and resolved at runtime (they mostly
have methods like responds_to to check whether the object knows this method, but this amounts
to more coding and testing).

On the contrary in Go the implementation requirements (most often) gets statically checked by the
compiler: it checks if a type implements all functions of an interface when there is an assignment of
a variable to a variable of that interface. If the method call is on a general type like interface{ }, you
can check whether the variable implements the interface by doing a type assertion (see § 11.3).

As an example suppose you have different entities represented as types which have to be written
out as XML streams. Then we define an interface for XML writing with the one method you are
looking for (tt even can be defined as a private interface):

type xmlWriter interface {

 WriteXML(w io.Writer) error

}

Now we can make a function StreamXML for the streaming of any variable, testing with
a type assertion if the variable passed implements the interface; if not we call its own function
encodeToXML to do the job:

// Exported XML streaming function.

func StreamXML(v interface{}, w io.Writer) error {

The Way to Go

301

 if xw, ok := v.(xmlWriter); ok {

 // It’s an xmlWriter, use method of asserted type.

 return xw.WriteXML(w)

 }

 // No implementation, so we have to use our own function (with perhaps

reflection):

 return encodeToXML(v, w)

}

// Internal XML encoding function.

func encodeToXML(v interface{}, w io.Writer) error {

 // ...

}

Go uses the same mechanism in their gob package: here they have defined the two
interfaces GobEncoder and GobDecoder. These allow types to define an own way to encode and
decode their data to and from byte streams; otherwise the standard way with reflection is used.
So Go provides the advantages of a dynamic language, but not their disadvantages of run-time
errors!

This alleviates for a part the need for unit-testing, which is very important in dynamic languages
but also presents a considerable amount of effort.

Go interfaces promotes separation of concerns, improves code re-use, and makes it easier to build
on patterns that emerge as the code develops. With Go-interfaces the Injection Dependency pattern
can also be implemented.

11.12.3 Extraction of an interface

A refactoring pattern that is very useful is extracting interfaces, reducing thereby the number of
types and methods needed, without having the need to manage a whole class-hierarchy as in more
traditional class-based OO-languages.

The way interfaces behave in Go allows developers to discover their programs’ types as they write
them. If there are several objects that all have the same behavior, and a developer wishes to abstract
that behavior, they can create an interface and then use that. Expanding the example of § 11.1
Listing 11.2—interfaces_poly.go, suppose we find we need a new interface TopologicalGenus,
which gives the rank of a shape (here simply implemented as returning an int). All we have to do
is give the types we want this interface to implement the method Rank():

302

Ivo Balbaert

Listing 11.17—multi_interfaces_poly.go:

package main

import “fmt”

type Shaper interface {

 Area() float32

}

type TopologicalGenus interface {

 Rank() int

}

type Square struct {

 side float32

}

func (sq *Square) Area() float32 {

 return sq.side * sq.side

}

func (sq *Square) Rank() int {

 return 1

}

type Rectangle struct {

 length, width float32

}

func (r Rectangle) Area() float32 {

 return r.length * r.width

}

func (r Rectangle) Rank() int {

 return 2

}

func main() {

 r := Rectangle{5, 3} // Area() of Rectangle needs a value

 q := &Square{5} // Area() of Square needs a pointer

 shapes := []Shaper{r, q}

The Way to Go

303

 fmt.Println(“Looping through shapes for area ...”)

 for n, _ := range shapes {

 fmt.Println(“Shape details: “, shapes[n])

 fmt.Println(“Area of this shape is: “, shapes[n].Area())

 }

 topgen := []TopologicalGenus{r, q}

 fmt.Println(“Looping through topgen for rank ...”)

 for n, _ := range topgen {

 fmt.Println(“Shape details: “, topgen[n])

 fmt.Println(“Topological Genus of this shape is: “, topgen[n].

 Rank())

 }

}

/* Output:

Looping through shapes for area ...

Shape details: {5 3}

Area of this shape is: 15

Shape details: &{5}

Area of this shape is: 25

Looping through topgen for rank ...

Shape details: {5 3}

Topological Genus of this shape is: 2

Shape details: &{5}

Topological Genus of this shape is: 1

*/

So you don’t have to work all your interfaces out ahead of time; the whole design can evolve without
invalidating early decisions. If a type must implement a new interface, the type itself doesn’t have to
be changed, you must only make the new method(s) on the type.

11.12.4 Explicitly indicating that a type implements an interface

If you wish that the types of an interface explicitly declare that they implement it, you can add a
method with a descriptive name to the interface’s method set. For example:

type Fooer interface {

 Foo()

 ImplementsFooer()

}

304

Ivo Balbaert

A type Bar must then implement the ImplementsFooer method to be a Fooer, clearly documenting
the fact.

type Bar struct{}

func (b Bar) ImplementsFooer() {}

func (b Bar) Foo() {}

Most code doesn’t make use of such constraints, since they limit the utility of the interface idea.
Sometimes though, they can be necessary to resolve ambiguities among similar interfaces.

11.12.5 Empty interface and function overloading

In § 6.1 we saw that function overloading is not allowed. In Go this can be accomplished by using
a variable number of parameters with …T as last parameter (see § 6.3). If we take T to be the
empty interface and we know that a variable of any type satisfies T, then this allows us to pass any
number of parameters of any type to that function, which is what overloading means.

This is applied in the definition of the function

fmt.Printf(format string, a ...interface{}) (n int, errno error)

this function iterates over the slice a discovering the type of its arguments dynamically. For each
type it looks if a method String() is implemented; if so, this is used for producing the output. We
come back to it in § 11.10.

11.12.6 Inheritance of interfaces

When a type includes (embeds) another type (which implements one or more interfaces) as a
pointer, then the type can use all of the interfaces-methods.

Example: type Task struct {

 Command string

 *log.Logger

}

A factory for this type could be:

func NewTask(command string, logger *log.Logger) *Task {

 return &Task{command, logger}

}

The Way to Go

305

When log.Logger implements a Log() method, then an instance task of Task can call it: t a s k .

Log()

A type can also inherit from multiple interfaces providing something like multiple inheritance:

type ReaderWriter struct {

 *io.Reader

 *io.Writer

}

The principles outlined above are applied throughout all Go-packages, thus maximing the
possibility of using polymorphism and minimizing the amount of code (see e.g. § 12.8). This is
considered an important best practice in Go-programming.

Useful interfaces can be detected when the development is already under way. It is easy to add
new interfaces, because existing types don’t have to change (they only have to implement their
methods). Existing functions can then be generalized from having a parameter(s) of a constrained
type to a parameter of the interface type: often only the signature of the function needs to be
changed. Contrast this to class-based OO-languages where in such a case the design of the whole
class-hierarchy has to be adapted.

Exercise 11.11: map_function_interface.go

In Ex. 7.13 we defined a map function to apply to a slice of ints (map_function.go).

With the help of the empty interface and the type switch we can now write a generic map function,
which can be applied to many types. Construct a map-function mapFunc for ints and strings,
which doubles the ints and concatenates the string with itself.

Hint: For readability define an alias for interface { }, like: type obj interface{}

Exercise 11.12: map_function_interface_var.go

Make a slight variation to Ex. 11.9 to allow for mapFunc to receive a variable number of items.

Exercise 11.13: main_stack.go—stack/stack_general.go

In exercises 10.10 and 10.11 we developed some Stack struct-types. However they were limited to
a certain fixed internal type. Now develop a general stack type using a slice with as element type
the interface{ }.

306

Ivo Balbaert

Implement the following Stack-methods: Len() int, IsEmpty() bool, Push(x interface{}) and Pop()
(x interface{}, error). Pop() changes the stack while returning the topmost element; write also a
method Top() which only returns this element.

In the main program construct a stack with a number of elements of different types, Pop all of
them and print them.

11.13 Summary: the object-orientedness of Go

Let us summarize what we have seen about this: Go has no classes, but instead loosely coupled
types and their methods, implementing interfaces.

The 3 important aspects of OO-languages are encapsulation, inheritance and polymorphism, how
are they envisioned in Go?

i) Encapsulation (data hiding): in contrast to other OO languages where there are 4 or more
access-levels, Go simplifies this to only 2 (see the Visibility Rule in § 4.2):

1) package scope: ‘object’ is only known in its own package, how? it starts with a
lowercase letter

2) exported: ‘object’ is visible outside of its package, how? it starts with an uppercase
letter

A type can only have methods defined in its own package.
ii) Inheritance: how? composition: embedding of 1 (or more) type(s) with the desired

behavior (fields and methods); multiple inheritance is possible through embedding
multiple types

iii) Polymorphism: how? interfaces: a variable of a type can be assigned to a variable of any
interface it implements. Types and interfaces are loosely coupled, again multiple inheritance
is possible through implementing multiple interfaces. Go’s interfaces aren’t a variant on
Java or C# interfaces, they’re much more: they are independent and are key to large-scale
programming and adaptable, evolutionary design.

11.14 Structs, collections and higher order functions

Often when you have a struct in your application you also need a collection of (pointers to) objects
of that struct, like:

type Any interface{}

type Car struct {

 Model string

 Manufacturer string

The Way to Go

307

 BuildYear int

 // ...

}

type Cars []*Car

We can then use higher order functions using the fact that functions can be arguments in defining
the needed functionality, e.g.:

1) when defining a general Process() function, which itself takes a function f which operates
on every car:

// Process all cars with the given function f:

func (cs Cars) Process(f func(car *Car)) {

 for _, c := range cs {

 f(c)

 }

}

2) building upon this, make Find-functions to obtain subsets, and callin Process() with a
closure (so it knows the local slice cars):

// Find all cars matching a given criteria.

func (cs Cars) FindAll(f func(car *Car) bool) Cars {

 cars := make([]*Car, 0)

 cs.Process(func(c *Car) {

 if f(c) {

 append(cars,c)

 }

)

 return cars

}

3) and make a Map-functionality, producing something out of every car object:

// Process cars and create new data.

func (cs Cars) Map(f func(car *Car) Any) []Any {

 result := make([]Any, 0)

 ix := 0

 cs.Process(func(c *Car) {

308

Ivo Balbaert

 result[ix] = f(c)

 ix++

 })

 return result

}

Now we can define concrete queries like:

allNewBMWs := allCars.FindAll(func(car *Car) bool {

 return (car.Manufacturer == “BMW”) && (car.BuildYear > 2010)

})

We can also return functions based on arguments. Maybe we would like to append cars to collections
based on the manufacturers, but those may be varying. So we define a function to create a special
append function as well as a map of collections:

4) func MakeSortedAppender(manufacturers []string) (func(car *Car), map[string]Cars)

{

 // Prepare maps of sorted cars.

 sortedCars := make(map[string]Cars)

 for _, m := range manufacturers {

 sortedCars[m] = make([]*Car, 0)

 }

 sortedCars[“Default”] = make([]*Car, 0)

 // Prepare appender function:

 appender := func(c *Car) {

 if _, ok := sortedCars[c.Manufacturer]; ok {

 sortedCars[c.Manufacturer] = append(sortedCars[c.

 Manufacturer], c)

 } else {

 sortedCars[“Default”] = append(sortedCars[“Default”], c)

 }

 }

 return appender, sortedCars

}

We now can use it to sort our cars into individual collections, like in:

manufacturers := []string{“Ford”, “Aston Martin”, “Land Rover”, “BMW”, “Jaguar”}

sortedAppender, sortedCars := MakeSortedAppender(manufacturers)

The Way to Go

309

allUnsortedCars.Process(sortedAppender)

BMWCount := len(sortedCars[“BMW”])

We make this code work in the following program cars.go (here we we show only the code in
main(), the rest of the code has already been shown above:

Listing 11.18—cars.go:

// .. types and functions

func main() {

 // make some cars:

 ford := &Car{“Fiesta”,“Ford”, 2008}

 bmw := &Car{“XL 450”, “BMW”, 2011}

 merc := &Car{“D600”, “Mercedes”, 2009}

 bmw2 := &Car{“X 800”, “BMW”, 2008}

 // query:

 allCars := Cars([]*Car{ford, bmw, merc, bmw2})

 allNewBMWs := allCars.FindAll(func(car *Car) bool {

 return (car.Manufacturer == “BMW”) && (car.BuildYear > 2010)

 })

 fmt.Println(“AllCars: “, allCars)

 fmt.Println(“New BMWs: “, allNewBMWs)

 //

 manufacturers := []string{“Ford”, “Aston Martin”, “Land Rover”, “BMW”,

 Jaguar”}

 sortedAppender, sortedCars := MakeSortedAppender(manufacturers)

 allCars.Process(sortedAppender)

 fmt.Println(“Map sortedCars: “, sortedCars)

 BMWCount := len(sortedCars[“BMW”])

 fmt.Println(“We have “, BMWCount, “BMWs”)

}

which produces the following output:
AllCars: [0xf8400038a0 0xf840003bd0 0xf840003ba0 0xf840003b70]

New BMWs: [0xf840003bd0]

Map sortedCars: map[Default:[0xf840003ba0] Jaguar:[] Land Rover:[] BMW:[0xf840003bd0

0xf840003b70] Aston Martin:[] Ford:[0xf8400038a0]]

We have 2 BMWs

PART 3
aDvanCeD Go

313

Chapter 12—Reading and writing

Apart from the packages fmt and os, we will also need to import and use the package bufio for
buffered input and output.

12.1 Reading input from the user

How can we read user input from the keyboard (console)? Input is read from the keyboard or
standard input, which is os.Stdin. The simplest way is to use the Scan- and Sscan-family of functions
of the package fmt, as illustrated in this program:

Listing 12.1—readinput1.go:

// read input from the console:

package main

import “fmt”

var (

 firstName, lastName, s string

 i int

 f float32

 input = “56.12 / 5212 / Go”

 format = “%f / %d / %s”

)

func main() {

 fmt.Println(“Please enter your full name: “)

 fmt.Scanln(&firstName, &lastName)

 // fmt.Scanf(“%s %s”, &firstName, &lastName)

 fmt.Printf(“Hi %s %s!\n”, firstName, lastName) // Hi Chris Naegels

 fmt.Sscanf(input, format, &f, &i, &s)

 fmt.Println(“From the string we read: “, f, i, s)

// ouwtput: From the string we read: 56.12 5212 Go

}

314

Ivo Balbaert

Scanln scans text read from standard input, storing successive space-separated values into successive
arguments; it stops scanning at a newline. Scanf does the same, but is uses the its first parameter
as format string to read the values in the variables. Sscan and friends work the same way but read
from an input string as instead from standard input. You can check on the number of items read
in and the error when something goes wrong.

But it can also be done with a buffered reader from the package bufio, as is demonstrated in the
following program:

Listing 12.2—readinput2.go:

package main

import (

 “fmt”

 “bufio”

 “os”

)

var inputReader *bufio.Reader

 var input string

 var err error

func main() {

 inputReader = bufio.NewReader(os.Stdin)

 fmt.Println(“Please enter some input: “)

 input, err = inputReader.ReadString(‘\n’)

 if err == nil {

 fmt.Printf(“The input was: %s\n”, input)

 }

}

inputReader is a pointer to a Reader in bufio. This reader is created and linked to standard input
in the line: inputReader := bufio.NewReader(os.Stdin).

The bufio.NewReader() constructor has the signature: func NewReader(rd io.Reader) *Reader

It takes as argument any object that satisfies the io.Reader interface (any object that has a
suitable Read() method, see § 11.8) and returns a new buffered io.Reader that reads from the given
reader, os.Stdin satisfies this requirement.

The Way to Go

315

The reader has a method ReadString(delim byte), in which reads the input until delim is found,
delim is included; what is read is put into a buffer.

ReadString returns the read string and nil for the error; when it reads until the end of a file, the
string read is returned and io.EOF; if delim is not found an error err != nil is returned.

In our case input from the keyboard is read until the ENTER key (which contains ‘\n’) is tapped.

Standard output os.Stdout is the screen; os.Stderr is where error-info can be written to, mostly
equal to os.Stdout.

In normal Go-code the var-declarations are omitted and the variables are declared with :=, like:
inputReader := bufio.NewReader(os.Stdin)

input, err := inputReader.ReadString(‘\n’)

We will apply this idiom from now on.

The second example reads input from the keyboard with a few different switch-versions:

Listing 12.3—switch_input.go:

package main

import (

 “fmt”

 “os”

 “bufio”

)

func main() {

 inputReader := bufio.NewReader(os.Stdin)

 fmt.Println(“Please enter your name:”)

 input, err := inputReader.ReadString(‘\n’)

 if err != nil {

 fmt.Println(“There were errors reading, exiting program.”)

 return

 }

 fmt.Printf(“Your name is %s”, input)

 // For Unix: test with delimiter “\n”, for Windows: test with “\r\n”

 switch input {

316

Ivo Balbaert

 case “Philip\r\n”: fmt.Println(“Welcome Philip!”)

 case “Chris\r\n”: fmt.Println(“Welcome Chris!”)

 case “Ivo\r\n”: fmt.Println(“Welcome Ivo!”)

 default: fmt.Printf(“You are not welcome here! Goodbye!”)

 }

 // version 2:

 switch input {

 case “Philip\r\n”: fallthrough

 case “Ivo\r\n”: fallthrough

 case “Chris\r\n”: fmt.Printf(“Welcome %s\n”, input)

 default: fmt.Printf(“You are not welcome here! Goodbye!\n”)

 }

 // version 3:

 switch input {

 case “Philip\r\n”, “Ivo\r\n”: fmt.Printf(“Welcome %s\n”, input)

 default: fmt.Printf(“You are not welcome here! Goodbye!\n”)

 }

}

Note how the line-endings for Unix and Windows are different!

EXERCISES:

Exercise 12.1: word_letter_count.go

Write a program which reads text from the keybord. When the user enters ‘S’ in order to signal the
end of the input, the program shows 3 numbers:

i) the number of characters including spaces (but excluding ‘\r’ and ‘\n’)
ii) the number of words
iii) the number of lines

Exercise 12.2: calculator.go

Make a simple (reverse polish notation) calculator. This program accepts input from the user in the
form of integers (maximum 999999) and operators (+, -, *, /).

The Way to Go

317

The input is like this: number1 ENTER number2 ENTER operator ENTER result is
displayed.

The programs stops if the user inputs “q”. Use the package stack you developed in Ex. 11.3

12.2 Reading from and writing to a file

12.2.1 Reading from a file

Files in Go are represented by pointers to objects of type os.File, also called filehandles. The
standard input os.Stdin and output os.Stdout we used in the previous section are both of type *os.
File. This is used in the following program:

Listing 12.4—fileinput.go:
package main
import (
 “bufio”
 “fmt”
 “io”
 “os”
)

func main() {
 inputFile, inputError := os.Open(“input.dat”)
 if inputError != nil {
 fmt.Printf(“An error occurred on opening the inputfile\n” +
 “Does the file exist?\n” +
 “Have you got acces to it?\n”)
 return // exit the function on error
 }
 defer inputFile.Close()

 inputReader := bufio.NewReader(inputFile)
 for {
 inputString, readerError := inputReader.ReadString(‘\n’)
 if readerError == io.EOF {
 return
 }
 fmt.Printf(“The input was: %s”, inputString)
 }
}

The variable inputFile is of type *os.File: this is a struct which represents an open file descriptor
(a file handle). Then the file needs to be opened with the Open function from os: this accepts a
parameter filename of type string, here input.dat, and opens the file in read-only mode.

318

Ivo Balbaert

This can of course result in an error when the file does not exist or the program has not sufficient
rights to open the file: inputFile, inputError = os.Open(“input.dat”) . If we have a file, we
assure with defer.Close() that the file is closed at the end, and then we apply bufio.NewReader to
get a reader variable.

Using bufio’s reader (and the same goes for writer) as we have done here means that we can work
with convenient high level string objects, completely insulated from the raw bytes which represent
the text on disk.

Then we read each line of the file (delimited by ‘\n’) in an infinite for-loop with the method
ReadString(‘\n’) or ReadBytes(‘\n’).

Remark: In a previous example we saw text-files in Unix end on \n, but in Windows this is
\r\n. By using the method ReadString or ReadBytes with \n as a delimiter you don’t have to worry
about this.The use of the ReadLine() method could also be a good alternative.

When we have read the file past the end then readerError != nil (actually io.EOF is true), and
the for-loop is left through the return statement.

Some alternatives:

1) Reading the contents of an entire file in a string:
If this is sufficient for you needs, you can use the ioutil.ReadFile() method from the package
io/ioutil, which returns a []byte containing the bytes read and nil or a possible error (see
Listing 12.5). Analogously the WriteFile() function writes a []byte to a file.

Listing 12.5—read_write_file1.go:

package main

import (

 “fmt”

 “io/ioutil”

 “os”

)

func main() {

 inputFile := “products.txt”

 outputFile := “products_copy.txt”

 buf, err := ioutil.ReadFile(inputFile)

 if err != nil {

 fmt.Fprintf(os.Stderr, “File Error: %s\n”, err)

The Way to Go

319

 // panic(err.Error())

 }

 fmt.Printf(“%s\n”, string(buf))

 err = ioutil.WriteFile(outputFile, buf, 0x644)

 if err != nil {

 panic(err. Error())

 }

}

2) Buffered Read:
Instead of using ReadString(), in the more general case of a file not divided in lines or
a binary file, we could have used the Read() method on the bufio.Reader, with as input
parameter a: buf := make([]byte, 1024)

 …

 n, err := inputReader.Read(buf)

 if (n == 0) { break}

where n is the number of bytes read, as applied in § 12.5 .

3) Reading columns of data from a file:
If the data columns are separated by a space, you can use the FScan-function series from
the “fmt” package. This is applied in the following program, which reads in data from 3
columns into the variables v1, v2 and v3; they are then appended to column slices.

Listing 12.6—read_file2.go:

package main

import (

 “fmt”

 “os”

)

func main() {

 file, err := os.Open(“products2.txt”)

 if err != nil {

 panic(err)

 }

 defer file.Close()

 var col1, col2, col3 []string

 for {

320

Ivo Balbaert

 var v1, v2, v3 string

 _, err := fmt.Fscanln(file, &v1, &v2, &v3)

 // scans until newline

 if err != nil {

 break

 }

 col1 = append(col1, v1)

 col2 = append(col2, v2)

 col3 = append(col3, v3)

 }

 fmt.Println(col1)

 fmt.Println(col2)

 fmt.Println(col3)

}

/* Output:

[ABC FUNC GO]

[40 56 45]

[150 280 356]

*/

Remark: The subpackage filepath of package path provides functions for manipulating
filenames and paths that work across OS platforms; for example the function Base() returns the
last element of a path without trailing separator: import “path/filepath”

filename := filepath.Base(path)

Exercise 12.3: read_csv.go

We are given the file products.txt with the content:
“The ABC of Go”;25.5;1500

“Functional Programming with Go”;56;280

“Go for It”;45.9;356

“The Go Way”;55;500

The 1st field of each line is a title, the 2nd a price, the 3rd a quantity.

Almost the same file as in Listing 12.3c, but now the field are separated by a “;”.

Again read in the data, but make a struct type to gather all the data of one line and use a slice of
structs to print the data.

The Way to Go

321

For more functionality in parsing csv-files, see the package encoding/csv (http://golang.org/pkg/
encoding/csv/)

12.2.2 The package compress: reading from a zipped file

The package compress from the standard library provides facilities for reading compressed files in
the following formats: bzip2, flate, gzip, lzw and zlib.

The following program illustrates the reading of a gzip file:

Listing 12.7—gzipped.go:

package main

import (

 “fmt”

 “bufio”

 “os”

 “compress/gzip”

)

func main() {

 fName := “MyFile.gz”

 var r *bufio.Reader

 fi, err := os.Open(fName)

 if err != nil {

 fmt.Fprintf(os.Stderr, “%v, Can’t open %s: error: %s\n”, os.Args[0],

 fName, err)

 os.Exit(1)

 }

 fz, err := gzip.NewReader(fi)

 if err != nil {

 r = bufio.NewReader(fi)

 } else {

 r = bufio.NewReader(fz)

 }

 for {

 line, err := r.ReadString(‘\n’)

 if err != nil {

322

Ivo Balbaert

 fmt.Println(“Done reading file”)

 os.Exit(0)

 }

 fmt.Println(line)

 }

}

12.2.3 Writing to a file

This is demonstrated in the following program:

Listing 12.8—fileoutput.go:

package main

import (

 “os”

 “bufio”

 “fmt”

)

func main () {

 outputFile, outputError := os.OpenFile(“output.dat”,

 os.O_WRONLY|os.O_CREATE, 0666)

 if outputError != nil {

 fmt.Printf(“An error occurred with file creation\n”)

 return

 }

 defer outputFile.Close()

 outputWriter:= bufio.NewWriter(outputFile)

 outputString := “hello world!\n”

 for i:=0; i<10; i++ {

 outputWriter.WriteString(outputString)

 }

 outputWriter.Flush()

}

Apart from a file handle, we now need a Writerfrom bufio. We open a file output.dat for write-only;
the file is created when it does not exist with:

The Way to Go

323

outputFile, outputError := os.OpenFile(“output.dat”, os.O_WRONLY|os.O_

CREATE, 0666)

We see that the OpenFile function takes a filename, one or more flags (logically OR-d together
using the | bitwise OR operator if more than one), and the file permissions to use.

The following flags are commonly used:

os.O_RDONLY : the read flag for read-only access
os.WRONLY : the write flag for write-only access
os.O_CREATE : the create flag: create the file if it doesn’t exist
os.O_TRUNC : the truncate flag: truncate to size 0 if the file already exists

When reading, the file permissions are ignored so we can use a value of 0. When writing we use the
standard Unix file permissions of 0666 (even on Windows).

Then we make the writer-object (the buffer) with:

outputWriter := bufio.NewWriter(outputFile)

The for-loop repeats 10 times a write to the buffer: outputWriter.WriteString(outputString)

The buffer is then written completely to the file with: outputWriter.Flush()

In simple write tasks this can be done more efficient with: fmt.Fprintf(outputFile, “Some

test data.\n”) using the F version of the fmt Print functions that can write to any io.Writer,
including a file (see also § 12.8).

The program filewrite.go illustrates an alternative to fmt.FPrintf:

Listing 12.9—filewrite.go:

package main

import “os”

func main() {

 os.Stdout.WriteString(“hello, world\n”)

 f, _ := os.OpenFile(“test”, os.O_CREATE|os.O_WRONLY, 0)

 defer f.Close()

 f.WriteString(“hello, world in a file\n”)

}

324

Ivo Balbaert

With os.Stdout.WriteString(“hello, world\n”) we can also write to the screen.

In f, _ := os.OpenFile(“test”, os.O_CREATE|os.O_WRONLY, 0) we create or open for write-only a
file “test”. A possible error is disregarded with _ .

We don’t make use of a buffer and write immediately to the file with: f.WriteString()

Exercise 12. 4: wiki_part1.go

(this exercise stands on its own but is also a preparation for § 15.4)

The datastructure of our program is a struct containing the following fields:

type Page struct {

 Title string

 Body []byte

}

Make a save-method on this struct to write a text-file with Title as name and Body as content.

Make a load function, which given the title string, reads the corresponding text-file. Use *Page as
arguments, because the structs could be quite large and we don’t want to make copies of them in
memory. Use the ioutil functions from § 12.2.1

12.3 Copying files

How do you copy a file to another file ? The simplest way is using Copy from the package io:

Listing 12.10—filecopy.go:

package main

import (

 “fmt”

 “io”

 “os”

)

func main() {

 CopyFile(“target.txt”, “source.txt”)

 fmt.Println(“Copy done!”)

The Way to Go

325

}

func CopyFile(dstName, srcName string) (written int64, err error) {

 src, err := os.Open(srcName)

 if err != nil {

 return

 }

 defer src.Close()

 dst, err := os.OpenFile(dstName, os.O_WRONLY|os.O_CREATE, 0644)

 if err != nil {

 return

 }

 defer dst.Close()

 return io.Copy(dst, src)

}

Notice the use of defer: when the opening of the destination file would produce an error and
return, then still the defer and so src.Close() is executed. If this would not be done, the source file
would remain opened, using resources.

12.4 Reading arguments from the command-line

12.4.1 With the os-package

The package os also has a variable os.Args of type slice of strings and which can be used for
elementary command-line argument processing, that is reading arguments which are given on the
command-line when the program is started. Look at the following greetings-program:

Listing 12.11—os_args.go:

package main

import (

 “fmt”

 “os”

 “strings”

)

326

Ivo Balbaert

func main() {

 who := “Alice”

 if len(os.Args) > 1 {

 who += strings.Join(os.Args[1:], “ ”)

 }

 fmt.Println(“Good Morning”, who)

}

When we run this program from our editor or IDE the output is: Good Morning Alice

the same output we get when we run it on the command-line as: os_args or ./os_args.

But when we give arguments on the command-line like: os_args John Bill Marc Luke

we get as output: Good Morning Alice John Bill Marc Luke

When there is at least one command-line argument the slice os.Args[] takes the arguments
(separated by a space) in, starting from index 1 (os.Args[0] contains the name of the program, os_
args in this case). The strings.Join function glues them all together with a space in between.

Exercise 12. 5: hello_who.go

A variation on the “Hello World”-program: person names can be given after the program name on
the command line, like: hello_who Evan Michael Laura, so that the output is:

Hello Evan Michael Laura !

12.4.2 With the flag-package

The package flag has an extended functionality for parsing of command-line options. But it is also
often used to replace ordinary constants, e.g. when in certain cases we want to give a different value
for our constant on the command-line. (see the project in chapter 19).

A Flag is defined in the package flag as a struct with the following fields:

type Flag struct {

 Name string // name as it appears on command line

 Usage string // help message

 Value Value // value as set

 DefValue string // default value (as text); for usage message

}

This is used in the following program echo.go, which simulates the Unix echo-utility:

The Way to Go

327

Listing 12.12—echo.go:

package main

import (

 “os”

 “flag” // command line option parser

)

var NewLine = flag.Bool(“n”, false, “print on newline”)

 // echo -n flag, of type *bool

const (

 Space = “ ”

 Newline = “\n”

)

func main() {

 flag.PrintDefaults()

 flag.Parse()

 var s string = “”

 for i := 0; i < flag.NArg(); i++ {

 if i > 0 {

 s += Space

 }

 s += flag.Arg(i)

 }

 if *NewLine { // -n is parsed, flag becomes true

 s += Newline

 }

 os.Stdout.WriteString(s)

}

flag.Parse() scans the argument list (or list of constants) and sets up flags, flag.Arg(i) is the ith
argument. All flag.Arg(i) are available after Parse(), flag.Arg(0) is the first real flag, not the name
of the program in contrast to os.Args(0)

flag.NArg() is the number of arguments. After parsing the flags or constants can be used.

328

Ivo Balbaert

flag.Bool() defines a flag, with default value false: when its first argument (here “n”) appears on
the command-line the flag is set to true (NewLine is of type *bool). We dereference the flag in if
*NewLine, so when this is true a newline is added.

flag.PrintDefaults() prints out the usage information of the defined flag(s), for this case:

-n=false: print newline.

flag.VisitAll(fn func(*Flag)) is another useful function: it visits the set flags in lexicographical
order, calling fn for each (for an example see § 15.8)

When the command-line (in Windows) is: echo.exe A B C, the program outputs: A B C;
With echo.exe -n A B C, the program outputs: A

B
C

so the newline character is printed. Each time the usage message is also printed before the data:
-n=false: print newline

With flag.Bool you can make boolean flags, which can be tested against in your code, for example
define a flag processedFlag which:

var processedFlag = flag.Bool(“proc”, false, “nothing processed yet”)

Test it later in the code by dereferencing it:

if *processedFlag { // found flag -proc

 r = process()

}

To define flags of other data types, use flag.Int(), flag.Float64, flag.String().

You will find a concrete example in in § 15.8

12.5 Reading files with a buffer

We combine the techniques of buffered reading of a file and command-line flag parsing in the
following example. If there are no arguments what is typed in is shown again in the output.

Arguments are treated as filenames and when the files exist, their content is shown.

The Way to Go

329

Test it out with: cat test

Listing 12.13—cat.go:

package main

import (

 “io”

 “os”

 “fmt”

 “bufio”

 “flag”

)

func cat(r *bufio.Reader) {

 for {

 buf, err := r.ReadBytes(‘\n’)

 if err == io.EOF {

 break

 }

 fmt.Fprintf(os.Stdout, “%s”, buf)

 }

 return

}

func main() {

 flag.Parse()

 if flag.NArg() == 0 {

 cat(bufio.NewReader(os.Stdin))

 }

 for i := 0; i < flag.NArg(); i++ {

 f, err := os.Open(flag.Arg(i))

 if err != nil {

 fmt.Fprintf(os.Stderr, “%s:error reading from %s: %s\n”,

 os.Args[0], flag.Arg(i), err.Error())

 continue

 }

 cat(bufio.NewReader(f))

 }

}

330

Ivo Balbaert

In § 12.6 we’ll see how to do buffered writing.

Exercise 12. 6: cat_numbered.go

Extend the example from listing 12.8 to process a flag which indicates that every line read should
be preceded by a line number in the output. Test it out with: cat –n test

12.6 Reading and writing files with slices

Slices provide the standard Go way to handle I/O buffers, they are used in the following second
version of the function cat, which reads a file in an infinite for-loop (until end-of-file EOF) in a
sliced buffer, and writes it to standard output.

func cat(f *os.File) {

 const NBUF = 512

 var buf [NBUF]byte

 for {

 switch nr, err := f.Read(buf[:]); true {

 case nr < 0:

 fmt.Fprintf(os.Stderr, “cat: error reading: %s\n”, err.Error())

 os.Exit(1)

 case nr == 0: // EOF

 return

 case nr > 0:

 if nw, ew := os.Stdout.Write(buf[0:nr]); nw != nr {

 fmt.Fprintf(os.Stderr, “cat: error writing: %s\n”,

 ew.String())

 }

 }

 }

 }

This code comes from cat2.go, which uses os.file and its Read-method from package os; cat2.go
works in the same way as cat.go from listing 12.14:

Listing 12.14—cat2.go:

package main

import (

 “flag”

 “fmt”

The Way to Go

331

 “os”

)

 func cat(f *os.File) {

 const NBUF = 512

 var buf [NBUF]byte

 for {

 switch nr, err := f.Read(buf[:]); true {

 case nr < 0:

 fmt.Fprintf(os.Stderr, “cat: error reading: %s\n”, err.Error())

 os.Exit(1)

 case nr == 0: // EOF

 return

 case nr > 0:

 if nw, ew := os.Stdout.Write(buf[0:nr]); nw != nr {

 fmt.Fprintf(os.Stderr, “cat: error writing: %s\n”,

 ew.String())

 }

 }

 }

 }

 func main() {

 flag.Parse() // Scans the arg list and sets up flags

 if flag.NArg() == 0 {

 cat(os.Stdin)

 }

 for i := 0; i < flag.NArg(); i++ {

 f, err := os.Open(flag.Arg(i))

 if f == nil {

 fmt.Fprintf(os.Stderr, “cat: can’t open %s: error

 %s\n”, flag.Arg(i), err)

 os.Exit(1)

 }

 cat(f)

 f.Close()

 }

 }

332

Ivo Balbaert

12.7 Using defer to close a file

The defer-keyword (see § 6.4) is very useful for ensuring that the opened file will also be closed at
the end of the function, like in the following snippet:

func data(name string) string {

 f := os.Open(name, os.O_RDONLY, 0)

 defer f.Close() // idiomatic Go code!

 contents := io.ReadAll(f)

 return contents

}

f.Close() is executed at return contents.

12.8 A practical example of the use of interfaces: fmt.Fprintf

The program io_interfaces.go is a nice illustration of the concept of interfaces in io.

Listing 12.15—io_interfaces.go:

package main

import (

 “bufio”

 “fmt”

 “os”

)

func main() {

 // unbuffered: os.Stdout implements io.Writer

 fmt.Fprintf(os.Stdout, “%s\n”, “hello world! - unbuffered”)

 // buffered:

 buf := bufio.NewWriter(os.Stdout)

 // and now so does buf:

 fmt.Fprintf(buf, “%s\n”, “hello world! - buffered”)

 buf.Flush()

}

Output: hello world! - unbuffered
 hello world! - buffered

The Way to Go

333

Here is the actual signature of fmt.Fprintf():

func Fprintf(w io.Writer, format string, a ...) (n int, err error)

It doesn’t write to a file, it writes to a variable of type io.Writer, that is: Writer defined in the io
package: type Writer interface {

 Write(p []byte) (n int, err error)

 }

fmt.Fprintf() writes a string according to a format string to its first argument, which must
implement io.Writer. Fprintf() can write to any type that has a Write method, including os.Stdout,
files (like os.File), pipes, network connections, channels, etc..., and also to write buffers from the
bufio package. This package defines a type Writer struct { ... }
bufio.Writer implements the Write method:

func (b *Writer) Write(p []byte) (nn int, err error)

It also has a factory: give it an io.Writer, it will return a buffered io.Writer in the form of a bufio.
Writer: func NewWriter(wr io.Writer) (b *Writer)

Buffering works for anything that Writes.

!! Never forget to use Flush() when terminating buffered writing, else the last ouput won’t be
written !!

In §15.2-15.8 we use the fmt.Fprint functions to write to a http.ResponseWriter, which also
implements io.Writer.

Exercise 12. 7: remove_3till5char.go

The following code takes an input file goprogram.go, reads it line by line and writes it to an output
file only retaing the 3rd till 5th character of every line. However when you try it out you see that only
an empty output file gets written. Find this logical bug, correct it and test it.

package main

import (

 “fmt”

 “bufio”

 “os”

)

334

Ivo Balbaert

func main() {

 inputFile, _ := os.Open(“goprogram.go”)

 outputFile, _ := os.OpenFile(“goprogramT.go”, os.O_WRONLY|os.O_CREATE,

 0666)

 defer inputFile.Close()

 defer outputFile.Close()

 inputReader := bufio.NewReader(inputFile)

 outputWriter := bufio.NewWriter(outputFile)

 for {

 inputString, _, readerError := inputReader.ReadLine()

 if readerError == io.EOF {

 fmt.Println(“EOF”)

 return

 }

 outputString := string([]byte(inputString)[2:5]) + “\r\n”

 n, err := outputWriter.WriteString(outputString)

 if (err != nil) {

 fmt.Println(err)

 return

 }

 }

 fmt.Println(“Conversion done”)

}

12.9 The json dataformat

To transmit a data structure across a network or to store it in a file, it must be encoded and then
decoded again; many encodings exist: JSON, XML, gob, Google’s protocol buffers, and others. Go
has implementations for all of them; in the next sections we will discuss the first three.

Structs can contain binary data, if this would be printed as text it would not be readable for a
human. Moreover the data does not contain the name of the struct field, so we don’t know what
the data means.

To remedy this a number of formats have been devised, which transform the data into plain text,
but annotated by their field names: so humans can read and understand the data. Data in these
formats can be transmitted over a network: in this way the data are platform independent and can
be used as input/output in all kinds of applications, no matter what the programming language or
the operating system is.

The Way to Go

335

The following terms are common here:

data structure special format = marshaling or encoding (before transmission at the sender
or source)
special format data structure = unmarshaling or decoding (after transmission at the
receiver or destination)

Marshaling is used to convert in memory data to the special format (data -> string), and vice versa
for unmarshaling (string -> data structure).

Encoding does the same thing but the output is a stream of data (implementing io.Writer); decoding
starts from a stream of data (implementing io.Reader) and populates a data structure.

Well known is the XML-format (see § 12.10); another popular format sometimes preferred for its
simplicity is JSON (JavaScript Object Notation, see http://json.org). It is most commonly used
for communication between web back-ends and JavaScript programs running in the browser, but
it is used in many other places too.

This is a short JSON piece: { “Person”:
{ “FirstName”: “Laura”,
 “LastName”: “Lynn”
}

}

Allthough XML is widely used JSON is less verbose (thus taking less memory space, disk space and
network bandwith) and better readable, which explains it’s growing popularity.

The json package provides an easy way to read and write JSON data from your Go programs.

We will use it in the following example, and use a simplified version of the structs Address and
VCard from exercise 10.1 vcard.go (we leave out most of the error-handling for sake of brevity, but
in a real program this must be taken care of, see chapter 13!).

Listing 12.16—json.go:

package main

import (

 “fmt”

 “encoding/json”

)

336

Ivo Balbaert

type Address struct {

 Type string

 City string

 Country string

}

type VCard struct {

 FirstName string

 LastName string

 Addresses []*Address

 Remark string

}

func main() {

 pa := &Address{“private”, “Aartselaar”,“Belgium”}

 wa := &Address{“work”, “Boom”, “Belgium”}

 vc := VCard{“Jan”, “Kersschot”, []*Address{pa,wa}, “none”}

 // fmt.Printf(“%v: \n”, vc)

 // {Jan Kersschot [0x126d2b80 0x126d2be0] none}:

 // JSON format:

 js, _ := json.Marshal(vc)

 fmt.Printf(“JSON format: %s”, js)

// using an encoder:

 file, _ := os.OpenFile(“vcard.json”, os.O_CREATE|os.O_WRONLY, 0)

 defer file.Close()

 enc := json.NewEncoder(file)

 err := enc.Encode(vc)

 if err != nil {

 log.Println(“Error in encoding json”)

 }

}

The json.Marshal() function with signature func Marshal(v interface{}) ([]byte, error)
encodes the data into the following json-text (in fact a []bytes) :

{“FirstName”:“Jan”,“LastName”:“Kersschot”,“Addresses”:[{“Type”:“private”,“C

ity”:“Aartselaar”,“Country”:“Belgium”},{“Type”:“work”,“City”:“Boom”,“Count

ry”:“Belgium”}],“Remark”:“none”}

The Way to Go

337

For security reasons in web applications better use the json.MarshalForHTML() function which
performs an HTMLEscape on the data, so that the text will be safe to embed inside HTML
<script> tags.

The default concrete Go types are:

•	 bool	for	JSON	booleans,
•	 float64	for	JSON	numbers,
•	 string	for	JSON	strings,	and
•	 nil	for	JSON	null.

Not everything can be json-encoded though: only data structures that can be represented as valid
JSON will be encoded:

•	 JSON	objects	only	support	strings	as	keys;	to	encode	a	Go	map	type	it	must	be	of	the	form	
map[string]T (where T is any Go type supported by the json package).

•	 Channel,	complex,	and	function	types	cannot	be	encoded.
•	 Cyclic	data	structures	are	not	supported;	 they	will	cause	Marshal	 to	go	 into	an	 infinite	

loop.
•	 Pointers	will	be	encoded	as	the	values	they	point	to	(or	‘null’	if	the	pointer	is	nil).

The json package only accesses the exported fields of struct types, only those will be present in the
JSON output. This is necessary because json uses reflection on them.

UnMarshal:

The UnMarshal() function with signature func Unmarshal(data []byte, v interface{}) error
performs the decoding from json to program data-structures.

First we create a struct Message where the decoded data will be stored: var m Message

and call Unmarshal(), passing it a []byte of JSON data b and a pointer to m: err := json.

Unmarshal(b, &m)

Through reflection it tries to match the json-fields with the destination struct fields; only the
matched fields are filled with data. So no error occurs if there are fields that do not match, they are
simply disregarded.

(In Ex. 15.2b twitter_status_json.go UnMarshal is used.)

338

Ivo Balbaert

Decoding arbitrary data:

The json package uses map[string]interface{} and []interface{} values to store arbitrary JSON
objects and arrays; it will happily unmarshal any valid JSON blob into a plain interface{} value.

Consider this JSON data, stored in the variable b:

b == []byte({“Name”: “Wednesday”, “Age”: 6, “Parents”: [“Gomez”, “Morticia”]})

Without knowing this data’s structure, we can decode it into an interface{ } value with
Unmarshal:

var f interface{}

err := json.Unmarshal(b, &f)

At this point the value in f would be a map whose keys are strings and whose values are themselves
stored as empty interface values:

map[string]interface{}{

 “Name”: “Wednesday”,

 “Age”: 6,

 “Parents”: []interface{}{

 “Gomez”,

 “Morticia”,

 },

}

To access this data we can use a type assertion to access f ’s underlying map[string]interface{}:

m := f.(map[string]interface{})

We can then iterate through the map with a range statement and use a type switch to access its
values as their concrete types:

for k, v := range m {

 switch vv := v.(type) {

 case string:

 fmt.Println(k, “is string”, vv)

 case int:

 fmt.Println(k, “is int”, vv)

The Way to Go

339

 case []interface{}:

 fmt.Println(k, “is an array:”)

 for i, u := range vv {

 fmt.Println(i, u)

 }

 default:

 fmt.Println(k, “is of a type I don’t know how to handle”)

 }

}

In this way you can work with unknown JSON data while still enjoying the benefits of type
safety.

Decoding data into a struct: If we would know beforehand the json-data, we could then define
an appropriate struct and unmarshal into it. For the example in the previous section, we would
define:

type FamilyMember struct {

 Name string

 Age int

 Parents []string

}

and then do the unmarshaling with:

var m FamilyMember

err := json.Unmarshal(b, &m)

thereby allocating a new slice behind the scenes. This is typical of how Unmarshal works with the
supported reference types (pointers, slices, and maps).

Streaming Encoders and Decoders

The json package provides Decoder and Encoder types to support the common operation of
reading and writing streams of JSON data. The NewDecoder and NewEncoder functions wrap
the io.Reader and io.Writer interface types.

func NewDecoder(r io.Reader) *Decoder

func NewEncoder(w io.Writer) *Encoder

340

Ivo Balbaert

To write the json directly to a file, use json.NewEncoder on a file (or any other type which implements
io.Writer) and call Encode() on the program data; the reverse is done by using a json.Decoder and
the Decode() function:

func NewDecoder(r io.Reader) *Decoder

func (dec *Decoder) Decode(v interface{}) error

See how the use of interfaces generalizes the implementation: the data structures can be everything,
because they only have to implement interface{}, the targets or sources to/from which the data is
encoded must implement io.Writer or io.Reader. Due to the ubiquity of Readers and Writers, these
Encoder and Decoder types can be used in a broad range of scenarios, such as reading and writing
to HTTP connections, websockets, or files.

12.10 The xml dataformat

The XML equivalent for the json example used in § 12.9 is:

<Person>
 <FirstName>Laura</FirstName>
 <LastName>Lynn</LastName>
</Person>

Like the json package it contains a Marshal() and UnMarshal()-function to en- and decode data to
and from XML; but here they are more general and can also be used to read from and write to files
(or other types that implement io.Reader and io.Writer).

In the same way as with json, xml-data can be marshaled or unmarshaled to/from structs; in Listing
15.8 (twitter_status.go) we see this in action.

The encoding/xml package also implements a simle xml parser (SAX) to read XML-data and parse
it into its constituents. The following code illustrates how this parser can be used:

Listing 12.17—xml.go:

package main

import (

 “fmt”

 “strings”

 “os”

 “encoding/xml”

)

The Way to Go

341

var t, token xml.Token

var err error

func main() {

 input :=

“<Person><FirstName>Laura</FirstName><LastName>Lynn</LastName></Person>”

 inputReader := strings.NewReader(input)

 p := xml.NewParser(inputReader)

 for t, err = p.Token(); err == nil; t, err = p.Token() {

 switch token := t.(type) {

 case xml.StartElement:

 name := token.Name.Local

 fmt.Printf(“Token name: %s\n”, name)

 for _, attr := range token.Attr {

 attrName := attr.Name.Local

 attrValue := attr.Value

 fmt.Printf(“An attribute is: %s %s\n”, attrName,

 attrValue)

 // ...

 }

 case xml.EndElement:

 fmt.Println(“End of token”)

 case xml.CharData:

 content := string([]byte(token))

 fmt.Printf(“This is the content: %v\n”, content)

 // ...

 default:

 // ...

 }

 }

}

/* Output:

Token name: Person

Token name: FirstName

This is the content: Laura

End of token

Token name: LastName

This is the content: Lynn

342

Ivo Balbaert

End of token

End of token

*/

The package defines a number of types for XML-tags: StartElement, Chardata (this is the actual
text between the start- and end-tag), EndElement, Comment, Directive or ProcInst.

It also defines a struct Parser: the method NewParser takes an io.Reader (in this case a strings.
NewReader) and produces an object of type Parser. This has a method Token() that returns the
next XML token in the input stream. At the end of the input stream, Token() returns nil (io.
EOF).

The XML-text is walked through in a for-loop which ends when the Token() method returns an
error at end of file because there is no token left anymore to parse. Through a type-switch further
processing can be defined according to the current kind of XML-tag. Content in Chardata is just
a []bytes, make it readable with a string conversion.

12.11 Datatransport through gob

gob is Go’s own format for serializing and deserializing program data in binary format; it is found
in the encoding package. Data in this format is simply called a gob (short for Go binary format).
It is similar to Python’s “pickle” or Java’s “Serialization”.

It is typically used in transporting arguments and results of remote procedure calls (RPCs) (see the
rpc package § 15.9), and more generally for data transport between applications and machines.
In what is it different from json or xml? It was specifically tailored for working in an environment
which is completely in Go, for example communicating between two servers written in Go. That
way it could be written much more efficient and optimized; it works with the language in a way
that an externally-defined, language-independent encoding cannot. That’s why the format is binary
in the first place, not a text-format like JSON or XML. Gobs are not meant to be used in other
languages than Go, because in the encoding and decoding process Go’s reflection capability is
exploited.

Gob files or streams are completely self-describing: for every type they contain a description of that
type and they can always be decoded in Go, without any knowledge of the file’s contents.

Only exported fields are encoded, zero values are not taken into account. When decoding structs,
fields are matched by name and compatible type, and only fields that exist in both are affected. In
this way a gob decoder client will still function when in the source datatype fields have been added:
the client will continue to recognize the previously existing fields. Also there is great flexibility

The Way to Go

343

provided, e.g. integers are encoded as unsized, variable-length, regardless of the concrete Go type
at the sender side.

So if we have at the sender side a struct T:

type T struct { X, Y, Z int }

var t = T{X: 7, Y: 0, Z: 8}

this can be captured at the receiver side in a variable u of type struct U:

type U struct { X, Y *int8 }

var u U

At the receiver X gets the value 7, and Y the value 0 (which was not transmitted).

In the same way like json, gob works by creating an Encoder object with a NewEncoder() function
and calling Encode(), again completely generalized by using io.Writer; the inverse is done with a
Decoder object with a NewDecoder() function and calling Decode(), generalized by using io.Reader.
As an example we will write the info of listing 12.12 to a file named vcard.gob. This produces a
mixture of readable and binary data as you will see when you try to read it in a text-editor.

In listing 12.18 you find a simple example of decoding and encoding, simulating transmission over
a network with a buffer of bytes:

Listing 12.18—gob1.go:

package main

import (

 “bytes”

 “fmt”

 “encoding/gob”

 “log”

)

type P struct {

 X, Y, Z int

 Name string

}

type Q struct {

 X, Y *int32

344

Ivo Balbaert

 Name string

}

func main() {

 // Initialize the encoder and decoder. Normally enc and dec would //

 be bound to network connections and the encoder and decoder // would

 run in different processes.

 var network bytes.Buffer // Stand-in for a network connection

 enc := gob.NewEncoder(&network) // Will write to network.

 dec := gob.NewDecoder(&network) // Will read from network.

 // Encode (send) the value.

 err := enc.Encode(P{3, 4, 5, “Pythagoras”})

 if err != nil {

 log.Fatal(“encode error:”, err)

 }

 // Decode (receive) the value.

 var q Q

 err = dec.Decode(&q)

 if err != nil {

 log.Fatal(“decode error:”, err)

 }

 fmt.Printf(“%q: {%d,%d}\n”, q.Name, *q.X, *q.Y)

}

// Output: “Pythagoras”: {3,4}

Listing 12.19 uses encoding to write to a file:

Listing 12.19—gob2.go:

package main

import (

 “encoding/gob”

 “log”

 “os”

)

type Address struct {

 Type string

 City string

 Country string

}

The Way to Go

345

type VCard struct {

 FirstName string

 LastName string

 Addresses []*Address

 Remark string

}

func main() {

 pa := &Address{“private”, “Aartselaar”,“Belgium”}

 wa := &Address{“work”, “Boom”, “Belgium”}

 vc := VCard{“Jan”, “Kersschot”, []*Address{pa,wa}, “none”}

 // fmt.Printf(“%v: \n”, vc)

 // {Jan Kersschot [0x126d2b80 0x126d2be0] none}:

 // using an encoder:

 file, _ := os.OpenFile(“vcard.gob”, os.O_CREATE|os.O_WRONLY, 0)

 defer file.Close()

 enc := gob.NewEncoder(file)

 err := enc.Encode(vc)

 if err != nil {

 log.Println(“Error in encoding gob”)

 }

}

Exercise 12. 8: degob.go: Write a program that reads in the file vcard.gob, decodes the contents
and prints it.

12.12 Cryptography with go

Data transfer over networks must be encrypted so that no hacker can read or change them and
checksums calculated over the data before send and after receive must be identical. Given the
business of its mother company, it will come as no surprise to see that Go has more than 30
packages to offer in this field contained in its standard library:

the •	 hash package: implements the adler32, crc32, crc64 and fnv checksums;
the crypto package: implements other hashing algorithms like md4, md5, sha1, etc. and •	
complete encryption implementations for aes, blowfish, rc4, rsa, xtea, etc.

In the following listings we compute and output some checksums with sha1 and md5.

346

Ivo Balbaert

Listing 12.20—hash_sha1.go:

package main

import (

 “fmt”

 “crypto/sha1”

 “io”

 “log”

)

func main() {

 hasher := sha1.New()

 io.WriteString(hasher, “test”)

 b := []byte{}

 fmt.Printf(“Result: %x\n”, hasher.Sum(b))

 fmt.Printf(“Result: %d\n”, hasher.Sum(b))

 hasher.Reset()

 data := []byte(“We shall overcome!”)

 n, err := hasher.Write(data)

 if n!=len(data) || err!=nil {

 log.Printf(“Hash write error: %v / %v”, n, err)

 }

 checksum := hasher.Sum(b)

 fmt.Printf(“Result: %x\n”, checksum)

}

/* Output:

Result: a94a8fe5ccb19ba61c4c0873d391e987982fbbd3

Result: [169 74 143 229 204 177 155 166 28 76 8 115 211 145 233 135 152 47 187

211]

Result: e2222bfc59850bbb00a722e764a555603bb59b2a

*/

With sha1.New() a new hash.Hash object is made, that can compute the SHA1 checksum. The
type Hash is in fact an interface, itself implementing the io.Writer interface:

type Hash interface {

 // Write adds more data to the running hash.

 // It never returns an error.

 io.Writer

 // Sum returns the current hash, without changing the

The Way to Go

347

 // underlying hash state.

 Sum() []byte

 // Reset resets the hash to one with zero bytes written.

 Reset()

 // Size returns the number of bytes Sum will return.

 Size() int

}

Through io.WriteString or hasher.Write the checksum of the given string is computed.

Exercise 12. 9: hash_md5.go: test out the md5 algorithm as in Listing 12.20

348

Chapter 13—Error-handling and Testing

Go does not have an exception mechanism, like the try/catch in Java or .NET for instance: you
cannot throw exceptions. Instead it has a defer-panic-and-recover mechanism (§ 13.2-13.3).
The Go-designers thought that the try/catch mechanism is overly used and that the throwing of
exceptions in lower layers to higher layers of code uses too much resources. The mechanism they
devised for Go can ‘catch’ an exception, but it is much lighter, and even then should only be used
as a last resort.

How then does Go deal with normal errors by default ? The Go way to handle errors is for
functions and methods to return an error object as their only or last return value—or nil if no error
occurred—and for calling functions to always check the error they receive.

!! Never ignore errors, because ignoring them can lead to program crashes !!

Handle the errors and return from the function in which the error occurred with an error message
to the user: that way if something does go wrong, your program will continue to function and the
user will be notified. The purpose of panic-and-recover is to deal with genuinely exceptional (so
unexpected) problems and not with normal errors.

Library routines must often return some sort of error indication to the calling function.

In the preceding chapters we saw the idiomatic way in Go to detect and report error-conditions:

- a function which can result in an error returns two variables, a value and an error-code;
the latter is nil in case of success, and != nil in case of an error-condition.

- after the function call the error is checked, in case of an error (if error != nil) the
execution of the actual function (or if necessary the entire program) is stopped.

In the following code Func1 from package pack1 is tested on its return code:

if value, err := pack1.Func1(param1); err != nil {

fmt.Printf(“Error %s in pack1.Func1 with parameter %v”, err.Error(), param1)

 return // or: return err

The Way to Go

349

}

// Process(value)

Always assign an error to a variable within a compound if-statement, making for clearer code.

Instead of fmt.Printf corresponding methods of the log-package could be used (see §13.3 and
§15.2) or even a panic (see the next section) if it doesn’t matter that the program stops.

13.1 Error-handling

Go has a predefined error interface type: type error interface {

 Error() string

 }

error values are used to indicate an abnormal state; we have seen the standard way of using it in
§ 5.2. Other examples using it with file-handling can be found in chapter 12; we will see how to
use it in network operations in chapter 15. The package errors contains an errorString struct
which implements the error interface. To stop execution of a program in an error-state, we can use
os.Exit(1).

13.1.1 Defining errors

Whenever you need a new error-type, make one with the function errors.New from the errors
package (which you will have to import), and give it an appropriate error-string, like following:

err := errors.New(“math - square root of negative number”)

In Listing 13.1 you see a simple example of its use:

Listing 13.1—errors.go:

package main

import (

 “errors”

 “fmt”

)

var errNotFound error = errors.New(“Not found error”)

func main() {

350

Ivo Balbaert

 fmt.Printf(“error: %v”, errNotFound)

}

// error: Not found error

Applied in a function testing the parameter of a square root function, this could be used as:

func Sqrt(f float64) (float64, error) {

 if f < 0 {

 return 0, errors.New (“math - square root of negative number”)

 }

 // implementation of Sqrt

}

You could call this function as follows:

if f, err := Sqrt(-1); err != nil {

 fmt.Printf(“Error: %s\n”, err)

}

and because fmt.Printf automatically uses its String()-method (see § 10.7), the error-string “Error:
math - square root of negative number” is printed out. Because there wil often be a prefix like
Error: here, don’t start your error string with a capital letter.

In most cases it is interesting to make a custom error struct type, which apart from the (low level)
error-message also contains other useful information, such as the operation which was taking place
(open file, …), the full path-name or url which was involved, etc. The String() method then
provides an informative concatenation of all this information. As an example, see PathError which
can be issued from an os.Open:

// PathError records an error and the operation and file path that caused it.

type PathError struct {

 Op string // “open”, “unlink”, etc.

 Path string // The associated file.

 Err error // Returned by the system call.

}

func (e *PathError) String() string {

 return e.Op + “ ” + e.Path + “: “+ e.Err.Error()

}

The Way to Go

351

In case different possible error-conditions can occur, it may be useful to test with a type assertion
or type switch for the exact error, and possibly try a remedy or a recovery of the error-situation:

// err != nil

if e, ok := err.(*os.PathError); ok {

 // remedy situation

}

Or:

switch err := err.(type) {

case ParseError:

 PrintParseError(err)

case PathError:

 PrintPathError(err)

…

default:

 fmt.Printf(“Not a special error, just %s\n”, err)

}

As a 2nd example consider the json package. This specifies a SyntaxError type that the json.Decode
function returns when it encounters a syntax error parsing a JSON document:

type SyntaxError struct {

 msg string // description of error

 // error occurred after reading Offset bytes, from which line and columnnr can be obtained

 Offset int64

}

func (e *SyntaxError) String() string { return e.msg }

In the calling code you could again test whether the error is of this type with a type assertion, like
this:

 if serr, ok := err.(*json.SyntaxError); ok {

 line, col := findLine(f, serr.Offset)

 return fmt.Errorf(“%s:%d:%d: %v”, f.Name(), line, col, err)

 }

352

Ivo Balbaert

A package can also define its own specific Error with additional methods, like net.Error:

package net

type Error interface {

 Timeout() bool // Is the error a timeout?

 Temporary() bool // Is the error temporary?

}

In §15.1 we see how it can be used.

As you have seen, in all examples the following naming convention was applied: Error types end
in “Error” and error variables are called (or start with) “err” or “Err”.

syscall is the low-level, external package, which provides a primitive interface to the underlying
operating system’s calls; these return integer error-codes ; the type syscall.Errno implements the
Error interface.

Most syscall functions return a result and a possible error, like:

r, err := syscall.Open(name, mode, perm)

if err != 0 {

 fmt.Println(err.Error())

}

os also provides a standard set of error-variables like os.EINVAL, which come from syscall
- errors:

var (

 EPERM Error = Errno(syscall.EPERM)

 ENOENT Error = Errno(syscall.ENOENT)

 ESRCH Error = Errno(syscall.ESRCH)

 EINTR Error = Errno(syscall.EINTR)

 EIO Error = Errno(syscall.EIO)

 …

)

The Way to Go

353

13.1.2 Making an error-object with fmt

Often you will want to return a more informative string with the value of the wrong parameter
inserted for example: this is accomplished with the fmt.Errorf() function: it works exactly like
fmt.Printf(),taking a format string with one ore more format specifiers and a corresponding
number of variables to be substituted. But instead of printing the message it generates an error
object with that message.

Applied to our Sqrt-example from above:

if f < 0 {
 return 0, fmt.Errorf(“math: square root of negative number %g”, f)

}

2nd example: while reading from the command-line we generate an error with a usage message
when a help-flag is given:

if len(os.Args) > 1 && (os.Args[1] == “-h” || os.Args[1] == “--help”) {

 err = fmt.Errorf(“usage: %s infile.txt outfile.txt”, filepath.Base(os.

Args[0]))

 return

}

13.2 Run-time exceptions and panic

When execution errors occur, such as attempting to index an array out of bounds or a type assertion
failing, the Go runtime triggers a run-time panic with a value of the interface type runtime.Error,
and the program crashes with a message of the error; this value has a RuntimeError()-method, to
distinguish it from a normal error.

But a panic can also be initiated from code directly: when the error-condition (which we are testing
in the code) is so severe and unrecoverable that the program cannot continue, the panic function
is used, which effectively creates a run-time error that will stop the program. It takes 1 argument
of any type, usually a string, to be printed out when the program dies. The Go runtime takes care
to stop the program and issuing some debug information. How it works is illustrated in Listing
13.2—panic.go:

package main

import “fmt”

354

Ivo Balbaert

func main() {

 fmt.Println(“Starting the program”)

 panic(“A severe error occurred: stopping the program!”)

 fmt.Println(“Ending the program”)

}

And the output is:

Starting the program

panic: A severe error occurred: stopping the program!

panic PC=0x4f3038

runtime.panic+0x99 /go/src/pkg/runtime/proc.c:1032

 runtime.panic(0x442938, 0x4f08e8)

main.main+0xa5 E:/Go/GoBoek/code examples/chapter 13/panic.go:8

 main.main()

runtime.mainstart+0xf 386/asm.s:84

 runtime.mainstart()

runtime.goexit /go/src/pkg/runtime/proc.c:148

 runtime.goexit()

---- Error run E:/Go/GoBoek/code examples/chapter 13/panic.exe with code Crashed

---- Program exited with code -1073741783

A concrete example, checking whether the program starts with a known user:

var user = os.Getenv(“USER”)

func check() {

 if user == “” {

 panic(“Unknown user: no value for $USER”)

 }

}

This could be checked in an init() function of a package which is importing.

Panic can also be used in the error-handling pattern when the error must stop the program:

The Way to Go

355

if err != nil {

 panic(“ERROR occurred:” + err.Error())

}

Go panicking:

If panic is called from a nested function, it immediately stops execution of the current function, all
defer statements are guaranteed to execute and then control is given to the function caller, which
receives this call to panic. This bubbles up to the top level, executing defers, and at the top of the
stack the program crashes and the error condition is reported on the command-line using the value
given to panic: this termination sequence is called panicking.

The standard library contains a number of functions whose name is prefixed with Must, like
regexp.MustCompile or template.Must; these functions panic() when converting the string which
into a regular expression or template produces an error.

Of course taking down a program with panic should not be done lightly, so every effort must be
exercised to remedy the situation and let the program continue.

13.3 Recover

As the name indicates this built-in function can be used to recover from a panic or an error-condition:
it allows a program to regain control of a panicking goroutine, stopping the terminating sequence
and thus resuming normal execution.

recover is only useful when called inside a deferred function (see § 6.4) : it then retrieves the error
value passed through the call of panic; when used in normal execution a call to recover will return
nil and have no other effect.

Summarized: panic causes the stack to unwind until a deferred recover() is found or the program
terminates.

The protect function in the example below invokes the function argument g and protects callers
from run-time panics raised by g, showing the message x of the panic:

func protect(g func()) {

 defer func() {

 log.Println(“done”)

 // Println executes normally even if there is a panic

 if err := recover(); err != nil {

356

Ivo Balbaert

 log.Printf(“run time panic: %v”, err)

 }

 }()

 log.Println(“start”)

 g() // possible runtime-error

}

It is analogous to the catch block in the Java and .NET languages.

log implements a simple logging package: the default logger writes to standard error and prints
the date and time of each logged message. Apart from the Println and Printf functions, the
Fatal functions call os.Exit(1) after writing the log message, Exit functions identically. The Panic
functions call panic after writing the log message; use this when a critical condition occurs and the
program must be stopped, like in the case when a webserver could not be started (see for example
§15.4).

The log package also defines an interface type Logger with the same methods, when you want to
define a customized logging system (see http://golang.org/pkg/log/#Logger).

Here is a complete example which illustrates how panic, defer and recover work together:

Listing 13.3—panic_recover.go:

package main

import (

 “fmt”

)

func badCall() {

 panic(“bad end”)

}

func test() {

 defer func() {

 if e := recover(); e != nil {

 fmt.Printf(“Panicking %s\r\n”, e);

 }

 }()

 badCall()

 fmt.Printf(“After bad call\r\n”);

}

The Way to Go

357

func main() {

 fmt.Printf(“Calling test\r\n”);

 test()

 fmt.Printf(“Test completed\r\n”);

}

/* Output:

Calling test

Panicking bad end

Test completed

*/

Defer, panic- and recover form in a sense also a control-flow mechanism, like if, for, etc.

This mechanism is used at several places in the Go standard library, e.g. in the json package when
decoding or in the regexp package in the Compile function. The convention in the Go libraries
is that even when a package uses panic internally, a recover is done so that its external API still
presents explicit error return values.

13.4 Error-handling and panicking in a custom package

This is a best practice which every writer of custom packages should apply:

1) always recover from panic in your package: no explicit panic() should be allowed to cross a
package boundary

2) return errors as error values to the callers of your package.

Within a package, however, especially if there are deeply nested calls to non-exported functions, it
can be useful (and improve readability) to use panic to indicate error conditions which should be
translated into an error for the calling function.

This is nicely illustrated in the following code. We have a simple parse package (Listing 13.4)
which parses input strings to slices of integers; it also contains its specialized ParseError.

This package panics (in function fields2numbers) when there is nothing to convert or when the
conversion to integer fails. However the exported Parse function can recover from this and returns
an error with all info to its caller. To show how it works the package is called from panic_recover.
go (Listing 13.4); the strings which are not parseable come back with an error which is printed
out.

358

Ivo Balbaert

Listing 13.4—parse.go:
package parse

import (

 “fmt”

 “strings”

 “strconv”

)

// A ParseError indicates an error in converting a word into an integer.

type ParseError struct {

 Index int // The index into the space-separated list of words.

 Word string // The word that generated the parse error.

 // The raw error that precipitated this error, if any.

 Error err

}

// String returns a human-readable error message.

func (e *ParseError) String() string {

 return fmt.Sprintf(“pkg parse: error parsing %q as int”, e.Word)

}

// Parse parses the space-separated words in in put as integers.

func Parse(input string) (numbers []int, err error) {

 defer func() {

 if r := recover(); r != nil {

 var ok bool

 err, ok = r.(error)

 if !ok {

 err = fmt.Errorf(“pkg: %v”, r)

 }

 }

 }()

 fields := strings.Fields(input)

 numbers = fields2numbers(fields) // here panic can occur

 return

}

func fields2numbers(fields []string) (numbers []int) {

 if len(fields) == 0 {

The Way to Go

359

 panic(“no words to parse”)

 }

 for idx, field := range fields {

 num, err := strconv.Atoi(field)

 if err != nil {

 panic(&ParseError{idx, field, err})

 }

 numbers = append(numbers, num)

 }

 return

}

Listing 13.5—panic_package.go:
package main

import (

 “fmt”

 “./parse/parse”

)

func main() {

 var examples = []string{

 “1 2 3 4 5”,

 “100 50 25 12.5 6.25”,

 “2 + 2 = 4”,

 “1st class”,

 “”,

 }

 for _, ex := range examples {

 fmt.Printf(“Parsing %q:\n “, ex)

 nums, err := parse.Parse(ex)

 if err != nil {

 // here String() method from ParseError is used

 fmt.Println(err)

 continue

 }

 fmt.Println(nums)

 }

}

/* Output:

Parsing “w1 2 3 4 5”:

360

Ivo Balbaert

 [1 2 3 4 5]

Parsing “100 50 25 12.5 6.25”:

 pkg parse: error parsing “12.5” as int

Parsing “2 + 2 = 4”:

 pkg parse: error parsing “+” as int

Parsing “1st class”:

 pkg parse: error parsing “1st” as int

Parsing “”:

 pkg: no words to parse

*/

13.5 An error-handling scheme with closures

Every time when a function returns we should test whether it resulted in an error: this can lead
to repetitive and tedious code. Combining the defer/panic/recover mechanism with closures can
result in a far more elegant scheme that we will now discuss. However it is only applicable when all
functions have the same signature, which is rather restrictive. A good example of its use is in web
applications, where all handler functions are of the following type:

func handler1(w http.ResponseWriter, r *http.Request) { … }

Suppose all functions have the signature: func f(a type1, b type2)

The number of parameters and their types is irrelevant.

We give this type a name: fType1 = func f(a type1, b type2)

Our scheme uses 2 helper functions:

i) check: a function which tests whether an error occurred, and panics if so:
func check(err error) { if err != nil { panic(err) } }

ii) errorhandler: this is a wrapper function. It takes a function fn of our type fType1 and
returns such a function by calling fn. However it contains the defer/recover mechanism,
outlined in § 13.3

func errorHandler(fn fType1) fType1 {

 return func(a type1, b type2) {

 defer func() {

 if e, ok := recover().(error); ok {

 log.Printf(“run time panic: %v”, err)

The Way to Go

361

 }

 }()

 fn(a, b)

 }

}

When an error occurs it is recovered and printed on the log; apart from simply printing the
application could also produce a customized output for the user by using the template package (§
15.7). The check() function is used in every called function, like this:

func f1(a type1, b type2) {

 …

 f, _, err := // call function/method

 check(err)

 t, err := // call function/method

 check(err)

 _, err2 := // call function/method

 check(err2)

 …

}

The main() or other caller-function should then call the necessary functions wrapped in
errorHandler, like this:

func main() {

 errorHandler(f1)

 errorHandler(f2)

 …

}

Using this mechanism all errors are recovered and the error-checking code after a function call
is reduced to check(err).In this scheme different error-handlers have to be used for different
function types; they could be hidden inside an error-handling package. Alternatively a more general
approach could be using a slice of empty interface as parameter and return type.

We will apply this in the web application from § 15.5

362

Ivo Balbaert

EXERCISES:

Exercise 13.1: recover_dividebyzero.go

Use the coding scheme from Listing 13.3 to provoke a real runtime panic by letting an integer
divide by 0.

Exercise 13.2: panic_defer.go

Consider the following complete program. Without executing it, write down what the output of
this program will be. Then compile, execute and verify your predictions.

package main

import “fmt”

func main() {

 f()

 fmt.Println(“Returned normally from f.”)

}

func f() {

 defer func() {

 if r := recover(); r != nil {

 fmt.Println(“Recovered in f”, r)

 }

 }()

 fmt.Println(“Calling g.”)

 g(0)

 fmt.Println(“Returned normally from g.”)

}

func g(i int) {

 if i > 3 {

 fmt.Println(“Panicking!”)

 panic(fmt.Sprintf(“%v”, i))

 }

 defer fmt.Println(“Defer in g”, i)

 fmt.Println(“Printing in g”, i)

 g(i + 1)

}

The Way to Go

363

Exercise 13.3: panic_defer_convint.go

Write a function ConvertInt64ToInt which converts an int64 value to an int, and panics when
this goes wrong (hint: see § 4.5.2.1) . Then call this function from a function IntFromInt64 which
recovers, and returns an int and an error. Test the function!

13.6 Starting an external command or program

The os package contains the function StartProcess to call or start external OS commands or binary
executables; its 1st argument is the process to be executed, the 2nd can be used to pass some options
or arguments, and the 3rd is a struct which contains basic info about the OS-environment.

It returns the process id (pid) of the started process, or an error if it failed.

The exec package contains the structures and functions to accomplish the same task more easily;
most important are exec.Command(name string, arg ...string) and Run(). The first needs the
name of an OS command or executable and creates a Command object, which can then be executed
with Run() that uses this object as its receiver. The following program (which only works under
Linux because Linux commands are executed) illustrates their use:

Listing 13.6—exec.go:

package main

import (

“fmt”

 “os/exec”

 “os”

)

func main() {

// 1) os.StartProcess //

/*********************/

/* Linux: */

 env := os.Environ()

 procAttr := &os.ProcAttr{

 Env: env,

 Files: []*os.File{

 os.Stdin,

 os.Stdout,

 os.Stderr,

 },

364

Ivo Balbaert

 }

 pid, err := os.StartProcess(“/bin/ls”, []string{“ls”, “-l”}, procAttr)

 if err != nil {

 fmt.Printf(“Error %v starting process!”, err) //

 os.Exit(1)

 }

 fmt.Printf(“The process id is %v”, pid)

/* Output:

The process id is &{2054 0}total 2056

-rwxr-xr-x 1 ivo ivo 1157555 2011-07-04 16:48 MB1_exec

-rw-r--r-- 1 ivo ivo 2124 2011-07-04 16:48 MB1_exec.go

-rw-r--r-- 1 ivo ivo 18528 2011-07-04 16:48 MB1_exec_go_.6

-rwxr-xr-x 1 ivo ivo 913920 2011-06-03 16:13 panic.exe

-rw-r--r-- 1 ivo ivo 180 2011-04-11 20:39 panic.go

*/

// 2nd example: show all processes

pid, err = os.StartProcess(“/bin/ps”, []string{“-e”, “opid,ppid,comm”}, procAttr)

if err != nil {

fmt.Printf(“Error %v starting process!”, err) //

os.Exit(1)

}

fmt.Printf(“The process id is %v”, pid)

// 2) cmd.Run //

/***************/

 cmd := exec.Command(“gedit”) // this opens a gedit-window

 err := cmd.Run()

 if err != nil {

 fmt.Printf(“Error %v executing command!”, err)

 os.Exit(1)

 }

 fmt.Printf(“The command is %v”, cmd)

}

13.7 Testing and benchmarking in Go

Every package should in the 1st place contain a certain minimal amount of documentation; 2nd but
for some equally important is testing.

The Way to Go

365

In chapter 3 Go’s testing tool gotest was mentioned, we used it already in § 9.8. Here we will
elaborate on its use with some more examples.

A special package called testing provides support for automated testing, logging and error
reporting. It also contains some functionality for benchmarking functions.

Remark: gotest is a Unix bash-script, so under Windows you need a MINGW environment
(see § 2.5); for Windows every time you see map pkg/linux_amd64, replace it with pkg/
windows.

To (unit-)test a package you write a number of tests that you can run frequently (after every update)
to check the correctness of your code in small units. For that we will have to write a set of Go
source files which will exercise and test our code. These test-programs must be within the same
package and the files must have names of the form *_test.go, so the test code is separated from
the actual code of the package.

These _test programs are NOT compiled with the normal Go-compilers, so they are not deployed
when you put your application into production; only gotest compiles all programs: the normal—and
the test-programs.

In those files which must include import “testing”, we write global functions with names
starting with TestZzz,where Zzz is an alphabetic description of the function to be tested, like
TestFmtInterface, TestPayEmployees, etc.

Those functions should have a header of the form: func TestAbcde(t *testing.T)

where T is a struct type passed to Test functions that manages test state and supports formatted test
logs, like t.Log, t.Error, t.ErrorF, etc. At the end of each of these functions the output is compared
with what is expected and if these are not equal an error is logged. A successful test function just
returns.

To signal a failure we have the following functions:

i) func (t *T) Fail()

 marks the test function as having failed, but continues its execution.
ii) func (t *T) FailNow()

marks the test function as having failed and stops its execution; all other tests in
this file are also skipped, execution continues with the next test file

ii) func (t *T) Log(args …interface{})

366

Ivo Balbaert

the args are formatted using default formatting and the text is logged in the
error-log

iv) func (t *T) Fatal(args …interface{})
 this has the combined effect of iii) followed by ii)

Run go test, this compiles the test-programs, and executes all the TestZzz-functions in the test
programs. If all tests are successful the word PASS will be printed.

gotest can also take 1 or more test programs as parameters, and some options.

With the option --chatty or –v each test function that is run is mentioned and its test-status.

For example:

go test fmt_test.go --chatty

=== RUN fmt.TestFlagParser

--- PASS: fmt.TestFlagParser

=== RUN fmt.TestArrayPrinter

--- PASS: fmt.TestArrayPrinter

…

The testing package also contains some types and functions for simple benchmarking; the test
code must then contain function(s) starting with BenchmarkZzz and take a parameter of type
*testing.B, e.g.:

func BenchmarkReverse(b *testing.B) {
 …

}

The command go test –test.bench=.* executes all these functions; they will call the functions
in the code a very large number of times N (e.g. N = 1000000), show this N and the average
execution time of the functions in ns (ns/op). If the functions are called with testing.Benchmark,
you can also simply run the program.

For a concrete example see §14.16 where benchmarking is performed on an example with
goroutines, and Exercise 13.3: string_reverse_test.go

The Way to Go

367

13.8 Testing: a concrete example

In Exercise 11.2 you wrote a program main_oddeven.go which tests for the first 100 integers
whether they are even or not. The function which does the check was contained in a package even.
Following is a possible solution:

Listing 13.7—main_oddeven.go:
package main
import (
 “fmt”
 “./even/even”
)

func main() {
 for i:=0; i<=100; i++ {
 fmt.Printf(“Is the integer %d even? %v\n”, i, even.Even(i))
 }
}

This uses the package even in even.go:

Listing 13.8—even/even.go:

package even

func Even(i int) bool { // Exported functions

 return i%2 == 0

}

func Odd(i int) bool {

return i%2 != 0

}

In the map of the even package, we make a test program oddeven_test.go:

Listing 13.9—even/oddeven_test.go:
package even
import “testing”

func TestEven(t *testing.T) {
 if !Even(10) {
 t.Log(“10 must be even!”)
 t.Fail()
 }

368

Ivo Balbaert

 if Even(7) {
 t.Log(“7 is not even!”)
 t.Fail()
 }
}

func TestOdd(t *testing.T) {
 if !Odd(11) {
 t.Log(“11 must be odd!”)
 t.Fail()
 }
 if Odd(10) {
 t.Log(“10 is not odd!”)
 t.Fail()
 }

}

Because testing uses concrete cases of input and we can never test all cases (most likely there is an
infinite number) we must give some thought to the test cases we are going to use.

We should at least include:

•	 a	normal	case
•	 abnormal	 cases	 (wrong	 input	 like	 negative	 numbers	 or	 letters	 instead	 of	 numbers,	 no	

input)
•	 boundary	cases	(if	a	parameter	has	to	have	a	value	in	the	interval	0-1000,	then	check	0	and	

1000)

Just issue go install even, or alternatively we then create a Makefile with content:

include $(GOROOT)/src/Make.inc

TARG=even

GOFILES=\

 even.go\

include $(GOROOT)/src/Make.pkg

Issuing the command make (or gomake) creates the package archive even.a

The testcode must not be referred to in the GOFILES parameter, because we don’t want our test
code in our production program. If you include it, go test will give errors! Gotest will make its own
executable containing the test code in a separate map _test.

The Way to Go

369

We can now test our even package with the command: go test (or make test).

Because the test-functions in Listing 13.5 do not invoke t.Log or t.Fail, this gives us as result:
PASS. In this simple example everything works fine.

To see output in case of a failure, change the function TestEven to:

func TestEven(t *testing.T) {

 if Even(10) {

 t.Log(“Everything OK: 10 is even, just a test to see failed output!”)

 t.Fail()

 }

}

now invokes t.Log and t.Fail, giving us as result:

--- FAIL: even.TestEven (0.00 seconds)

Everything OK: 10 is even, just a test to see failed output!

FAIL

Exercise 13.4: string_reverse_test.go

Write a unit-test for the program from Exercise 7.11 string_reverse.go.

Put string_reverse in its own package strev, only containing the exported function reverse.

Go test it !

13.9 Using table-driven tests.

When writing tests it is good practice to use an array to collect the test-inputs and the expected
results together: each entry in the table then becomes a complete test case with inputs and expected
results, and sometimes with additional information such as a test name to make the test output
more informative.

The actual test simply iterates trough all table entries and for each entry performs the necessary
tests; this was applied in Exercise 13.4 .

It could be abstracted in the following snippet:

370

Ivo Balbaert

var tests = []struct{ // Test table

 in string

 out string

}{

 {“in1”, “exp1”},

 {“in2”, “exp2”},

 {“in3”, “exp3”},

 ...

}

func TestFunction(t *testing.T) {

 for i, tt := range tests {

 s := FuncToBeTested(tt.in)

 if s != tt.out {

 t.Errorf(“%d. %q => %q, wanted: %q”, i, tt.in, s, tt.out)

 }

 }

}

If a lot of test functions would have to be written that way, it could be useful to write the actual
test in a helper function verify:

func verify(t *testing.T, testnum int, testcase, input, output, expected string)

{

 if input != output {

 t.Errorf(“%d. %s with input = %s: output %s != %s”, testnum,

 testcase, input, output, expected)

 }

}

so that TestFunction becomes:

func TestFunction(t *testing.T) {

 for i, tt := range tests {

 s := FuncToBeTested(tt.in)

 verify(t, i, “FuncToBeTested: “, tt.in, s, tt.out)

 }

}

The Way to Go

371

13.10 Investigating performance: tuning and profiling Go programs

13.10.1 Time and memory consumption

A handy script to measure these is xtime:

#!/bin/sh

/usr/bin/time -f ‘%Uu %Ss %er %MkB %C’ “$@”

Used on the Unix command-line as xtime goprogexec, where progexec is a Go executable progam,
it shows an output like: 56.63u 0.26s 56.92r 1642640kB progexec
giving respectively the user time, system time, real time and maximum memory usage.

13.10.2 Tuning with go test

If the code used the Go testing package’s benchmarking support, we could use the gotest
standard -cpuprofile and -memprofile flags, causing a CPU- or memory usage profile to be written
to the file specified.

Example of use: go test -x -v -cpuprofile=prof.out -file x_test.go

compiles and executes the tests in x_test.go, and writes a cpuprofile to prof.out

13.10.3 Tuning with pprof

For a standalone program progexec you have to enable profiling by importing runtime/pprof ; this
package writes runtime profiling data in the format expected by the pprof visualization tool. For
CPU profiling you have to add a few lines of code:

var cpuprofile = flag.String(“cpuprofile”, “”, “write cpu profile to file”)

func main() {

 flag.Parse()

 if *cpuprofile != “” {

 f, err := os.Create(*cpuprofile)

 if err != nil {

 log.Fatal(err)

 }

 pprof.StartCPUProfile(f)

372

Ivo Balbaert

 defer pprof.StopCPUProfile()

 }

 ...

This code defines a flag named cpuprofile, calls the Go flag library to parse the command line flags,
and then, if the cpuprofile flag has been set on the command line, starts CPU profiling redirected
to that file. (os.Create makes a file with the given name in which the profile will be written).The
profiler requires a final call to StopCPUProfile to flush any pending writes to the file before the
program exits; we use defer to make sure this happens as main returns.

Now run the program with this flag: progexec -cpuprofile=progexec.prof

and then you can use the gopprof tool as: gopprof progexec progexec.prof

The gopprof program is a slight variant of Google’s pprof C++ profiler; for more info on this tool,
see http://code.google.com/p/google-perftools/.

When CPU profiling is enabled, the Go program stops about 100 times per second and records a
sample consisting of the program counters on the currently executing goroutine’s stack.

Some of the interesting commands of this tool are:

1) topN

This shows the top N samples in the profile, e.g.: top5

It shows the 10 most heavily used functions during the execution, an output like:
Total: 3099 samples

 626 20.2% 20.2% 626 20.2% scanblock

 309 10.0% 30.2% 2839 91.6% main.FindLoops

 …

The 5th column is an indicator of how heavy that function is used.

2) web or web funcname
This command writes a graph of the profile data in SVG format and opens it in a web
browser (there is also a gv command that writes PostScript and opens it in Ghostview.
For either command, you need graphviz installed). The different functions are shown in
rectangles (the more called the bigger), and arrows point in the direction of the function
calls.

3) list funcname or weblist funcname

The Way to Go

373

This shows a listing of the code lines in funcname, with in the 2nd column the time spent
in executing that line, so this gives a very good indication of what code is most heavy in
the execution.

If it is seen that the function runtime.mallocgc (which both allocates and runs periodic garbage
collections) is heavily used, then it is time for memory profiling. To find out why the garbage
collector is running so much, we have to find out what is allocating memory.

For this the following code has to be added at a judicious place:
var memprofile = flag.String(“memprofile”, “”, “write memory profile to this

file”)

...

CallToFunctionWhichAllocatesLotsOfMemory()

if *memprofile != “” {

 f, err := os.Create(*memprofile)

 if err != nil {

 log.Fatal(err)

 }

 pprof.WriteHeapProfile(f)

 f.Close()

 return

}

Now run the program with this flag: progexec -memprofile=progexec.mprof

and you can use the gopprof tool again as: gopprof progexec progexec.mprof

The same commands apply top5, list funcname etc, but now they measure memory allocation
in Mb, here is a sample output of top:

Total: 118.3 MB

 66.1 55.8% 55.8% 103.7 87.7% main.FindLoops

 30.5 25.8% 81.6% 30.5 25.8% main.*LSG·NewLoop

 …

The topmost functions use the most memory, as seen in the 1st column.

An interesting tool that reports object allocation counts is also:

gopprof --inuse_objects progexec progexec.mprof

374

Ivo Balbaert

For web applications there is also a standard HTTP interface to profiling data. In an HTTP server,
adding

import _ “http/pprof”

will install handlers for a few URLs under /debug/pprof/. Then you can run gopprof with a single
argument—the URL to your server’s profiling data—and it will download and examine a live
profile.

gopprof http://localhost:6060/debug/pprof/profile # 30-second CPU profile

gopprof http://localhost:6060/debug/pprof/heap # heap profile

A concrete example is analysed in this excellent article on the Go-blog (ref. 15): Profiling Go
Programs (Jun 2011).

375

Chapter 14—Goroutines and Channels

As expected of a 21st century programming language, Go comes with built-in support for
communication between applications (networking, client-server, distributed computing, see chapter
15) and support for concurrent applications. These are programs that execute different pieces of
code simultaneously, possibly on different processors or computers. The basic building blocks Go
proposes for structuring concurrent programs are goroutines and channels. Their implementation
requires support from the language, the compiler and the runtime. The garbage collection which
Go provides is also essential for easy concurrent programming.

Do not communicate by sharing memory. Instead, share memory by communicating.

Communication forces coordination.

14.1 Concurrency, parallelism and goroutines

14.1.1 What are goroutines?

An application is a process running on a machine; a process is an independently executing entity
that runs in its own address space in memory. A process is composed of one or more operating
system threads which are simultaneously executing entities that share the same address space.
Almost all real programs are multithreaded, so as not to introduce wait times for the user or the
computer, or to be able to service many requests simultaneously (like web servers), or to increase
performance and throughput (e.g. by executing code in parallel on different datasets). Such a
concurrent application can execute on 1 processor or core using a number of threads, but it is only
when the same application process executes at the same point in time on a number of cores or
processors that it is truly called parallelized.

Parallelism is the ability to make things run quickly by using multiple processors. So concurrent
programs may or may not be parallel.

376

Ivo Balbaert

Multithreaded applications are notoriously difficult to get right, the main problem is the shared
data in memory, which can be manipulated by the different threads in a non-predictable manner,
thereby delivering sometimes irreproducible and random results (called racing conditions).

!! Do not use global variables or shared memory, they make your code unsafe for running concurrently !!

The solution lies in synchronizing the different threads, and locking the data, so that only one
thread at a time can change data. Go has facilities for locking in its standard library in the package
sync for when they’re needed in lower level code; we have discussed them in § 9.3. But the past
experience in software engineering has shown that this leads to complex, error-prone programming
and diminishing performance, so this classic approach is clearly not the way to go for modern
multicore and multiprocessor programming: the ‘thread-per-connection’- model is not nearly
efficient enough.

Go adheres to another, in many cases better suited paradigm, which is known as Communicating
Sequential Processes (CSP, invented by C. Hoare) or also called the message passing-model (as
applied in other languages such as Erlang).

The parts of an application that run concurrently are called goroutines in Go, they are in effect
concurrently executing computations. There is no one-to-one correspondence between a goroutine
and an operating system thread: a goroutine is mapped onto (multiplexed, executed by) one or
more threads, according to their availability; this is accomplished by the goroutine-scheduler in
the Go runtime.

Goroutines run in the same address space, so access to shared memory must be synchronized; this
could be done via the sync package (see § 9.3), but this is highly discouraged: Go use channels to
synchronize goroutines (see § 14.2 etc.)

When a goroutine is blocked by a system call (e.g. waiting for I/O), other goroutines continue to
run on other threads. The design of goroutines hides many of the complexities of thread creation
and management.

Goroutines are lightweight, much lighter than a thread. They have a very small footprint (use little
memory and resources): they are created with a 4K memory stack-space on the heap. Because they
are cheap to create, a great number of them can be started on the fly if necessary (in the order of
100 thousands in the same address space). Furthermore they use a segmented stack for dynamically
growing (or shrinking) their memory-usage; stack management is automatic. The stacks are not
managed by the garbage collector, instead they are freed directly when the goroutine exits.

The Way to Go

377

Goroutines can run across multiple operating system threads, but crucially, they can also
run within threads, letting you handle myriad tasks with a relatively small memory footprint.
Goroutines time-slice on OS threads as it were, so you can have any number of goroutines being
serviced by a smaller number of OS threads, and the Go runtime is smart enough to realize which
of those goroutines is blocking something and go off and do something else.

Two styles of concurrency exist: deterministic (well-defined ordering) and non-deterministic
(locking/mutual exclusion but order undefined). Go’s goroutines and channels promote deterministic
concurrency (e.g. channels with one sender, one receiver), which is easier to reason about. We will
compare both approaches in a commonly occurring algorithm (the Worker-problem) in § 14.7

A goroutine is implemented as a function or method (this can also be an anonymous or lambda
function) and called (invoked) with the keyword go. This starts the function running in parallel
with the current computation but in the same address space and with its own stack, for example:
go sum(bigArray) // calculate sum in the background

The stack of a goroutine grows and shrinks as needed, there is no possibility for stack overflow; the
programmer needn’t be concerned about stack size. When the goroutine finishes it exits silently:
nothing is returned to the function which started it.

The main() function which every Go program must have can also be seen as a goroutine, although
it is not started with go. Goroutines may be run during program initialization (in the init()
function).

When 1 goroutine is e.g. very processor-intensive you can call runtime.Gosched() periodically in
your computation loops: this yields the processor, allowing other goroutines to run; it does not
suspend the current goroutine, so execution resumes automatically. Using Gosched() computations
are more evenly distributed and communication is not starved.

14.1.2 The difference between concurrency and parallelism

Go’s concurrency primitives provide the basis for a good concurrency program design: expressing
program structure so as to represent independently executing actions; so Go’s emphasis is not in the
1st place on parallelism: concurrent programs may or may not be parallel. Parallelism is the ability
to make things run quickly by using multiple processors. But it turns out most often that a well
designed concurrent program also has excellent performing parallel capabilities.

In the current implementation of the runtime (Jan 2012) Go does not parallelize code by default,
only a single core or processor is dedicated to a Go-program, regardless of how many goroutines

378

Ivo Balbaert

are started in it; so these goroutines are running concurrent, they are not running in parallel: only
one goroutine is running at a time.

This will probably change, but until then in order to let your program execute simultaneously by
more cores, that is so that goroutines are really running in parallel, you have to use the variable
GOMAXPROCS .

This tells the run-time how many goroutines shall execute simultaneously.

Also only the gc-compilers have a true implementation of goroutines, mapping them onto OS
threads as appropriate. With the gccgo compiler, an OS thread will be created for each goroutine.

14.1.3 Using GOMAXPROCS

Under the gc compilers (6g or 8g) you must set GOMAXPROCS to more than the
default value 1 to allow the run-time support to utilize more than one OS thread, that is all
goroutines share the same thread unless GOMAXPROCS is set to a value greater than 1. When
GOMAXPROCS is greater than 1, they run on a thread pool with that many threads.With
the gccgo compiler GOMAXPROCS is effectively equal to the number of running goroutines.
Suppose n is the number of processors or cores on the machine. If you set the environment variable
GOMAXPROCS >= n, or call runtime.GOMAXPROCS(n), then the goroutines are divided (distributed)
among the n processors. More processors however don’t mean necessarily a linear improvement
in performance, mainly because more communication is needed: the message-passing overhead
increases. An experiential rule of thumb seems to be that for n cores setting GOMAXPROCS to n-1
yields the best performance, and the following should also be followed: number of goroutines >

1 + GOMAXPROCS > 1

So if there is only one goroutine executing at a certain point in time, don’t set GOMAXPROCS!

Here are some other observations from experiments: on a 1 CPU laptop performance improved
when GOMAXPROCS was increased to 9. On a 32 core machine, the best performance was
reached with GOMAXPROCS=8, a higher number didn’t increase performance in that benchmark.
Very large values of GOMAXPROCS degraded performance only slightly; using the “H” option to
“top” showed only 7 active threads, for GOMAXPROCS=100.

Programs that perform concurrent computation should benefit from an increase in GOMAXPROCS;
see goroutine_select2.go

Summarized: GOMAXPROCS is equal to the number of (concurrent) threads, on a machine
with more than 1 core, as many threads as there are cores can run in parallel.

The Way to Go

379

14.1.4 How to specify the number of cores to be used on the command-line?

Use the flags package, as in:

var numCores = flag.Int(“n”, 2, “number of CPU cores to use”)

in main():

flag.Parse()

runtime.GOMAXPROCS(*numCores)

A goroutine can stop itself by calling runtime.Goexit(), although that’s rarely necessary.

Listing 14.1—goroutine1.go introduces the concept:
package main

import (

 “fmt”

 “time”

)

func main() {

 fmt.Println(“In main()”)

 go longWait()

 go shortWait()

 fmt.Println(“About to sleep in main()”)

 // sleep works with a Duration in nanoseconds (ns) !

 time.Sleep(10 * 1e9) fmt.Println(“At the end of main()”)

}

func longWait() {

 fmt.Println(“Beginning longWait()”)

 time.Sleep(5 * 1e9) // sleep for 5 seconds

 fmt.Println(“End of longWait()”)

}

func shortWait() {

 fmt.Println(“Beginning shortWait()”)

 time.Sleep(2 * 1e9) // sleep for 2 seconds

 fmt.Println(“End of shortWait()”)

}

Output: In main()

380

Ivo Balbaert

About to sleep in main()

Beginning longWait()

Beginning shortWait()

End of shortWait()

End of longWait()

At the end of main() // after 10s

The 3 functions main(), longWait() and shortWait() are started in this order as independent
processing units, and then work in parallel. Each function outputs a message at its beginning and
at the end of its processing. To simulate their processing times, we use the Sleep-function from the
time package. Sleep() pauses the processing of the function or goroutine for the indicated amount
of time, which is given in nanoseconds (ns, the notation 1e9 represents 1 times 10 to the 9th power,
e = exponent).

They print their messages in the order in which we expect, always the same, but we see clearly
that they work simultaneously, in parallel. We let main() pause for 10s, so we are sure that it will
terminate after the two goroutines. If not (if we let main() stop for only 4s), main() stops execution
earlier and longWait() doesn’t get the chance to complete. If we do not wait in main(), the program
stops and the goroutines die with it.

When the function main() returns, the program exits: it does not wait for other (non-main) goroutines
to complete. That is the reason why in server-programs, where each request is handled by a response
started as a goroutine, the server() function must be kept live. This is usually done by starting it as
an infinite loop.

Moreover goroutines are independent units of execution and when a number of them starts one
after the other you cannot depend on when a goroutine will actually be started. The logic of your
code must be independent of the order in which goroutines are invoked.

To contrast this with a one thread, successive execution, remove the go keywords, and let the
program run again.

Now the output is: In main()
Beginning longWait()
End of longWait()
Beginning shortWait()
End of shortWait()
About to sleep in main()
At the end of main() // after 17 s

The Way to Go

381

A more useful example of using goroutines could be the search for an item in a very large array.

Divide the array in a number of non-overlapping slices, and start a goroutine on each slice with the
search-algorithm. In this way a number of parallel threads can be used for the search-task, and the
overall search-time will certainly be decreased (divided by the number of goroutines).

14.1.5 Goroutines and coroutines

Other languages like C#, Lua and Python have a concept of coroutines. The name indicates that
there is similarity with goroutines, but there are 2 differences:

•	 goroutines	imply	parallelism	(or	can	deployed	in	parallel),	coroutines	in	general	do	not
•	 goroutines	 communicate	 via	 channels;	 coroutines	 communicate	 via	 yield	 and	 resume	

operations

Goroutines are much more powerful than coroutines, and it is easy to port coroutine logic to
goroutines.

14.2 Channels for communication between goroutines

14.2.1 Concept

In our first examples the goroutines executed independently, they did not communicate. Of course
to be more useful, they have to communicate: sending and receiving information between them
and coordinating / synchronizing their efforts. Goroutines could communicate by using shared
variables, but this is highly discouraged because this way of working introduces all the difficulties
with shared memory in multi-threading.

Instead Go has a special type, the channel, which is a like a conduit (pipe) through which you
can send typed values and which takes care of communication between goroutines, avoiding
all the pitfalls of shared memory; the very act of communication through a channel guarantees
synchronization. Data are passed around on channels: only one goroutine has access to a data item at
any given time: so data races cannot occur, by design. The ownership of the data (that is the ability to
read and write it) is passed around.

A useful analogy is to compare a channel with a conveyor belt in a factory. One machine (the
producer goroutine) puts items onto the belt, and another machine (the consumer goroutine) takes
them off for packaging.

382

Ivo Balbaert

Channels serve the dual purpose of communication—the exchange of a value—with synchronization—
guaranteeing that two calculations (goroutines) are in a known state at any time.

Fig 14.1: Channels and goroutines

The declaration of a channel is in the general format: var identifier chan datatype

The value of an uninitialized channel is nil.

So a channel can only transmit data-items of one datatype, e.g. chan int or chan string, but all
types can be used in a channel, also the empty interface{}. It is even possible (and sometimes useful)
to create a channel of channels.

A channel is in fact a typed message queue: data can be transmitted through it. It is a First In First
Out (FIFO) structure and so they preserve the order of the items that are sent into them (for those
who are familiar with it, a channel can be compared to a two-way pipe in Unix shells). A channel
is also a reference type, so we have to use the make() function to allocate memory for it. Here is a
declaration of a channel ch1 of strings, followed by its creation (instantiation):

var ch1 chan string

ch1 = make(chan string)

But of course this can be shortened to: ch1 := make(chan string)

And here we construct a channel of channels of int: chanOfChans := make(chan chan int)

Or a channel of functions: funcChan := chan func() (for an example of its use see §
14.17).

The Way to Go

383

So channels are first class objects: they can be stored in variables, passed as arguments to functions,
returned from functions and sent themselves over channels. Moreover they are typed, allowing the
type system to catch programming errors like trying to send a pointer over a channel of integers.

14.2.2 Communication operator <-

This operator represents very intuitively the transmission of data: information flows in the direction
of the arrow.

To a channel (sending):

ch <- int1 means: variable int1 is sent through the channel ch (binary operator, infix = send)

From a channel (receiving), 3 forms:

int2 = <- ch means: variable int2 receives data (gets a new value) from the channel ch (unary
prefix operator, prefix = receive); this supposes int2 is already declared, if not it can
be written as: int2 := <- ch

<- ch can on itself be used to take the (next) value from the channel, this value is
effectively discarded, but can be tested upon, so the following is legal code:

if <-ch != 1000 {

…

}

The same operator <- is used for sending and receiving, but Go figures out depending on the
operands what to do. Although not necessary, for readability the channel name usually starts with
ch or contains ‘chan’. The channel send- and receive operations are atomic: they always complete
without interruption.The use of the communication operator is illustrated in example

Listing 14.2—goroutine2.go:
package main

import (

 “fmt”

 “time”

)

func main() {

 ch := make(chan string)

384

Ivo Balbaert

 go sendData(ch)

 go getData(ch)

 time.Sleep(1e9)

}

func sendData(ch chan string) {

 ch <- “Washington”

 ch <- “Tripoli”

 ch <- “London”

 ch <- “Beijing”

 ch <- “Tokio”

}

func getData(ch chan string) {

 var input string

 for {

 input = <-ch

 fmt.Printf(“%s “, input)

 }

}

Output: Washington Tripoli London Beijing Tokio

In main() 2 goroutines are started: sendData() sends 5 strings over channel ch, getData() receives
them one by one in order in the string input and prints what is received.

If 2 goroutines have to communicate, you must give them both the same channel as parameter for
doing that.

Experiment what happens when you comment out time.Sleep(1e9).

Here we see that synchronization between the goroutines becomes important:

•	 main()	waits	for	1	second	so	that	both	goroutines	can	come	to	completion,	if	this	is	not	
allowed sendData() doesn’t have the chance to produce its output.

•	 getData()	works	with	 an	 infinite	 for-loop:	 this	 comes	 to	 an	 end	when	 sendData()	 has	
finished and ch is empty.

•	 if	we	remove	one	or	all	go—keywords,	the	program	doesn’t	work	anymore,	the	Go	runtime	
throws a panic:

The Way to Go

385

 ---- Error run E:/Go/GoBoek/code examples/chapter 14/goroutine2.exe with

code Crashed ---- Program exited with code -2147483645: panic: all goroutines are
asleep—deadlock!

Why does this occur? The runtime is able to detect that all goroutines (or perhaps only one in this
case) are waiting for something (to be able to read from a channel or write to a channel), which
means the program can’t possibly proceed. This is a form of deadlock, and the runtime is able to
detect it for us.

Remark: Don’t use print statements to indicate the order of sending to and receiving from
a channel: this could be out of order with what actually happens due to the time lag between the
print statement and the actual channel sending and receiving.

Exercise 14.4: Explain why if we put time.Sleep(1e9) at the beginning of the function getData(),
there is no exception, but no output is produced either.

14.2.3 Blocking of channels

By default, communication is synchronous and unbuffered: sends do not complete until there is
a receiver to accept the value. One can think of an unbuffered channel as if there is no space in
the channel for data: there must be a receiver ready to receive data from the channel and then the
sender can hand it over directly to the receiver. So channel send/receive operations block until the
other side is ready:

1) A send operation on a channel (and the goroutine or function that contains it) blocks until
a receiver is available for the same channel: if there’s no recipient for the value on ch, no
other value can be put in the channel: no new value can be sent in ch when the channel is
not empty. So the send operation will wait until ch becomes available again: this is the case
when the channel-value is received (can be put in a variable).

2) A receive operation for a channel blocks (and the goroutine or function that contains it)
until a sender is available for the same channel: if there is no value in the channel, the
receiver blocks.

Although this seems a severe restriction, it works well in most practical situations.

This is illustrated in program channel_block.go, where the goroutine pump sends integers in an
infinite loop on the channel. But because there is no receiver, the only output is the number 0.

386

Ivo Balbaert

Listing 14.3—channel_block.go:

package main

import “fmt”

func main() {

 ch1 := make(chan int)

 go pump(ch1) // pump hangs

 fmt.Println(<-ch1) // prints only 0

}

func pump(ch chan int) {

 for i:= 0; ; i++ {

 ch <- i

 }

}

Output: 0

The pump() function which supplies the values for the channel is sometimes called a generator.

To unblock the channel define a function suck which reads from the channel in an infinite loop,
see Listing 14.4—channel_block2.go:

func suck(ch chan int) {

 for {

 fmt.Println(<-ch)

 }

}

and start this as a goroutine in main():

go pump(ch1)

go suck(ch1)

time.Sleep(1e9)

Give the program 1s to run: now tens of thousands of integers appear on output.

Exercise 14.1: channel_block3.go: Demonstrate the blocking nature of channels by making a
channel, starting a go routine which receives the value from the channel, but only after 15s have
passed, and then after the goroutine putting a value on the channel. Print messages at the different
stages and observe the output.

The Way to Go

387

14.2.4 Goroutines synchronize through the exchange of data on one (or more)
channel(s).

Communication is therefore a form of synchronization: two goroutines exchanging data through a
channel synchronize at the moment of communication (the rendez-vous of goroutines). Unbuffered
channels make a perfect tool for synchronizing multiple goroutines.

It is even possible that the two sides block each other, creating what is called a deadlock situation.
The Go runtime will detect this and panic, stopping the program. A deadlock is almost always
caused by bad program design.

We see that channel operations on unbuffered channels can block. The way to avoid this is to
design the program such that blocking does not occur, or by using buffered channels.

Exercise 14.2: blocking.go

Explain why the following program throws a panic: all goroutines are asleep - deadlock!

package main

import (

 “fmt”

)

func f1(in chan int) {

 fmt.Println(<-in)

}

func main() {

 out := make(chan int)

 out <- 2

 go f1(out)

}

14.2.5 Asynchronous channels—making a channel with a buffer

An unbuffered channel can only contain 1 item and is for that reason sometimes too restrictive.
We can provide for a buffer in the channel, whose capacity gets set in an extended make command,
like this:

buf := 100

ch1 := make(chan string, buf)

388

Ivo Balbaert

buf is the number of elements (here strings) the channel can hold.

Sending to a buffered channel will not block unless the buffer is full (the capacity is completely
used), and reading from a buffered channel will not block unless the buffer is empty.

The buffer capacity does not belong to the type, so it is possible (although perhaps dangerous) to
assign channels with different capacity to each other, as long as they have the same element type.
The built-in cap function on a channel returns this buffer capacity.

If the capacity is greater than 0, the channel is asynchronous: communication operations succeed
without blocking if the buffer is not full (sends) or not empty (receives), and elements are received
in the order they are sent. If the capacity is zero or absent, the communication succeeds only when
both a sender and receiver are ready.

To synthesize: value == 0 synchronous, unbuffered

 ch := make(chan type, value) (blocking)

 value > 0 asynchronous, buffered

 (non-blocking) up to value elements

If you use buffers in the channels, your program will react better to sudden increases in number of
‘requests’: it will react more elastically, or with the official term: it will be more scalable. But design
your algorithm in the first place with unbuffered channels, and only introduce buffering when the
former is problematic.

Exercise 14.3: channel_buffer.go: Demonstrate this by giving the channel in channel_block3.
go a buffer and observe the difference in output.

14.2.6 Goroutine using a channel for outputting result(s)

In order to know when a calculation is done, pass a channel on which it can report back. In our
example of go sum(bigArray), this would be like:

ch := make(chan int)

go sum(bigArray, ch) // bigArray puts the calculated sum on ch

// ... do something else for a while

sum := <-ch // wait for, and retrieve the sum

We can also use a channel for synchronization purposes, thus effectively using it as what is called
a semaphore in traditional computing. Or to put it differently: to discover when a process (in a
goroutine) is done, pass it a channel with which it can signal it is done.

The Way to Go

389

A common idiom used to let the main program block indefinitely while other goroutines run is to
place select {} as the last statement in a main function.

But this can also be done by using a channel to let the main program wait until the goroutine(s)
completes, the so called semaphore pattern, as discussed in the next section.

14.2.7 Semaphore pattern

This is illustrated in the following snippet: the goroutine compute signals its completion by putting
a value on the channel ch, the main routine waits on <-ch until this value gets through.

On this channel we would expect to get a result back, like in:

func compute(ch chan int) {

 ch <- someComputation() // when it completes, signal on the channel.

}

func main() {

 ch := make(chan int) // allocate a channel.

 go compute(ch) // start something in a goroutine

 doSomethingElseForAWhile()

 result := <-ch

}

But the signal could also be something else, not connected to the result, like in this lambda function
goroutine:

ch := make(chan int)

go func() {

 // doSomething

 ch <- 1 // Send a signal; value does not matter.

}()

doSomethingElseForAWhile()

<-ch // Wait for goroutine to finish; discard sent value.

Or in this snippet where we wait for 2 sort-goroutines, which each sort a part of a slice s, to
complete:

done := make(chan bool)

// doSort is a lambda function, so a closure which knows the channel done:

390

Ivo Balbaert

doSort := func(s []int) {

 sort(s)

 done <- true

}

i := pivot(s)

go doSort(s[:i])

go doSort(s[i:])

<-done

<-done

In the following code snippet, we have a full-blown semaphore pattern where N computations
doSomething() over a slice of float64’s with that size are done in parallel, and a channel sem of
exactly the same length (and containining items of type empty interface) is signaled (by putting
a value on it) when each one of the computations is finished. To wait for all of the goroutines to
finish, just make a receiving range-loop over the channel sem:

type Empty interface {}

var empty Empty

...

data := make([]float64, N)

res := make([]float64, N)

sem := make(chan Empty, N) // semaphore

...

for i, xi := range data {

 go func (i int, xi float64) {

 res[i] = doSomething(i,xi)

 sem <- empty

 } (i, xi)

}

// wait for goroutines to finish

for i := 0; i < N; i++ { <-sem }

Notice the use of the closure: the current i, xi are passed to the closure as parameters, masking
the i, xi variables from the outer for-loop. This allows each goroutine to have its own copy of i,
xi; otherwise, the next iteration of the for-loop would update i, xi in all goroutines. On the other
hand, the res slice is not passed to the closure, since each goroutine does not need a separate copy
of it. The res slice is part of the closure’s environment but is not a parameter.

The Way to Go

391

14.2.8 Implementing a parallel for-loop

This is just what we did in the previous code-snippet of §14.2.7 : each iteration in the for-loop is
done in parallel: for i, v := range data {

 go func (i int, v float64) {

 doSomething(i, v)

 …

 } (i, v)

}

Computing the iterations of a for-loop in parallel could potentially give huge performance gains.
But this is only possible when all of the iterations are completely independent of each other. Some
languages like Fortress or other parallel frameworks implement this as a separate construct, in Go
these are easily implemented with goroutines:

14.2.9 Implementing a semaphore using a buffered channel

Semaphores are a very general synchronization mechanism that can be used to implement mutexes
(exclusive locks), limit access to multiple resources, solve the readers-writers problem, etc. There
is no semaphore implementation in Go’s sync package, but they can be emulated easily using a
buffered channel:

•	 the	capacity of the buffered channel is the number of resources we wish to synchronize
•	 the	length	(number	of	elements	currently	stored)	of	the	channel	is	the	number	of	resources	

currently being used
•	 the	capacity minus the length of the channel is the number of free resources (the integer

value of traditional semaphores)

We don’t care about what is stored in the channel, only its length; therefore, we start by making a
channel that has variable length but 0 size (in bytes):

type Empty interface {}

type semaphore chan Empty

We then can initialize a semaphore with an integer value which encodes the number of available
resources N: sem = make(semaphore, N)

Now our semaphore operations are straightforward:

392

Ivo Balbaert

// acquire n resources

func (s semaphore) P(n int) {

 e := new(Empty)

 for i := 0; i < n; i++ {

 s <- e

 }

}

// release n resources

func (s semaphore) V(n int) {

 for i := 0; i < n; i++ {

 <-s

 }

}

This can for example be used to implement a mutex:

/* mutexes */

func (s semaphore) Lock() {

 s.P(1)

}

func (s semaphore) Unlock() {

 s.V(1)

}

/* signal-wait */

func (s semaphore) Wait(n int) {

 s.P(n)

}

func (s semaphore) Signal() {

 s.V(1)

}

Exercise 14.5: gosum.go: Use this idiom to write a program which starts a goroutine to
perform a sum of 2 integers and then waits on the result to print it.

The Way to Go

393

Exercise 14.6: producer_consumer.go: Using this idiom write a program with 2 goroutines,
the first produces the numbers 0, 10, 20, . . . , 90 and puts them on a channel, the second reads
from the channel and prints them. main() waits for both goroutines to have ended.

IDIOM: Channel Factory pattern

Another pattern common in this style of programming goes as follows: instead of passing a channel
as a parameter to a goroutine, let the function make the channel and return it (so it plays the role
of a factory); inside the function a lambda function is called as a goroutine.

Applying this pattern to channel_block2.go gives us Listing 14.5—channel_idiom.go:

package main

import (

 “fmt”

 “time”

)

func main() {

 stream := pump()

 go suck(stream)

 // the above 2 lines can be shortened to: go suck(pump())

 time.Sleep(1e9)

}

func pump() chan int {

 ch := make(chan int)

 go func() {

 for i := 0; ; i++ {

 ch <- i

 }

 }()

 return ch

}

func suck(ch chan int) {

 for {

 fmt.Println(<-ch)

 }

}

394

Ivo Balbaert

14.2.10 For—range applied to channels

The range clause on for loops accepts a channel ch as an operand, in which case the for loops over
the values received from the channel, like this: for v := range ch {

 fmt.Printf(“The value is %v\n”,v)

}

It reads from the given channel ch until the channel is closed and then the code following for
continues to execute. Obviously another goroutine must be writing to ch (otherwise the execution
blocks in the for-loop) and must close ch when it is done writing. The function suck can apply this
and also launch this action in a goroutine, our former program now becomes:

Listing 14.6—channel_idiom2.go:
package main
import (
 “fmt”
 “time”
)

func main() {
 suck(pump())
 time.Sleep(1e9)
}

func pump() chan int {
 ch := make(chan int)
 go func() {
 for i := 0; ; i++ {
 ch <- i
 }
 }()
 return ch
}

func suck(ch chan int) {
 go func() {
 for v := range ch {
 fmt.Println(v)
 }
 }()
}

IDIOM: Channel Iterator pattern

This pattern uses the previous pattern from Listing 14.6 and can be applied in the common
case where we have to populate a channel with the items of a container type which contains an

The Way to Go

395

index-addressable field items. For this we can define a method Iter() on the container type
which returns a read-only channel (see §14.2.8) items, as follows:

func (c *container) Iter () <-chan items {

 ch := make(chan item)

 go func () {

 for i := 0; i < c.Len(); i++ { // or use a for-range loop

 ch <- c.items[i]

 }

 } ()

 return ch

}

Inside the goroutine, a for-loop iterates over the elements in the container c (for tree or graph
algorithms, this simple for-loop could be replaced with a depth-first search).

The code which calls this method can then iterate over the container like:

for x := range container.Iter() { … }

which can run in its own goroutine, so then the above iterator employs a channel and two
goroutines (which may run in separate threads). Then we have a typical producer-consumer pattern.
If the program terminates before the goroutine is done writing values to the channel, then that
goroutine will not be garbage collected; this is by design. This seems like wrong behavior, but
channels are for threadsafe communication. In that context, a goroutine hung trying to write to
a channel that nobody will ever read from is probably a bug and not something you’d like to be
silently garbage-collected.

IDIOM: Producer Consumer pattern

Suppose we have a Produce() function which delivers the values needed by a Consume function.
Both could be run as a separate goroutine, Produce putting the values on a channel which is read
by Consume. The whole process could take place in an infinite loop:

for {

 Consume(Produce())

}

396

Ivo Balbaert

14.2.11 Channel directionality

A channel type may be annotated to specify that it may only send or only receive in certain code:
var send_only chan<- int // channel can only receive data

var recv_only <-chan int // channel can only send data

Receive-only channels (<-chan T) cannot be closed, because closing a channel is intended as a way
for a sender to signal that no more values will be sent to the channel, so it has no meaning for
receive-only channels. All channels are created bidirectional, but we can assign them to directional
channel variables, like in this code snippet:

var c = make(chan int) // bidirectional

go source(c)

go sink(c)

func source(ch chan<- int) {

 for { ch <- 1 }

}

func sink(ch <-chan int) {

 for { <-ch }

}

IDIOM: Pipe and filter pattern

A more concrete example would be a goroutine processChannel which processes what it receives
from an input channel and sends this to an output channel:

sendChan := make(chan int)

reciveChan := make(chan string)

go processChannel(sendChan, receiveChan)

func processChannel(in <-chan int, out chan<- string) {

 for inValue := range in {

 result:= ... // processing inValue

 out <- result

 }

}

The Way to Go

397

By using the directionality notation we make sure that the goroutine will not perform unallowed
channel operations.

Here is an excellent and more concrete example taken from the Go Tutorial which prints the prime
numbers at its output, using filters (‘sieves’) as its algorithm. Each prime gets its own filter, like in
this schema:

Fig 14.2: The sieve prime-algorithm

Version 1: Listing 14.7—sieve1.go:

// Copyright 2009 The Go Authors. All rights reserved.

// Use of this source code is governed by a BSD-style

// license that can be found in the LICENSE file.package main

package main

import “fmt”

// Send the sequence 2, 3, 4, ... to channel ch.

func generate(ch chan int) {

 for i := 2; ; i++ {

 ch <- i // Send i to channel ch.

 }

}

// Copy the values from channel in to channel out,

398

Ivo Balbaert

// removing those divisible by prime.

func filter(in, out chan int, prime int) {

 for {

 i := <-in // Receive value of new variable i from in.

 if i%prime != 0 {

 out <- i // Send i to channel out.

 }

 }

}

// The prime sieve: Daisy-chain filter processes together.

func main() {

 ch := make(chan int) // Create a new channel.

 go generate(ch) // Start generate() as a goroutine.

 for {

 prime := <-ch

 fmt.Print(prime, “ ”)

 ch1 := make(chan int)

 go filter(ch, ch1, prime)

 ch = ch1

 }

}

The goroutine filter(in, out chan int, prime int) copies integers to the output channel
discarding anything divisible by prime. So for each prime a new goroutine is launched, working
together in the process: the generator and filters execute concurrently.

Output: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101
103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223
227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479
487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619
631 641 643 647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769
773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929
937 941 947 953 967 971 977 983 991 997 1009 1013…….

In the second version the idiom described above is applied: the functions sieve, generate, and
filter are factories; they make a channel and return it, and they use lambda functions as goroutines.
The main routine is now very short and clear: it calls sieve(),which returns a channel containing
the primes, and then the channel is printed out via fmt.Println(<-primes).

The Way to Go

399

Version 2: Listing 14.8—sieve2.go:

package main

import “fmt”

// Send the sequence 2, 3, 4, ... to returned channel

func generate() chan int {

 ch := make(chan int)

 go func() {

 for i := 2; ; i++ {

 ch <- i

 }

 }()

 return ch

}

// Filter out input values divisible by prime, send rest to returned channel

func filter(in chan int, prime int) chan int {

 out := make(chan int)

 go func() {

 for {

 if i := <-in; i%prime != 0 {

 out <- i

 }

 }

 }()

 return out

}

func sieve() chan int {

 out := make(chan int)

 go func() {

 ch := generate()

 for {

 prime := <-ch

 ch = filter(ch, prime)

 out <- prime

 }

 }()

 return out

}

400

Ivo Balbaert

func main() {

 primes := sieve()

 for {

 fmt.Println(<-primes)

 }

}

14.3 Synchronization of goroutines: closing a channel—testing for blocked
channels

Channels can be closed explicitly; however they are not like files: you don’t usually need to close
them. Closing of a channel is only necessary when the receiver must be told there are no more
values coming. Only the sender should close a channel, never the receiver.

Continuing with the example goroutine2.go (listing 14.2): how can we signal when sendData() is
done with the channel, and how can getData() detect that the channel is closed or blocked ?

The first is done with the function close(ch) : this marks the channel as unable to accept more
values through a send operation <-; sending to or closing a closed channel causes a run-time panic.
It is good practice to do this with a defer-statement immediately after the making of the channel
(when it is appropriate in the given situation): ch := make(chan float64)

defer close(ch)

The second is done with the comma, ok operator: this tests whether the channel is closed and then
returns true, otherwise false.

How can we test that we can receive without blocking (or that channel ch is not closed)?

v, ok := <-ch // ok is true if v received value

Often this is used together with an if-statement: if v, ok := <-ch; ok {

 process(v)

}

Or when the receiving happens in a for loop, use break when ch is closed or blocked:

v, ok := <-ch

if !ok {

 break

}

process(v)

The Way to Go

401

We can trigger the behavior of a non-blocking send by writing: _ = ch <- v because the blank
identifier takes whatever is send on ch. Using these the program from listing 14.2 is improved to
version goroutine3.go, which produces the same output.

To do a non-blocking channel read you need to use select (see § 14.4)

Listing 14.9—goroutine3.go:

package main

import “fmt”

func main() {

 ch := make(chan string)

 go sendData(ch)

 getData(ch)

}

func sendData(ch chan string) {

 ch <- “Washington”

 ch <- “Tripoli”

 ch <- “London”

 ch <- “Beijing”

 ch <- “Tokio”

 close(ch)

}

func getData(ch chan string) {

 for {

 input, open := <-ch

 if !open {

 break

 }

 fmt.Printf(“%s “, input)

 }

}

Here is what is changed in the code:

- only sendData() is now a goroutine, getData() runs in the same thread as main():
go sendData(ch)

getData(ch)

- at the end of the function sendData(), the channel is closed:

402

Ivo Balbaert

func sendData(ch chan string) {

 ch <- “Washington”

 ch <- “Tripoli”

 ch <- “London”

 ch <- “Beijing”

 ch <- “Tokio”

 close(ch)

}

- in the for-loop in getData(), before every receive the channel is tested with if
!open:

 for {

 input, open := <-ch

 if !open {

 break

 }

 fmt.Printf(“%s “, input)

 }

It is even better practice to read the channel with a for-range statement, because this will automatically
detect when the channel is closed:

for input := range ch {

 process(input)

}

Blocking and the producer-consumer pattern:

In the channel iterator pattern from §14.2.10 the relationship between the two goroutines is such
that one is usually blocking the other. If the program runs on a multicore machine, only one
processor will be employed most of the time. This can be ameliorated by using a channel with a
greater than 0 buffer size. For example, with a buffer of size 100, the iterator can produce at least
100 items from the container before blocking. If the consumer goroutine is running on a separate
processor, it is possible that neither goroutine will ever block.

Since the number of items in the container is generally known, it makes sense to use a channel with
enough capacity to hold all the items. This way, the iterator will never block (though the consumer
goroutine still might). However, this effectively doubles the amount of memory required to iterate
over any given container, so channel capacity should be limited to some maximum number. Timing
or benchmarking your code will help you find the buffer capacity for minimal memory usage and
optimal performance.

The Way to Go

403

14.4 Switching between goroutines with select

Getting the values out of different concurrently executing goroutines can be accomplished with
the select keyword, which closely resembles the switch control statement (Chapter 5 § 5.3) and
is sometimes called the communications switch; it acts like an are you ready polling mechanism;
select listens for incoming data on channels, but there could also be cases where a value is sent on
a channel.

select {

case u:= <- ch1:

 …

case v:= <- ch2:

 …

 …

default: // no value ready to be received

 …

}

The default clause is optional; fall through behavior, like in the normal switch, is not permitted. A
select is terminated when a break or return is executed in one of its cases.

What select does is: it chooses which of the multiple communications listed by its cases can
proceed.

•	 if	all	are	blocked,	it	waits	until	one	can	proceed	
•	 if	multiple	can	proceed,	it	chooses	one	at	random.
•	 when	none	of	the	channel	operations	can	proceed	and	the	default	clause	is	present,	then	

this is executed: the default is always runnable (that is: ready to execute).

Using a send operation in a select statement with a default case guarantees that the send will be
non-blocking! If there are no cases, the select blocks execution forever.

The select-statement implements a kind of listener-pattern, and so it is mostly used within a(n
infinite) loop; when a certain condition is reached, the loop is exited via a break-statement.

In program goroutine_select.go there are 2 channels ch1 and ch2 and 3 goroutines pump1(),
pump2() and suck(). This is a typical producer-consumer pattern.

404

Ivo Balbaert

In infinite loops ch1 and ch2 are filled with integers through pump1() and pump2();suck() polls
for input also in a non ending loop, takes the integers in from ch1 and ch2 in the select clause, and
outputs them. The case that is chosen depends upon which channel information is received. The
program is terminated in main after 1 second.

Listing 14.10—goroutine_select.go:

package main

import (

 “fmt”

 “time”

 “runtime”

)

func main() {

 runtime.GOMAXPROCS(2) // in goroutine_select2.go

 ch1 := make(chan int)

 ch2 := make(chan int)

 go pump1(ch1)

 go pump2(ch2)

 go suck(ch1, ch2)

 time.Sleep(1e9)

}

func pump1(ch chan int) {

 for i:=0; ; i++ {

 ch <- i*2

 }

}

func pump2(ch chan int) {

 for i:=0; ; i++ {

 ch <- i+5

 }

}

func suck(ch1 chan int,ch2 chan int) {

 for {

 select {

 case v:= <- ch1:

The Way to Go

405

 fmt.Printf(“Received on channel 1: %d\n”, v)

 case v:= <- ch2:

 fmt.Printf(“Received on channel 2: %d\n”, v)

 }

 }

}

Output: Received on channel 2: 5

 Received on channel 2: 6

 Received on channel 1: 0

 Received on channel 2: 7

 Received on channel 2: 8

 Received on channel 2: 9

 Received on channel 2: 10

 Received on channel 1: 2

 Received on channel 2: 11

 …

 Received on channel 2: 47404

 Received on channel 1: 94346

 Received on channel 1: 94348

The output produced in 1 s is quite amazing, if we count it (goroutine_select2.go) we get around
90000 numbers.

EXERCISES:

Exercise 14.7: a) In Exercise 5.4 for_loop.go we had a simple for loop printing numbers.
Implement the for loop in a function tel which is started as a goroutine
and in which the numbers are send to a channel. The main() routine
takes them from the channel and prints them. Don’t use time.Sleep() for
synchronization: goroutine_panic.go

b) Probably your solution will work, but you get a runtime panic: throw:
all goroutines are asleep—deadlock! Why is this ? How could you solve
this ? goroutine_close.go

c) Solve the problem from a) in another way: use a second channel which
is passed to the goroutine, this signals its end by putting something on
that channel. The main() routine checks whether something is send along
that channel, and if so stops: goroutine_select.go

406

Ivo Balbaert

Exercise 14.8: Starting from the Fibonacci-program in Listing 6.10, make a solution which
isolates the calculation of the Fibonacci-terms in a goroutine, which sends these
results on a channel.

Close the channel when finished. The main() function reads from the channel
and prints the results: gofibonacci.go

Write a shorter variant gofibonacci2.go using the algorithm from exercise 6.9

Write a variant which uses the select statement and a quit channel (gofibonacci_
select.go).

Remark: When timing the results and comparing with 6.10, we see that
the overhead of communication via a channel has a slight negative effect; for
this simple algorithm using a goroutine is not the best performing choice; but
gofibonacci3.go is a solution with 2 goroutines which is 3x faster.

Exercise 14.9: Create a random bit generator, that is a program which produces an unending
sequence of randomly generated 0’s and 1s: random_bitgen.go

Exercise 14.10: polar_to_cartesian.go

(This is kind of a synthesis exercise, it uses techniques from chapters 4, 9, 11 and of course this
chapter.) Write an interactive console program that asks the user for the polar coordinates of a
2dimensional point (radius and angle (degrees)). Calculate the corresponding Cartesian coordinates
x and y, and print out the result. Use structs for polar and Cartesian.

Use channels and a goroutine: a channel1 to receive the polars
a channel2 to receive the Cartesian

The conversion itself must be done with a goroutine, which reads from channel1 and sends to
channel2. In reality for such a simple calculation it is not worthwhile to use a goroutine and
channels, but if it would be a heavy computation taking some time, this solution-design would be
quite appropriate.

Exercise 14.11: concurrent_pi.go / concurrent_pi2.go

Calculate pi with the following series using goroutines: start a goroutine to calculate each term in
the formule and let it put the result on a channel, the main() function collects and sums the results,
and prints the approximation of pi.

The Way to Go

407

Measure the execution time (see § 6.11)

Again this is just for fun and exercising the goroutine concept.

If you need it use Pi from math.pi; and such a series is much more quickly calculated without
goroutines. In a second version: use GOMAXPROCS, and start only as much goroutines as you
set GOMAXPROCS to.

IDIOM: Server backend pattern

Often a server is implemented as a background goroutine which loops forever, in the loop getting
and processing values of channels via a select:

// Backend goroutine.

 func backend() {

 for {

 select {

 case cmd := <-ch1:

 // Handle ...

 case cmd := <-ch2:

 ...

 case cmd := <-chStop:

 // stop server

 }

 }

 }

Other parts of the application send values on the channels ch1, ch2, etc.; a stop channel is used for
a clean termination of the server process.

Another possible (but less flexible) pattern is that all (client)-requests post their request on a
chRequest, and the backend routine loops over this channel, processing requests according to their
nature in a switch:

408

Ivo Balbaert

func backend() {

 for req := range chRequest {

 switch req.Subject() {

 case A1: // Handle case ...

 case A2: // Handle case ...

 default:

 // Handle illegal request ...

 // ...

 }

 }

 }

14.5 Channels, Timeouts and Tickers

The time package has some interesting functionality to use in combination with channels.

It contains a struct time.Ticker which is an object that repeatedly sends a time value on a contained
channel C at a specified time interval:

type Ticker struct {

 C <-chan Time // the channel on which the ticks are delivered.

 // contains filtered or unexported fields

 …

}

The time interval ns is specified (in nanoseconds as an int64) is specified as a variable dur of type
Duration in the factory function time.NewTicker: func NewTicker(dur) *Ticker

It can be very useful when during the execution of goroutines something (logging of a status, a
printout, a calculation, etc.) has to be done periodically at a certain time interval.

A Ticker is stopped with Stop(), use this in a defer statement. All this fits nicely in a select
statement:

ticker := time.NewTicker(updateInterval)

defer ticker.Stop()

…

select {

case u:= <- ch1:

 …

The Way to Go

409

case v:= <- ch2:

 …

case <- ticker.C:

 logState(status) // call some logging function logState

default: // no value ready to be received

 …

}

The time.Tick() function with signature func Tick(d Duration) <-chan Time is useful when you
only need access to the return channel and don’t need to shutdown it: it sends out the time on the
return channel with periodicity d, which is a number of nanoseconds. Handy to use when you have
to limit the rate of processing per unit time like in the following code snippet (the function client.
Call() is an RPC-call not further specified here (see § 15.9)):

import “time”

rate_per_sec := 10

var dur Duration = 1e9 / rate_per_sec

chRate := time.Tick(dur) // a tick every 1/10th of a second

for req := range requests {

 <- chRate // rate limit our Service.Method RPC calls

 go client.Call(“Service.Method”, req, ...)

}

The net effect is that new requests can are only handled at the indicated rate: the channel chRate
blocks higher rates. The rate per second can be increased or decreased according to the load and /
or the resources of the machine.

Question 14.1: Expanding on the snippet above, think about how you could allow handling of
periodic bursts in the number of requests (hint: use a buffered channel and a Ticker object).

A Timer type looks exactly the same as a Ticker type (it is constructed with NewTimer(d Duration))
but it sends the time only once, after a Duration d.

There is also a function time.After(d) with the signature:

 func After(d Duration) <-chan Time

410

Ivo Balbaert

After Duration d the current time is sent on the returned channel; so this is equivalent to
NewTimer(d).C; it resembles Tick(), but After() sends the time only once. The following listing
shows a very concrete example, and also nicely illustrates the default clause in select:

Listing 14.11: timer_goroutine.go:

package main

import (

 “fmt”

 “time”

)

func main() {

 tick := time.Tick(1e8)

 boom := time.After(5e8)

 for {

 select {

 case <-tick:

 fmt.Println(“tick.”)

 case <-boom:

 fmt.Println(“BOOM!”)

 return

 default:

 fmt.Println(“ .”)

 time.Sleep(5e7)

 }

 }

}
/* Output:
 .
tick.
 .
 .
tick.
 .
 .
tick.
 .
 .
tick.
 .

The Way to Go

411

 .
tick.
BOOM!

*/

IDIOM: Simple timeout pattern

We want to receive from a channel ch, but want to wait at most 1 second for the value to arrive.
Start by creating a signalling channel and launching a lambda goroutine that sleeps before sending
on the channel: timeout := make(chan bool, 1)

go func() {

 time.Sleep(1e9) // one second

 timeout <- true

}()

Then use a select statement to receive from either ch or timeout: if nothing arrives on ch in the 1 s
time period, the timeout case is selected and the attempt to read from ch is abandoned.

select {

case <-ch:

 // a read from ch has occurred

case <-timeout:

 // the read from ch has timed out

 break

}

2nd variant: Abandon synchronous calls that run too long:

We could also use the time.After() function instead of a timeout-channel. This can be used in a
select to signal a timeout or stop an execution of goroutines. When in the following code snippet
client.Call does not return a value to channel ch after timeoutNs ns the timeout case is executed
in the select:

ch := make(chan error, 1)

go func() { ch <- client.Call(“Service.Method”, args, &reply) } ()

select {

case resp := <-ch:

 // use resp and reply

case <-time.After(timeoutNs):

 // call timed out

 break

}

412

Ivo Balbaert

Note that the buffer size of 1 is necessary to avoid deadlock of goroutines and guarantee garbage
collection of the timeout channel.

3rd variant: Suppose we have a program that reads from multiple replicated databases simultaneously.
The program needs only one of the answers, and it should accept the answer that arrives first. The
function Query takes a slice of database connections and a query string. It queries each of the
databases in parallel and returns the first response it receives:

func Query(conns []Conn, query string) Result {

 ch := make(chan Result, 1)

 for _, conn := range conns {

 go func(c Conn) {

 select {

 case ch <- c.DoQuery(query):

 default:

 }

 }(conn)

 }

 return <- ch

}

Here again the result channel ch has to be buffered: this guarantees that the first send has a place
to put the value and ensures that it will always succeed, so the first value to arrive will be retrieved
regardless of the order of execution. An executing goroutine can always be stopped by calling
runtime.Goexit()

Caching data in applications:

Applications working with data coming from a database (or in general a datastore) will often cache
that data in memory, because retrieving a value from a database is a costly operation; when the
database value does not change there is no problem with this. But for values that can change we
need a mechanism that periodically rereads the value in the database: the cached value in that case
becomes invalid (it has expired) and we don’t want our application to present an old value to the
user. The article discussed at http://www.tideland.biz/CachingValues presents a way to do this with
a goroutine and a Ticker object.

14.6 Using recover with goroutines

One application of recover (see § 13.3) is to shut down a failing goroutine inside a server without
killing the other executing goroutines.

The Way to Go

413

func server(workChan <-chan *Work) {

 for work := range workChan {

 go safelyDo(work) // start the goroutine for that work

 }

}

func safelyDo(work *Work) {

 defer func() {

 if err := recover(); err != nil {

 log.Printf(“work failed with %s in %v:”, err, work)

 }

 }()

 do(work)

}

In the code snippet above, if do(work) panics, the error will be logged and the goroutine will exit
cleanly without disturbing the other goroutines.

Because recover always returns nil unless called directly from a deferred function, deferred code
can call library routines that themselves use panic and recover without failing. As an example,
the deferred function in safelyDo() might call a logging function before calling recover, and that
logging code would run unaffected by the panicking state. With our recovery pattern in place,
the do function (and anything it calls) can get out of any bad situation cleanly by calling panic.
But the recovery has to take place inside the panicking goroutine: it cannot be recovered by a
different goroutine. A more detailed and in depth treatment can be found at http://www.tideland.
biz/SupervisingGoroutines (ref. 43).

14.7 Comparing the old and the new model: Tasks and Worker processes.

Suppose we have to perform a number of tasks; a task is performed by a worker (process). A Task
can be defined as a struct (the concrete details are not important here):

type Task struct {

 // some state

}

1st (old) paradigm: use shared memory to synchronize

The pool of tasks is shared memory; in order to synchronize the work and to avoid race conditions,
we have to guard the pool with a Mutex lock:

414

Ivo Balbaert

type Pool struct {

 Mu sync.Mutex

 Tasks []Task

}

A sync.Mutex (see § 9.3) is a mutual exclusion lock: it serves to guard the entrance to a critical
section in code: only one goroutine (thread) can enter that section at one time. If more than one
goroutine would be allowed, a race-condition can exist: the Pool struct could no longer be updated
correctly. In the traditional model (applied in most classic OO-languages like C++, Java, C#) the
Worker process could be coded as:

func Worker(pool *Pool) {

 for {

 pool.Mu.Lock()

 // begin critical section:

 task := pool.Tasks[0] // take the first task

 pool.Tasks = pool.Tasks[1:] // update the pool of tasks

 // end critical section

 pool.Mu.Unlock()

 process(task)

 }

}

Many of these worker processes could run concurrently; they could certainly be started as
goroutines. A worker locks the pool, takes the first task from the pool, unlocks the pool, and
then processes the task. The lock guarantees that only one worker process at a time can access the
pool: a task is assigned to one and only one process. If the lock would not be there, the processing
of the worker-routine could be interrupted in the lines task := pool.Tasks[0] and pool.Tasks =
pool.Tasks[1:] with abnormal results: some workers would not get a task, some tasks would be
obtained by several workers. This locking synchronization works well for a few worker processes,
but if the Pool is very big and we assign a large number of processes to work on it, the efficiency
of the processing will be diminished by the overhead of the lock-unlock mechanism. This is the
bottle-neck: performance will certainly decrease when the number of workers increases, drastically
at a certain threshold.

2nd paradigm: channels

Now channels of Tasks are used to synchronize: a pending channel receives the requested tasks, a
done channel receives the performed tasks (with their results). The worker process are started as
goroutines, their number N should be adjusted to the number of tasks.

The Way to Go

415

The main routine, which performs the function of Master, could be programmed as:

func main() {

 pending, done := make(chan *Task), make(chan *Task)

 go sendWork(pending) // put tasks with work on the channel

 for i := 0; i < N; i++ { // start N goroutines to do work

 go Worker(pending, done)

 }

 consumeWork(done) // continue with the processed tasks

}

The worker process is very simple: take a task from the pending channel, processing it, putting the
finished task on the done channel:

func Worker(in, out chan *Task) {

 for {

 t := <-in

 process(t)

 out <- t

 }

}

There is no locking: the process of getting a new task involves no contention. If the amount of
tasks increases, the number of workers can be increased accordingly and the performance will not
degrade nearly as badly as in the 1st solution. From the pending channel there is of course only 1
copy in memory, but there is no contention because the first Worker to get at the 1st pending task
simply takes it (reading from and sending to a channel are atomic operations: see § 14.2.2) and
will process it completely. It is impossible to predict which task will be performed by which process
and vice versa. With an increasing number of workers there is also an increasing communication
overhead, which has a slight impact on performance.

In this simple example it is perhaps difficult to see the advantage of the 2nd model, but applications
with complex lock-situations are very hard to program and to get right, and a great deal of this
complexity in the software is not needed in a solution which applies the 2nd model.

Thus not only performance is a major advantage, but the clearer and more elegant code is perhaps
an even bigger advantage. It is certainly a Go idiomatic way of working:

IDIOM: Use an in- and out-channel instead of locking

func Worker(in, out chan *Task) {

416

Ivo Balbaert

 for {

 t := <-in

 process(t)

 out <- t

 }

}

For any problem which can be modeled as such a Master-Worker paradigm, an analogous solution
with Workers as goroutines communicating through channels and the Master as coordinator would
be a perfect fit. If the system distributes over several machines, a number of machines could execute
the Worker goroutines, and the Master and Workers could communicate amongst themselves
through netchan or rpc (see chapter 15).

What to use: a sync.Mutex or a channel?

Although in this chapter we laid strong emphasis on goroutines using channels because this is
quite new in system languages, this doesn’t mean that the classic approach with locking is now
taboo: Go has both and gives you the choice according to the problem being solved: construct the
solution which is the most elegant, simple and readable, and in most cases performance will follow
automatically. Don’t be afraid to use a Mutex if that fits your problem best. Go is pragmatic in
letting you use the tools that solve your problem best and not forcing you into one style of code.
As a general rule of thumb:

•	 use	locking	(mutexes)	when:
▪ caching information in a shared data structure
▪ holding state information, that is context or status of the running application

•	 use	channels	when:
▪ communicating asynchronous results
▪ distributing units of work
▪ passing ownership of data

If you find your locking rules are getting too complex, ask yourself whether using channel(s) might
not be simpler.

14.8 Implementing a lazy generator

A generator is a function that returns the next value in a sequence each time the function is called,
like: generateInteger() => 0

generateInteger() => 1

The Way to Go

417

generateInteger() => 2

....

It is a producer that only returns the next value, not the entire sequence; this is called lazy evaluation:
only compute what you need at the moment, saving valuable resources (memory and CPU): it is
a technology for the evaluation of expressions on demand. An example would be the generation of
an endless sequence of even numbers: to generate it and then use those numbers one by one would
perhaps be difficult and certainly would not fit into memory! But a simple function per type with
a channel and a goroutine can do the job.

For example in listing 14.12 we see a Go implementation with a channel of a generator of ints. The
channel is named yield and resume, the terms commonly used in coroutine code.

Listing 14.12—lazy_evaluation.go
package main
import (
 “fmt”
)

var resume chan int

func integers() chan int {
 yield := make (chan int)
 count := 0
 go func () {
 for {
 yield <- count
 count++
 }
 } ()
 return yield
}
func generateInteger() int {
 return <-resume
}

func main() {
 resume = integers()
 fmt.Println(generateInteger()) //=> 0
 fmt.Println(generateInteger()) //=> 1
 fmt.Println(generateInteger()) //=> 2
}

A subtle difference is that the value read from the channel could have been generated a while ago,
it is not generated at the time of reading. If you need such a behavior, you have to implement
a request-response mechanism. When the generator’s task is computationally expensive and the

418

Ivo Balbaert

order of generating results does not matter, then the generator can be parallelized internally by
using goroutines. But be careful that the overhead generated by spawning many goroutines does
not outweigh any performance gain.

These principles can be generalized: by making clever use of the empty interface, closures and higher
order functions we can implement a generic builder BuildLazyEvaluator for the lazy evaluation
function (this should best placed inside a utility package). The builder takes a function that has to
be evaluated and an initial state as arguments and returns a function without arguments returning
the desired value. The passed evaluation function has to calculate the next return value as well as
the next state based on the state argument. Inside the builder a channel and a goroutine with an
endless loop are created. The return values are passed to the channel from which they are fetched by
the returned function for later usage. Each time a value is fetched the next one will be calculated.
In the next example this is applied by defining an evenFunc whitch lazily generates even numbers:
in main() we create the first 10 even numbers, each further call to even() returns the next one. For
this purpose we had to specialize our general build function into BuildLazyIntEvaluator, and then
we were able to define even on top of that.

Listing 14.13: general_lazy_evaluation1.go

package main

import (

 “fmt”

)

type Any interface{}

type EvalFunc func(Any) (Any, Any)

func main() {

 evenFunc := func(state Any) (Any, Any) {

 os := state.(int)

 ns := os + 2

 return os, ns

 }

 even := BuildLazyIntEvaluator(evenFunc, 0)

 for i := 0; i < 10; i++ {

 fmt.Printf(“%vth even: %v\n”, i, even())

 }

}

func BuildLazyEvaluator(evalFunc EvalFunc, initState Any) func() Any {

The Way to Go

419

 retValChan := make(chan Any)

 loopFunc := func() {

 var actState Any = initState

 var retVal Any

 for {

 retVal, actState = evalFunc(actState)

 retValChan <- retVal

 }

 }

 retFunc := func() Any {

 return <-retValChan

 }

 go loopFunc()

 return retFunc

}

func BuildLazyIntEvaluator(evalFunc EvalFunc, initState Any) func() int {

 ef := BuildLazyEvaluator(evalFunc, initState)

 return func() int {

 return ef().(int)

 }

}

/* Output:

0th even: 0

1th even: 2

2th even: 4

3th even: 6

4th even: 8

5th even: 10

6th even: 12

7th even: 14

8th even: 16

9th even: 18

*/

Exercise 14.12: general_lazy_evaluation2.go

Use the general builder from Listing 14.12 to calculate the first 10 Fibonacci numbers.

Hint: Because these numbers grow quickly, use the uint64 type.

420

Ivo Balbaert

Note: This calculation is typically defined as a recursive function, but in languages without tail
recursion such as Go this can lead to a stack overflow, but with Go’s extensible stacks the optimization
is less critical. The trick here is to use an imperative way for the calculation together with the lazy
evaluation. The gccgo compiler does implement tail recursion in some cases.

14.9 Implementing Futures

A related idea is that of futures: sometimes you know you need to compute a value before you need
to actually use the value. In this case, you can potentially start computing the value on another
processor and have it ready when you need it.

Futures are easy to implement via closures and goroutines, the idea is similar to generators, except
a future needs only to return one value.

An excellent example is given in ref. 18: suppose we have a type Matrix and we need to calculate
the inverse of the product of 2 matrices a and b, first we have to invert both of them through
a function Inverse(m), and then take the Product of both results. This could be done with the
following function InverseProduct():

func InverseProduct(a Matrix, b Matrix) {

 a_inv := Inverse(a)

 b_inv := Inverse(b)

 return Product(a_inv, b_inv)

}

In this example it is known initially that the inverse of both a and b must be computed. Why
should the program wait for a_inv to be computed before starting the computation of b_inv?
These inverse computations can be done in parallel. On the other hand, the call to Product needs
to wait for both a_inv and b_inv to finish. This can be implemented as follows:

func InverseProduct(a Matrix, b Matrix) {

 a_inv_future := InverseFuture(a) // started as a goroutine

 b_inv_future := InverseFuture(b) // started as a goroutine

 a_inv := <-a_inv_future

 b_inv := <-b_inv_future

 return Product(a_inv, b_inv)

}

The Way to Go

421

where InverseFuture() launches a closure as a goroutine, which puts the resultant inverse matrix on
a channel future as result:

func InverseFuture(a Matrix) {

 future := make(chan Matrix)

 go func() { future <- Inverse(a) }()

 return future

}

When developing a computationally intensive package, it may make sense to design the entire
API around futures. The futures can be used within your package while maintaining a friendly
API. In addition, the futures can be exposed through an asynchronous version of the API. This
way the parallelism in your package can be lifted into the user’s code with minimal effort. (See the
discussion in ref. 18: http://www.golangpatterns.info/concurrency/futures)

14.10 Multiplexing

14.10.1 A typical client-server pattern

Client-server applications are the kind of applications where goroutines and channels shine.

A client can be any running program on any device that needs something from a server, so it sends
a request. The server receives this request, does some work, and then sends a response back to the
client. In a typical situation there are many clients (so many requests) and one (or a few) servers. An
example we use all the time is the client browser, which requests a web page. A web server responds
by sending the web page back to the browser.

In Go a server will typically perform a response to a client in a goroutine, so a goroutine is launched
for every client-request. A technique commonly used is that the client-request itself contains a
channel, which the server uses to send in its response.

For example the request is a struct like the following which embeds a reply channel:

type Request struct {

 a, b int;

 replyc chan int; // reply channel inside the Request

}

422

Ivo Balbaert

Or more generally:

type Reply struct { ... }

type Request struct {

arg1, arg2, arg3 some_type

replyc chan *Reply

}

Continuing with the simple form, the server could launch for each request a function run() in a
goroutine that will apply an operation op of type binOp to the ints and then send the result on
the reply channel:

type binOp func(a, b int) int

func run(op binOp, req *Request) {

 req.replyc <- op(req.a, req.b)

}

The server routine loops forever, receiving requests from a chan *Request and, to avoid blocking
due to a long-running operation, starting a goroutine for each request to do the actual work:

func server(op binOp, service chan *Request) {

 for {

 req := <-service; // requests arrive here

 // start goroutine for request:

 go run(op, req); // don’t wait for op to complete

 }

}

The server is started in its own goroutine by the function startServer:
func startServer(op binOp) chan *Request {

 reqChan := make(chan *Request);

 go server(op, reqChan);

 return reqChan;

}

startServer will be invoked in the main routine.

In the following test-example, 100 requests are posted to the server, only after they all have been
sent do we check the responses in reverse order:

The Way to Go

423

func main() {

 adder := startServer(func(a, b int) int { return a + b })

 const N = 100

 var reqs [N]Request

 for i := 0; i < N; i++ {

 req := &reqs[i]

 req.a = i

 req.b = i + N

 req.replyc = make(chan int)

 adder <- req // adder is a channel of requests

 }

 // checks:

 for i := N - 1; i >= 0; i-- { // doesn’t matter what order

 if <-reqs[i].replyc != N+2*i {

 fmt.Println(“fail at”, i)

 } else {

fmt.Println(“Request “, i, “is ok!”)

}

 }

 fmt.Println(“done”)

}

The code can be found in Listing 14.13—multiplex_server.go, the output is:

Request 99 is ok!
Request 98 is ok!
…
Request 1 is ok!
Request 0 is ok!
Done

This program only starts 100 goroutines. Execute the program for 100000 goroutines, and even
then one sees that it finishes within a few seconds. This demonstrates how lightweight goroutines
are: if we would start the same amount of real threads, the program quickly crashes.

Listing 14.14—multiplex_server.go:
package main
import “fmt”

type Request struct {
 a, b int

424

Ivo Balbaert

 replyc chan int // reply channel inside the Request
}

type binOp func(a, b int) int

func run(op binOp, req *Request) {
 req.replyc <- op(req.a, req.b)
}

func server(op binOp, service chan *Request) {
 for {
 req := <-service // requests arrive here
 // start goroutine for request:
 go run(op, req) // don’t wait for op
 }
}

func startServer(op binOp) chan *Request {
 reqChan := make(chan *Request)
 go server(op, reqChan)
 return reqChan
}

func main() {
 adder := startServer(func(a, b int) int { return a + b })
 const N = 100
 var reqs [N]Request
 for i := 0; i < N; i++ {
 req := &reqs[i]
 req.a = i
 req.b = i + N
 req.replyc = make(chan int)
 adder <- req
 }
 // checks:
 for i := N - 1; i >= 0; i-- { // doesn’t matter what order
 if <-reqs[i].replyc != N+2*i {
 fmt.Println(“fail at”, i)
 } else {
 fmt.Println(“Request “, i, “is ok!”)
 }
 }
 fmt.Println(“done”)
}

14.10.2 Teardown: shutdown the server by signaling a channel

In the previous version the server does not a clean shutdown when main returns; it is forced to stop.
To improve this we can provide a second, quit channel to the server:

The Way to Go

425

func startServer(op binOp) (service chan *Request, quit chan bool) {

 service = make(chan *Request)

 quit = make(chan bool)

 go server(op, service, quit)

 return service, quit

}

The server function then uses a select to choose between the service channel and the quit
channel:

func server(op binOp, service chan *request, quit chan bool) {

 for {

 select {

 case req := <-service:

 go run(op, req)

 case <-quit:

 return

 }

 }

}

When a true value enters the quit channel, the server returns and terminates.

In main we change the following line:

adder, quit := startServer(func(a, b int) int { return a + b })

At the end of main we place the line: quit <- true

The complete code can be found in multiplex_server2.go, with the same output.

Listing 14.15—multiplex_server2.go:

package main

import “fmt”

type Request struct {

 a, b int

 replyc chan int // reply channel inside the Request

}

426

Ivo Balbaert

type binOp func(a, b int) int

func run(op binOp, req *Request) {

 req.replyc <- op(req.a, req.b)

}

func server(op binOp, service chan *Request, quit chan bool) {

 for {

 select {

 case req := <-service:

 go run(op, req)

 case <-quit:

 return

 }

 }

}

func startServer(op binOp) (service chan *Request, quit chan bool) {

 service = make(chan *Request)

 quit = make(chan bool)

 go server(op, service, quit)

 return service, quit

}

func main() {

 adder, quit := startServer(func(a, b int) int { return a + b })

 const N = 100

 var reqs [N]Request

 for i := 0; i < N; i++ {

 req := &reqs[i]

 req.a = i

 req.b = i + N

 req.replyc = make(chan int)

 adder <- req

 }

 // checks:

 for i := N - 1; i >= 0; i-- { // doesn’t matter what order

 if <-reqs[i].replyc != N+2*i {

 fmt.Println(“fail at”, i)

 } else {

The Way to Go

427

 fmt.Println(“Request “, i, “is ok!”)

 }

 }

 quit <- true

 fmt.Println(“done”)

}

Exercise 14.13: multiplex_server3.go: Using the former example, write a variant with a String()
method on the Request struct which hows the server output; test the program with 2 requests:

req1 := &Request{3, 4, make(chan int)}

req2 := &Request{150, 250, make(chan int)}

…

// show the output:

fmt.Println(req1,”\n”,req2)

14.11 Limiting the number of requests processed concurrently

This is easily accomplished using a channel with a buffer (see § 14.2.5), whose capacity is the
maximum number of concurrent requests. The program max_tasks.go does nothing useful
but contains the technique to do just that: no more than MAXREQS requests will be handled
and processed simultaneously, because when the buffer of the channel sem is full, the function
handle blocks and not other request can start, until a request is removed from sem. sem acts like
a semaphore, a technical term for a flag variable in a program which signals a certain condition:
hence the name.

Listing 14.16—max_tasks.go:

package main

const (

 AvailableMemory = 10 << 20 // 10 MB, for example

 AverageMemoryPerRequest = 10 << 10 // 10 KB

 MAXREQS = AvailableMemory / AverageMemoryPerRequest // here amounts to 1000

)

var sem = make(chan int, MAXREQS)

type Request struct {

 a, b int

 replyc chan int

428

Ivo Balbaert

}

func process(r *Request) {

 // Do something

 // May take a long time and use a lot of memory or CPU

}

func handle(r *Request) {

 process(r)

 // signal done: enable next request to start

 // by making 1 empty place in the buffer

 <-sem

}

func Server(queue chan *Request) {

 for {

 sem <- 1

 // blocks when channel is full (1000 requests are active)

 // so wait here until there is capacity to process a request

 // (doesn’t matter what we put in it)

request := <-queue

 go handle(request)

 }

}

func main() {

 queue := make(chan *Request)

 go Server(queue)

}

In this way the application makes optimal use of a limited resource like memory, by having
goroutines synchronize their use of that resource using a buffered channel (the channel is used as
a semaphore).

14.12 Chaining goroutines

The following demo-program chaining.go demonstrates again how easy it is to start a huge number
of goroutines. Here this happens in a for-loop in main. After the loop 0 is inserted in the rightmost
channel, the 100000 goroutines execute, and the result which is 100000 is printed in less than 1.5 s.

The Way to Go

429

This program also demonstrates how the number of goroutines can be given on the command-line
and parsed in through flag.Int, e.g. chaining -n=7000 generates 7000 goroutines.

Listing 14.17—chaining.go:

package main

import (

 “flag”

 “fmt”

)

var ngoroutine = flag.Int(“n”, 100000, “how many goroutines”)

func f(left, right chan int) { left <- 1+<-right }

func main() {

 flag.Parse()

 leftmost := make(chan int)

 var left, right chan int = nil, leftmost

 for i := 0; i < *ngoroutine; i++ {

 left, right = right, make(chan int)

 go f(left, right)

 }

 right <- 0 // start the chaining

 x := <-leftmost // wait for completion

 fmt.Println(x) // 100000, approx. 1,5 s

}

14.13 Parallelizing a computation over a number of cores

Suppose we have NCPU number of CPU cores: const NCPU = 4 // e.g. 4 for a quadqore

processor and we want to divide a computation in NCPU parts, each running in parallel with the
others.

This could be done schematically (we leave out the concrete parameters) as follows:

func DoAll() {

 sem := make(chan int, NCPU) // Buffering optional but sensible.

 for i := 0; i < NCPU; i++ {

 go DoPart(sem)

430

Ivo Balbaert

 }

 // Drain the channel sem, waiting for NCPU tasks to complete

 for i := 0; i < NCPU; i++ {

 <-sem // wait for one task to complete

 }

 // All done.

}

func DoPart(sem chan int) {

 // do the part of the computation

 }

 sem <- 1 // signal that this piece is done

}

func main() {

 runtime.GOMAXPROCS = NCPU

 DoAll()

}

- The function DoAll() makes a channel sem upon which each of the parallel computations will
signal its completion; in a for loop NCPU goroutines are started, each performing 1/NCPU
—th part of the total work. Each DoPart() goroutine signals its completion on sem.

- DoAll() waits in a for-loop until all NCPU goroutines have completed: the channel sem acts
like a semaphore; this code shows a typical semaphore pattern (see § 14.2.7) .

In the present model of the runtime you also have to set GOMAXPROCS to NCPU (see §
14.1.3).

14.14 Parallelizing a computation over a large amount of data

Suppose we have to process a large number of data-items independent of each other, coming in
through an in channel, and when completely processed put on an out channel, much like a factory
pipeline. The processing of each data-item will also probably involve a number of steps: Preprocess
/ StepA / StepB / … / PostProcess

A typical sequential pipelining algorithm for solving this executing each step in order could be
written as follows:

func SerialProcessData (in <- chan *Data, out <- chan *Data) {
 for data := range in {
 tmpA := PreprocessData(data)

The Way to Go

431

 tmpB := ProcessStepA(tmpA)
 tmpC := ProcessStepB(tmpB)
 out <- PostProcessData(tmpC)
 }

}

Only one step is executed at a time, and each item is processed in sequence: processing the 2nd item
is not started before the 1st item is postprocessed and the result put on the out channel.

If you think about it, you will soon realize that this is a gigantic waste of time.

A much more efficient computation would be to let each processing step work independent of
each other as a goroutine. Each step gets its input data from the output channel of the previous
step. That way the least amount of time will be lost, and most of the time all steps will be busy
executing: func ParallelProcessData (in <- chan *Data, out <- chan *Data) {

// make channels:

preOut := make(chan *Data, 100)

stepAOut := make(chan *Data, 100)

stepBOut := make(chan *Data, 100)

stepCOut := make(chan *Data, 100)

// start parallel computations:

go PreprocessData(in, preOut)

go ProcessStepA(preOut, stepAOut)

go ProcessStepB(stepAOut, stepBOut)

go ProcessStepC(stepBOut, stepCOut)

go PostProcessData(stepCOut, out

}

The channels buffer capacities could be used further to optimize the whole process.

14.15 The leaky bucket algorithm

Consider the following client-server configuration: the client goroutine performs an infinite loop
receiving data from some source, perhaps a network; the data are read in buffers of type Buffer.
To avoid too much allocating and freeing buffers, it keeps a free list of them, and uses a buffered
channel to represent it: var freeList = make(chan *Buffer, 100)

This queue of reusable buffers is shared with the server. When receiving data the client tries to take
a buffer from freeList; but if this channel is empty, a new buffer gets allocated. Once the message
buffer is loaded, it is sent to the server on serverChan:

432

Ivo Balbaert

var serverChan = make(chan *Buffer)

Here is the algorithm for the client code:

func client() {

 for {

 var b *Buffer

 // Grab a buffer if available; allocate if not

 select {

case b = <-freeList:

 // Got one; nothing more to do

default:

 // None free, so allocate a new one

 b = new(Buffer)

 }

 loadInto(b) // Read next message from the network

 serverChan <- b // Send to server

 }

}

The server loop receives each message from the client, processes it, and tries to return the buffer to
the shared free list of buffers:

func server() {

 for {

 b := <-serverChan // Wait for work.

 process(b)

 // Reuse buffer if there’s room.

 select {

 case freeList <- b:

 // Reuse buffer if free slot on freeList; nothing more to do

 default:

 // Free list full, just carry on: the buffer is ‘dropped’

 }

 }

}

But this doesn’t work when freeList is full, in which case the buffer is ‘dropped on the floor’
(hence the name ‘leaky bucket’) to be reclaimed by the garbage collector.

The Way to Go

433

14.16 Benchmarking goroutines.

In §13.7 we mentioned the principle of performing benchmarks on your functions in Go. Here
we apply it to a concrete example of a goroutine which is filled with ints, and then read. The
functions are called N times (e.g. N = 1000000) with testing.Benchmark, the BenchMarkResult
has a String() method for outputting its findings. The number N is decided upon by gotest,
judging this to be high enough to get a reasonable benchmark result.

Of course the same way of benchmarking also applies to ordinary functions.

If you want to exclude certain parts of the code or you want to be more specific in what you
are timing, you can stop and start the timer by calling functions testing.B.StopTimer() and
testing.B.StartTimer() as appropriate. The benchmarks will only be run if all your tests pass!

Listing 14.18—benchmark_channels.go:

package main

import (

 “fmt”

 “testing”

)

func main() {

 fmt.Println(“sync”, testing.Benchmark(BenchmarkChannelSync).String())

 fmt.Println(“buffered”, testing.Benchmark(BenchmarkChannelBuffere

 d).String())

}

func BenchmarkChannelSync(b *testing.B) {

 ch := make(chan int)

 go func() {

 for i := 0; i < b.N; i++ {

 ch <- i

 }

 close(ch)

 }()

 for _ = range ch {

 }

}

434

Ivo Balbaert

func BenchmarkChannelBuffered(b *testing.B) {

 ch := make(chan int, 128)

 go func() {

 for i := 0; i < b.N; i++ {

 ch <- i

 }

 close(ch)

 }()

 for _ = range ch {

 }

}

/* Output:

Windows: N Time 1 op Operations per sec

sync 1000000 2443 ns/op --> 409 332 / s

buffered 1000000 4850 ns/op --> 810 477 / s

Linux:

*/

14.17 Concurrent acces to objects by using a channel.

To safeguard concurrent modifications of an object instead of using locking with a sync Mutex we
can also use a backend goroutine for the sequential execution of anonymous functions.

In the following program we have a type Person which now contains a field chF, a channel of
anonymous functions. This is initialized in the constructor-method NewPerson, which also starts a
method backend() as a goroutine.This method executes in an infinite loop all the functions placed
on chF, effectively serializing them and thus providing safe concurrent access. The methods that
change and retrieve the salary make an anonymous function which does that and put this function
on chF, and backend() will sequentially execute them. Notice how in the method Salary the created
closure function includes the channel fChan.

This is of course a simplified example and it should not be applied in such cases, but it shows how
the problem could be tackled in more complex situations.

Listing 14.19—conc_access.go:
package main
import (
 “fmt”
 “strconv”
)

The Way to Go

435

type Person struct {
 Name string
 salary float64
 chF chan func()
}

func NewPerson(name string, salary float64) *Person {
 p := &Person{name, salary, make(chan func())}
 go p.backend()
 return p
}

func (p *Person) backend() {
 for f := range p.chF {
 f()
 }
}

// Set salary.
func (p *Person) SetSalary(sal float64) {
 p.chF <- func() { p.salary = sal }
}

// Retrieve salary.
func (p *Person) Salary() float64 {
 fChan := make(chan float64)
 p.chF <- func() { fChan <- p.salary }
 return <-fChan
}

func (p *Person) String() string {
 return “Person - name is: ” + p.Name + “ - salary is: ” + strconv.
 FormatFloat(p.Salary(), ‘f’, 2, 64)
}

func main() {
 bs := NewPerson(“Smith Bill”, 2500.5)
 fmt.Println(bs)
 bs.SetSalary(4000.25)
 fmt.Println(“Salary changed:”)
 fmt.Println(bs)
}

/* Output Person - name is: Smith Bill - salary is: 2500.50

Salary changed:

Person - name is: Smith Bill - salary is: 4000.25 */

436

Chapter 15—Networking, templating and
web-applications

Go is very usable for writing web applications. Because there is no GUI framework for Go as yet,
making html-screens with strings or templating is the only way to build Go applications with
screens today.

15.1 A tcp-server

In this paragraph we will develop a simple client-server application using the TCP-protocol and
the goroutine-paradigm from chapter 14. A (web) server application has to respond to requests
from many clients simultaneously: in Go for every client-request a goroutine is spawned to handle
the request. We will need the package net for networking communication functionality. It contains
methods for working with TCP/IP and UDP protocols, domain name resolution, etc.

The server-code resides in its own program Listing 15.1—server.go:
package main

import (

 “fmt”

 “net”

)

func main() {

 fmt.Println(“Starting the server ...”)

 // create listener:

 listener, err := net.Listen(“tcp”, “localhost:50000”)

 if err != nil {

 fmt.Println(“Error listening”, err.Error())

 return // terminate program

 }

 // listen and accept connections from clients:

 for {

 conn, err := listener.Accept()

The Way to Go

437

 if err != nil {

 fmt.Println(“Error accepting”, err.Error())

 return // terminate program

 }

 go doServerStuff(conn)

 }

}

func doServerStuff(conn net.Conn) {

 for {

 buf := make([]byte, 512)

 _, err := conn.Read(buf)

 if err != nil {

 fmt.Println(“Error reading”, err.Error())

 return // terminate program

 }

 fmt.Printf(“Received data: %v”, string(buf))

 }

}

In main() we make a net.Listener variable listener, which is the basic function of a server: to
listen for and accepting incoming client requests (on localhost which is IP-address 127.0.0.1 on
port 50000 via the TCP-protocol). This Listen() function can return a variable err of type error.
The waiting for client requests is performed in an infinite for-loop with listener.Accept(). A
client request makes a connection variable conn of type net.Conn. On this connection a separate
goroutine doServerStuff() is started which reads the incoming data in a buffer of size 512 bytes
and outputs them on the server terminal; when all the data from the client has been read the
goroutine stops. For each client a separate goroutine is created. The server-code must be executed
before any client can run.

The code for the client is in a separate file client.go:

Listing 15.2—client.go:

package main

import (

 “fmt”

 “os”

 “net”

 “bufio”

 “strings”

438

Ivo Balbaert

)

func main() {

 // open connection:

 conn, err := net.Dial(“tcp”, “localhost:50000”)

 if err != nil {

 // No connection could be made because the target machine

 actively refused it.

 fmt.Println(“Error dialing”, err.Error())

 return // terminate program

 }

 inputReader := bufio.NewReader(os.Stdin)

 fmt.Println(“First, what is your name?”)

 clientName, _ := inputReader.ReadString(‘\n’)

 // fmt.Printf(“CLIENTNAME %s”,clientName)

 trimmedClient := strings.Trim(clientName, “\r\n”) // “\r\n” on Windows,

 “\n” on Linux

 // send info to server until Quit:

 for {

 fmt.Println(“What to send to the server? Type Q to quit.”)

 input, _ := inputReader.ReadString(‘\n’)

 trimmedInput := strings.Trim(input, “\r\n”)

 // fmt.Printf(“input:--%s--”,input)

 // fmt.Printf(“trimmedInput:--%s--”,trimmedInput)

 if trimmedInput == “Q” {

 return

 }

 _, err = conn.Write([]byte(trimmedClient + “ says: ” +

 trimmedInput))

 }

}

The client establishes a connection with the server through net.Dial

He receives input from the keyboard os.Stdin in an infinite loop until “Q” is entered. Notice the
trimming of \n and \r (both only necessary on Windows). The trimmed input is then transmitted
to the server via the Write-method of the connection.

Of course the server must be started first, if he is not listening, he can’t be dialed by a client.

The Way to Go

439

If a client process would start without a server listening, the client stops with the following
error-message : Error dialing dial tcp 127.0.0.1:50000: No connection could be made because
the target machine actively refused it.

Open a command-prompt in the directory where the server- and client-executables are, type server.
exe (or just server) on Windows, ./server on Linux and ENTER.

The following message appears in the console: Starting the server ...

On Windows this process can be stopped with CTRL/C .

Then open 2 or 3 separate console-windows, in each a client process is started:
type client and ENTER.

Here is some output of the server (after removing the empty space from the 512 byte string):
Starting the server ...

Received data: IVO says: Hi Server, what’s up ?

Received data: CHRIS says: Are you busy server ?

Received data: MARC says: Don’t forget our appointment tomorrow !

When a client enters Q and stops, the server outputs the following message:
Error reading WSARecv tcp 127.0.0.1:50000: The specified network name is no longer

available.

The net.Dial function is one of the most important functions in networking. When you Dial into
a remote system the function returns a Conn interface type, which can be used to send and receive
information. The function Dial neatly abstracts away the network family and transport. So IPv4 or
IPv6, TCP or UDP can all share a common interface.

Dialing a remote system on port 80 over TCP, then UDP and lastly TCP over IPv6 looks like
this:

Listing 15.3—dial.go:

// make a connection with www.example.org:

package main

import (

 “fmt”

 “net”

 “os”

440

Ivo Balbaert

)

func main() {

 conn, err:= net.Dial(“tcp”, “192.0.32.10:80”) // tcp ipv4

 checkConnection(conn, err)

 conn, err = net.Dial(“udp”, “192.0.32.10:80”) // udp

 checkConnection(conn, err)

 conn, err = net.Dial(“tcp”, “[2620:0:2d0:200::10]:80”) // tcp ipv6

 checkConnection(conn, err)

}

func checkConnection(conn net.Conn, err error) {

 if err!= nil {

 fmt.Printf(“error %v connecting!”)

 os.Exit(1)

 }

 fmt.Println(“Connection is made with %v”, conn)

}

The following program is another illustration of the use of the net package for opening, writing to
and reading from a socket:

Listing 15.4—socket.go:

package main

import (

 “fmt”

 “net”

 “io”

)

func main() {

 var (

 host = “www.apache.org”

 port = “80”

 remote = host + “:” + port

 msg string = “GET / \n”

 data = make([]uint8, 4096)

The Way to Go

441

 read = true

 count = 0

)

 // create the socket

 con, err := net.Dial(“tcp”, remote)

 // send our message. an HTTP GET request in this case

 io.WriteString(con, msg)

 // read the response from the webserver

 for read {

 count, err = con.Read(data)

 read = (err == nil)

 fmt.Printf(string(data[0:count]))

 }

 con.Close()

}

Exercise 15.1: Write new versions of client and server (client1.go / server1.go):

a) do the error-checking in a separate function checkError(error); discuss the
advantage / disadvantage of a possible solution: why would this refactoring
perhaps not be that optimal? Examine how it is solved in listing 15.14

b) give the client the possibility to shutdown the server by sending the command
SH

c) let the server keep a list of all the connected clients (their names); when a client
sends the WHO—command, the server will display this list:

This is the client list: 1=active, 0=inactive
User IVO is 1
User MARC is 1
User CHRIS is 1
--

Remark: When the server is running, you cannot compile/link a new version of its source
code in the same directory, because server.exe is in use by the operating system and cannot be
replaced with a new version.

The following version simple_tcp_server.go has a much better structure and improves on our first
example of a tcp-server server.go in many ways, using only some 80 lines of code!

Listing 15.5—simple_tcp_server.go:

442

Ivo Balbaert

// Simple multi-thread/multi-core TCP server.

package main

import (

 “flag”

 “net”

 “os”

 “fmt”

)

const maxRead = 25

func main() {

 flag.Parse()

 if flag.NArg() != 2 {

 panic(“usage: host port”)

 }

 hostAndPort := fmt.Sprintf(“%s:%s”, flag.Arg(0), flag.Arg(1))

 listener := initServer(hostAndPort)

 for {

 conn, err := listener.Accept()

 checkError(err, “Accept: “)

 go connectionHandler(conn)

 }

}

func initServer(hostAndPort string) *net.TCPListener {

 serverAddr, err := net.ResolveTCPAddr(“tcp”, hostAndPort)

 checkError(err, “Resolving address:port failed: `” + hostAndPort + “’”)

 listener, err := net.ListenTCP(“tcp”, serverAddr)

 checkError(err, “ListenTCP: “)

 println(“Listening to: “, listener.Addr().String())

 return listener

}

func connectionHandler(conn net.Conn) {

 connFrom := conn.RemoteAddr().String()

 println(“Connection from: “, connFrom)

 sayHello(conn)

 for {

 var ibuf []byte = make([]byte, maxRead + 1)

The Way to Go

443

 length, err := conn.Read(ibuf[0:maxRead])

 ibuf[maxRead] = 0 // to prevent overflow

 switch err {

 case nil:

 handleMsg(length, err, ibuf)

 case os.EAGAIN: // try again

 continue

 default:

 goto DISCONNECT

 }

 }

DISCONNECT:

 err := conn.Close()

 println(“Closed connection: “, connFrom)

 checkError(err, “Close: “)

}

func sayHello(to net.Conn) {

 obuf := []byte{‘L’, ‘e’, ‘t’, ‘\’’, ‘s’, ‘ ’, ‘G’, ‘O’, ‘!’, ‘\n’}

 wrote, err := to.Write(obuf)

 checkError(err, “Write: wrote “ + string(wrote) + “ bytes.”)

}

func handleMsg(length int, err error, msg []byte) {

 if length > 0 {

 print(“<”, length, “:”)

 for i := 0; ; i++ {

 if msg[i] == 0 {

 break

 }

 fmt.Printf(“%c”, msg[i])

 }

 print(“>”)

 }

}

func checkError(error error, info string) {

 if error != nil {

 panic(“ERROR: ” + info + “ ” + error.Error()) // terminate

444

Ivo Balbaert

 program

 }

}

What are the improvements?

(1) The server address and port are not hard-coded in the program, but given on the command-line
and read via the flag-package. Note the use of flag.NArg() to signal when the expected 2
arguments are not given:

if flag.NArg() != 2 {

 panic(“usage: host port”)

}

 The arguments are then formatted into a string via the fmt.Sprintf-function:
 hostAndPort := fmt.Sprintf(“%s:%s”, flag.Arg(0), flag.Arg(1))

(2) The server address and port are controlled in the function initServer through net.
ResolveTCPAddr, and this function return a *net.TCPListener

(3) For each connection the function connectionHandler is started as a goroutine. This begins with
showing the address of the client with conn.RemoteAddr()

(4) It writes a promotional Go-message to the client with the function conn.Write
(5) It reads from the client in chuncks of 25 bytes and prints these one by one; in case of an error

in the read the infinite read-loop is left via the default switch clause and that client-connection
is closed. In case the OS issues an EAGAIN error, the read is retried.

(6) All error-checking is refactored in a separate function checkError which issues a panic with a
contextual error-message in the case of an error occurring.

Start this server-program on the command-line with: simple_tcp_server localhost 50000 and
start a few clients with client.go in separate command-windows. A typical server output from 2
client-connections follows, where we see that the clients each have their own address:

E:\Go\GoBoek\code examples\chapter 14>simple_tcp_server localhost 50000

Listening to: 127.0.0.1:50000

Connection from: 127.0.0.1:49346

<25:Ivo says: Hi server, do y><12:ou hear me ?>

Connection from: 127.0.0.1:49347

<25:Marc says: Do you remembe><25:r our first meeting serve><2:r?>

net.Error:

The Way to Go

445

The net package returns errors of type error, following the usual convention, but some of the error
implementations have additional methods defined by the net.Error interface:

package net

type Error interface {

 Timeout() bool // Is the error a timeout?

 Temporary() bool // Is the error temporary?

 …

}

Client code can test for a net.Error with a type assertion and then distinguish transient network
errors from permanent ones. For instance, a web crawler might sleep and retry when it encounters
a temporary error and give up otherwise.

// in a loop - some function returns an error err

if nerr, ok := err.(net.Error); ok && nerr.Temporary() {

 time.Sleep(1e9)

 continue // try again

}

if err != nil {

 log.Fatal(err)

}

15.2 A simple webserver

Http is a higher protocol than tcp, and it describes how a webserver communicates with
client-browsers. Go has its net/http-package, which we will now explore. We will start with some
really simple things, first let’s write a “Hello world!” webserver: see listing 15.6

We import “http”, and our webserver is started, analogous to the net.Listen(“tcp”,

“localhost:50000”) function for our tcp server in § 15.1, with the function http.ListenAndServ
e(“localhost:8080”, nil) which returns nil if everything is OK or an error otherwise (localhost
can be omitted from the address, 8080 is the chosen port number).

A web-address is represented by the type http.URL which has a Path field that contains the url as a
string; client-requests are described by the type http.Request, which has a URL field.

If the request req is a POST of an html-form, and “var1” is the name of an html input-field on that
form, then the value entered by the user can be captured in Go-code with: req.FormValue(“var1”)

446

Ivo Balbaert

(see § 15.4). An alternative is first to call request.ParseForm() and the value can then be retrieved
as the 1st return parameter of request.Form[“var1”], like in:

var1, found := request.Form[“var1”]

The 2nd parameter found is then true, if var1 was not on the form found becomes false.

The Form field is in fact of type map[string][]string. The webserver sends an http.Response,
its output is send on an http.ResponseWriter object. This object assembles the HTTP server’s
response; by writing to it, we send data to the HTTP client.

Now we still have to program what the webserver must do, how it handles a request. This is done
through the function http.HandleFunc, which in this example says that if the root “/” (the url
http://localhost:8080) is requested (or any other address on that server) the function HelloServer
is called. This function is of the type http.HandlerFunc, and they are most often named Prefhandler
with some prefix Pref.

http.HandleFunc registers a handler function (here HelloServer) for incoming requests on /.

The / can be replaced by more specific urls like /create, /edit, etc.; for each specific url you can then
define its corresponding handler-function. This function has as 2nd parameter: the request req; its
first parameter is the ResponseWriter w, to which it writes a string composed of Hello and r.URL.
Path[1:] : the trailing [1:] means “create a sub-slice of Path from the 1st character to the end.”, this
drops the leading “/” from the path name. This writing is done with the function fmt.Fprintf()
(see § 12.8); another possibility is io.WriteString(w, “hello, world!\n”)

Summarized: the 1st parameter is a requested path and the 2nd parameter is a reference to a
function to call when the path is requested.

Listing 15.6—hello_world_webserver.go:

package main

import (

 “fmt”

 “net/http”

“log”

)

func HelloServer(w http.ResponseWriter, req *http.Request) {

 fmt.Println(“Inside HelloServer handler”)

 fmt.Fprint(w, “Hello,” + req.URL.Path[1:])

The Way to Go

447

}

func main() {

 http.HandleFunc(“/”,HelloServer)

 err := http.ListenAndServe(“localhost:8080”, nil)

 if err != nil {

 log.Fatal(“ListenAndServe: “, err.Error())

 }

}

Start the program on the command-line, this opens a command-window with the text:

Starting Process E:/Go/GoBoek/code_examples/chapter_14/hello_world_webserver.exe

 ...

Then open your browser with the address(url): http://localhost:8080/world and in the browser
window the text: Hello, world appears. The webserver serves what you type in after :8080/

The fmt.Println statement prints on the server console; somewhat more useful could be to log
inside every handler what was requested.

Remarks:

1) The first 2 lines (without the error-handling) can be replaced by this line:
http.ListenAndServe(“:8080”, http.HandlerFunc(HelloServer)

2) fmt.Fprint and more so fmt.Fprintf are good functions to use to write to the http.
ResponseWriter (which implements io.Writer).

For example: we could use
fmt.Fprintf(w, “<h1>%s</h1><div>%s</div>”, title, body)

to construct a very simple web page where the values title and body are inserted.

If you need to do more sophisticated substitutions, use the templating package (see § 15.7).

3) If you need the security of https, use http.ListenAndServeTLS() instead of http.

ListenAndServe()

4) Instead of http.HandleFunc(“/”, HFunc)

where HFunc is a handler function with the signature:

448

Ivo Balbaert

func HFunc(w http.ResponseWriter, req *http.Request) {

…

}

this form can also be used: http.Handle(“/”, http.HandlerFunc(HFunc))

HandlerFunc is just a type name for the signature above with definition:

type HandlerFunc func(ResponseWriter, *Request)

It is an adapter to allow the use of ordinary functions as HTTP handlers. If f is a function with the
appropriate signature, HandlerFunc(f) is a Handler object that calls f.

The 2nd argument to http.Handle can also be an object obj of type T: http.Handle(“/”, obj)

provided that T has a ServeHTTP method, implementing the Handler interface of http:

func (obj *Typ) ServeHTTP(w http.ResponseWriter, req *http.Request) {

 …

}

This is used in the webserver in §15.8 for the types Counter and Chan. So the package http serves
HTTP requests using any value that implements http.Handler.

Exercise 15.2: webhello2.go

Write a webserver which listens on port 9999, with the following handler functions:
i) When http://localhost:9999/hello/Name is requested, responds with: hello Name
 (where Name is a variable first name, like Chris or Madeleine)
ii) When http://localhost:9999/shouthello/Name is requested, responds with: hello NAME

Exercise 15.3: hello_server.go

Make an hello struct with no fields and let it implement http.Handler. Start a webserver and test
it out.

15.3 Polling websites and reading in a web page

In the following program all url’s in an array are polled: a simple http.Head() request is send to
them to see how they react; its signature is: func Head(url string) (r *Response, err error)

The Way to Go

449

The Status of the Response resp is printed.

Listing 15.7—poll_url.go:

package main

import (

 “fmt”

 “net/http”

)

var urls = []string{

 “http://www.google.com/”,

 “http://golang.org/”,

 “http://blog.golang.org/”,

}

func main() {

 // Execute an HTTP HEAD request for all url’s

 // and returns the HTTP status string or an error string.

 for _, url := range urls {

 resp, err := http.Head(url)

 if err != nil {

 fmt.Println(“Error:”, url, err)

 }

 fmt.Print(url, “: “, resp.Status)

 }

}

The output is:

http://www.google.com/ : 302 Found

http://golang.org/ : 200 OK

http://blog.golang.org/ : 200 OK

In the following program we show the html content of a web page with http.Get(); the response res
returned from Get has the content in a field Body, which is read with ioutil.ReadAll:

Listing 15.8—http_fetch.go:

package main

import (

 “fmt”

 “net/http”

 “io/ioutil”

450

Ivo Balbaert

 “log”

)

func main() {

 res, err := http.Get(“http://www.google.com”)

 CheckError(err)

 data, err := ioutil.ReadAll(res.Body)

 CheckError(err)

 fmt.Printf(“Got: %q”, string(data))

}

func CheckError(err error) {

 if err != nil {

 log.Fatalf(“Get: %v”, err)

 }

}

Here is a sample error output from CheckError when trying to read a non-existing web’s site
homepage:

2011/09/30 11:24:15 Get: Get http://www.google.bex: dial tcp www.google.bex:80:

GetHostByName: No such host is known.

In the following program we get the twitter-status of a certain user, and unmarshall its status via
the xml package into a struct:

Listing 15.9—twitter_status.go:

package main

import (

 “net/http”

 “fmt”

 “encoding/xml”

)

/* these structs will house the unmarshalled response.

 they should be hierarchically shaped like the XML

 but can omit irrelevant data. */

type Status struct {

 Text string

}

type User struct {

The Way to Go

451

 XMLName xml.Name

 Status Status

}

// var user User

func main() {

 // perform an HTTP request for the twitter status of user: Googland

 response, _ := http.Get(“http://twitter.com/users/Googland.xml”)

 // initialize the structure of the XML response

 user := User{xml.Name{“”, “user”}, Status{“”}}

 // unmarshal the XML into our structures

 xml.Unmarshal(response.Body, &user)

 fmt.Printf(“status: %s”, user.Status.Text)

}

/* Output:

status: Robot cars invade California, on orders from Google: Google has been testing

self-driving cars ... http://bit.ly/cbtpUN http://retwt.me/97p<exit code=”0”

msg=“process exited normally”/>

*/

Other useful functions in the http package which we will be using in § 15.4 are:

•	 http.Redirect(w ResponseWriter, r *Request, url string, code int): this redirects the
browser to url (can be a path relative to the request path) and a statuscode code.

•	 http.NotFound(w ResponseWriter, r *Request): this replies to the request with an HTTP
404 not found error.

•	 http.Error(w ResponseWriter, error string, code int): this replies to the request with
the specified error message and HTTP code.

•	 a	 useful	 field	 of	 an	http.Request object req is: req.Method, this is a string which
contains “GET” or “POST” according to how the web page was requested.

All HTTP status codes are defined as Go-constants, for example:
http.StatusContinue = 100

http.StatusOK = 200

http.StatusFound = 302

http.StatusBadRequest = 400

http.StatusUnauthorized = 401

http.StatusForbidden = 403

http.StatusNotFound = 404

http.StatusInternalServerError = 500

452

Ivo Balbaert

You can set the content header with w.Header().Set(“Content-Type”, “../..”)

e.g. when sending html-strings in a web application, execute w.Header().Set(“Content-Type”,
“text/html”) before writing the output (this is normally not necessary).

Exercise 15.4: Extend http_fetch.go so that the url is read in from the console, apply the console
input methods from §12.1 (http_fetch2.go).

Exercise 15.5: Fetch the twitter status in json-format and show the status, just like in Listing 15.9
(twitter_status_json.go)

15.4 Writing a simple web application

The following program starts a webserver on port 8088; the url /test1 will be handled by SimpleServer
which outputs hello world in the browser. The url /test2 will be handled by FormServer: if the url
is requested by the browser initially, then the request is of method GET, and the response is the
constant form, which contains the html for a simple input form with text box and submit button.
When entering something in the text box and clicking the button a POST request is issued. The
code for FormServer uses a switch to distinguish between the 2 possibilities. In the POST case
the content of the textbox with name inp is retrieved with: request.FormValue(“inp”) and written
back to the browser page. Start the program in a console and open a browser with the url http://
localhost:8088/test2 to test this program:

Listing 15.10—simple_webserver.go:

package main

import (

 “net/http”

 “io”

)

const form = `<html><body><form action=”#” method=“post” name=“bar”>

 <input type=“text” name=“in”/>

 <input type=“submit” value=“Submit”/>

 </form></html></body>`

/* handle a simple get request */

func SimpleServer(w http.ResponseWriter, request *http.Request) {

 io.WriteString(w, “<h1>hello, world</h1>”)

}

The Way to Go

453

/* handle a form, both the GET which displays the form

 and the POST which processes it.*/

func FormServer(w http.ResponseWriter, request *http.Request) {

 w.Header().Set(“Content-Type”, “text/html”)

 switch request.Method {

 case “GET”:

 /* display the form to the user */

 io.WriteString(w, form);

 case “POST”:

 /* handle the form data, note that ParseForm must

 be called before we can extract form data*/

 //request.ParseForm();

 //io.WriteString(w, request.Form[“in”][0])

 io.WriteString(w, request.FormValue(“in”))

 }

}

func main() {

 http.HandleFunc(“/test1”, SimpleServer)

 http.HandleFunc(“/test2”, FormServer)

 if err := http.ListenAndServe(“:8088”, nil); err != nil {

 panic(err)

 }

}

Remark: When using constant strings which represent html-text it is important to include the
<html><body>… </html></body>

to let the browser know it receives html.

Even safer is it to set the header with the content-type text/html before writing the response in the
handler: w.Header().Set(“Content-Type”, “text/html”)

The content-type the browser thinks it receives can be retrieved with the function:

http.DetectContentType([]byte(form))

Exercise 15.6: statistics.go

Develop a web application that lets the user put in a series of numbers, and that prints them out,
their number, the mean and the median, like in the following screen:

454

Ivo Balbaert

Fig 15.1—Screen of exercise 15.6

15.5 Making a web application robust

When a handler function in a web application panics our webserver simply terminates. This is not
good: a webserver must be a robust application, able to withstand what perhaps is a temporary
problem.

A first ideao could be to use defer/recover in every handler-function, but this would lead to much
duplication of code. Apply the error-handling scheme with closures from § 13.5 is a much more
elegant solution. We show this mechanism applied here to the simple webserver from the previous
§, but it can just as easily be applied in any webserver program.

To make the code more readable we create a function type for a page handler-function:

type HandleFnc func(http.ResponseWriter,*http.Request)

Our errorHandler function from §13.5 applied here becomes the function logPanics:

func logPanics(function HandleFnc) HandleFnc {

The Way to Go

455

 return func(writer http.ResponseWriter, request *http.Request) {

 defer func() {

 if x := recover(); x != nil {

 log.Printf(“[%v] caught panic: %v”, request.RemoteAddr, x)

 }

 }()

 function(writer, request)

 }

}

And we wrap our calls to the handler functions within logPanics:

http.HandleFunc(“/test1”, logPanics(SimpleServer))

http.HandleFunc(“/test2”, logPanics(FormServer))

The handler-functions then should contain panic calls, or a kind of check(error) function as in
§13.5; the complete code is listed here:

Listing 15.11—robust_webserver.go:

package main

import (

 “net/http”

 “io”

 “log”

)

type HandleFnc func(http.ResponseWriter,*http.Request)

// … same code as in listing 15.10

func main() {

 http.HandleFunc(“/test1”, logPanics(SimpleServer))

 http.HandleFunc(“/test2”, logPanics(FormServer))

 if err := http.ListenAndServe(“:8088”, nil); err != nil {

 panic(err)

 }

}

func logPanics(function HandleFnc) HandleFnc {

 return func(writer http.ResponseWriter, request *http.Request) {

456

Ivo Balbaert

 defer func() {

 if x := recover(); x != nil {

 log.Printf(“[%v] caught panic: %v”, request.RemoteAddr, x)

 }

 }()

 function(writer, request)

 }

}

15.6 Writing a web application with templates

The following program is a working web-application for a wiki, that is a collection of pages that
can be viewed, edited and saved, in under 100 lines of code. It is the codelab wiki tutorial from
the Go site, one of the best Go-tutorials I know of; it is certainly worthwhile to work through the
complete codelab to see and better understand how the program builds up(http://golang.org/doc/
codelab/wiki/). Here we will give a complementary description of the program in its totality, from
a top-down view. The program is a webserver, so it must be started on the command-line, let’s
say on port 8080. The browser can ask to view the content of a wiki-page with a url like: http://
localhost:8080/view/page1.

The text of this page is then read from a file and shown in the web page; this includes a hyperlink
to edit the wiki page (http://localhost:8080/edit/page1).The edit page shows the contents in a
textframe, the user can change the text and save it to its file with a submit button Save; then the
same page with the modified content is viewed. If the page that is asked for viewing does not exist
(e.g. http://localhost:8080/edit/page999), the program detects this and redirects immediately to
the edit-page, so that the new wiki-page can be made and saved.

The wiki-page needs a title and a text-content; it is modeled in the program by the following struct,
where the content is a slice of bytes named Body):

type Page struct {

Title string

Body []byte

}

In order to maintain our wiki-pages outside of the running program, we will use simple text-files
as persistent storage. The program and the necessary templates and text files can be found in the
map code_examples\chapter 15\wiki.

The Way to Go

457

Listing 15.12—wiki.go:

package main

import (

 “net/http”

 “io/ioutil”

 “log”

 “regexp”

 “text/template”

)

const lenPath = len(“/view/”)

var titleValidator = regexp.MustCompile(“^[a-zA-Z0-9]+$”)

var templates = make(map[string]*template.Template)

var err error

type Page struct {

 Title string

 Body []byte

}

func init() {

 for _, tmpl := range []string{“edit”, “view”} {

 templates[tmpl] = template.Must(template.ParseFiles(tmpl + “.html”)

 }

}

func main() {

 http.HandleFunc(“/view/”, makeHandler(viewHandler))

 http.HandleFunc(“/edit/”, makeHandler(editHandler))

 http.HandleFunc(“/save/”, makeHandler(saveHandler))

 err := http.ListenAndServe(“:8080”, nil)

 if err != nil {

 log.Fatal(“ListenAndServe: “, err.Error())

 }

}

func makeHandler(fn func(http.ResponseWriter, *http.Request, string)) http.

HandlerFunc {

 return func(w http.ResponseWriter, r *http.Request) {

458

Ivo Balbaert

 title := r.URL.Path[lenPath:]

 if !titleValidator.MatchString(title) {

 http.NotFound(w, r)

 return

 }

 fn(w, r, title)

 }

}

func viewHandler(w http.ResponseWriter, r *http.Request, title string) {

 p, err := load(title)

 if err != nil { // page not found

 http.Redirect(w, r, “/edit/” + title, http.StatusFound)

 return

 }

 renderTemplate(w, “view”, p)

}

func editHandler(w http.ResponseWriter, r *http.Request, title string) {

 p, err := load(title)

 if err != nil {

 p = &Page{Title: title}

 }

 renderTemplate(w, “edit”, p)

}

func saveHandler(w http.ResponseWriter, r *http.Request, title string) {

 body := r.FormValue(“body”)

 p := &Page{Title: title, Body: []byte(body)}

 err := p.save()

 if err != nil {

 http.Error(w, err.Error(), http.StatusInternalServerError)

 return

 }

 http.Redirect(w, r, “/view/” + title, http.StatusFound)

}

func renderTemplate(w http.ResponseWriter, tmpl string, p *Page) {

 err := templates[tmpl].Execute(w, p)

 if err != nil {

The Way to Go

459

 http.Error(w, err.Error(), http.StatusInternalServerError)

 }

}

func (p *Page) save() error {

 filename := p.Title + “.txt”

// file created with read-write permissions for the current user only

 return ioutil.WriteFile(filename, p.Body, 0600)

}

func load(title string) (*Page, error) {

 filename := title + “.txt”

 body, err := ioutil.ReadFile(filename)

 if err != nil {

 return nil, err

 }

 return &Page{Title: title, Body: body}, nil

}

Let us go through the code:

- First we import the necessary packages, http of course because we are going to construct a
webserver, but also io/ioutil for easy reading and writing of the files, regexp for validating
title-input, and template for dynamically creating our html-files; we use os for the errors.

- We want to stop hackers input which could harm our server, so we will check the user input
in the browser url (which is the title of the wiki-page) with the following regular expression:
var titleValidator = regexp.MustCompile(“^[a-zA-Z0-9]+$”)

 This will be controlled in the function makeHandler.
- We must have a mechanism to insert our Page structs into the title and content of a web page,

this is done as follows with the use of the template package:

i) first make the html-templatefile(s) in an editor, e.g. view.html:
<h1>{{.Title |html}}</h1>

<p>[edit]</p>

<div>{{printf “%s” .Body |html}}</div>

 the fields which are to be inserted from a data-structure are put between {{ }}, here {{.Title
|html}} and {{printf “%s” .Body |html}} from the Page struct (of course this can be very
complex html, but here it is simplified as much as possible to show the principle (for |html
and printf “%s” see the following §).

ii) The template.Must(template.ParseFiles(tmpl + “.html”)) function transforms this into a
*template.Template, for efficiency reasons we only do this parsing once in our program, the

460

Ivo Balbaert

init() function is a convenient place to do that. The template-objects are kept in memory
in a map indexed by the name of the html-file:

templates = make(map[string]*template.Template)

 This technique is called template caching and is a recommended best practice.
iii) In order to construct the page out of the template and the struct, we must use the function:

templates[tmpl].Execute(w, p)

 It is called upon a template, gets the Page-struct p to be substituted in the template as
a parameter, and writes to the ResponseWriter w. This function must be checked on its
error-output; in case there is a/n error we call http.Error to signal this. This code will be called
many times in our application, so we extract it into a separate function renderTemplate.

- In main() our webserver is started with ListenAndServe on port 8080; but as in §15.2
we first define some Handler functions for urls which start with view, edit and save after
localhost:8080/. In most webserver applications this forms a series of url-paths with
handler-functions, analogous to a routing table in MVC frameworks like Ruby and Rails,
Django or ASP.NET MVC. The request url is matched with these paths, the longer paths
match first; if not matched with anything else, the handler for / is called.

 Here we define 3 handlers, and because this setting up contains repetitive code, we isolate this
in a makeHandler function. This is a rather special higher-order function which is well worth
studying: it has a function as its first parameter, and it returns a function which is a closure:

func makeHandler(fn func(http.ResponseWriter, *http.Request, string))

http.HandlerFunc {

 return func(w http.ResponseWriter, r *http.Request) {

 title := r.URL.Path[lenPath:]

 if !titleValidator.MatchString(title) {

 http.NotFound(w, r)

 return

 }

 fn(w, r, title)

 }

}

- This closure takes the enclosing function variable fn in order to construct its return value; but
before that it validates the input title with titleValidator.MatchString(title). If the title
does not consist out of letters and digits, a NotFound error is signaled.

 (test this with e.g. localhost:8080/view/page++);viewhandler, edithandler and savehandler
which are the parameters for makeHandler in main() must all be of the same type as fn.

The Way to Go

461

- The viewhandler tries to read a text file with the given title; this is done through the load()
function which constructs the filename and reads the file with ioutil.ReadFile; if the file is
found its contents goes into a local string body. A pointer to a Page struct is made literally with
it: &Page{Title: title, Body: body}

 and this is returned to the caller together with nil for the error. The struct is then merged with
the template with renderTemplate.

In case of an error, which means the wiki-page does not yet exist on disk, the error is returned
to viewHandler(), where an automatic redirect is done to request an edit-page with that title.

- The edithandler is almost the same: try to load the file, if found render the edit-template with
it; in case of an error make a new Page object with that title and render it also.

- Saving of a page content is done through the Save-button in the edit-page; this button resides
in the html-form which starts with:
<form action=”/save/{{.Title}}” method=“POST”>

This means that when posting a request with a url of the form http://localhost/save/{Title}
(with the title substituted through the template) is sent to the webserver. For such a url we
have defined a handler function: saveHandler().With the FormValue() method of the request
it extracts the contents of the textarea-field named body, constructs a Page object with this info
and tries to store this page with the save() function. In case this fails an http.Error is returned
to be shown in the browser, when it succeeds the browser is redirected to viewing the same
page. The save() function is very simple: write the Body field of the Page struct in a file called
filename with the function ioutil.WriteFile(). It uses {{ printf “%s” .Body|html}}.

15.7 Exploring the template package

(The documentation for the template package is available at http://golang.org/pkg/template/)

In the preceding paragraph, we used templates to merge data from a (data) struct(ure)s with
html-templates. This is very useful indeed for building web applications, but the template
techniques are more general than this: data-driven templates can be made for generating textual
output, and HTML is only a special case of this.

A template is executed by merging it with a data structure, in many cases a struct or a slice of
structs. It rewrites a piece of text on the fly by substituting elements derived from data items passed
to templ.Execute(). Only the exported data items are available for merging with the template.
Actions can be data evaluations or control structures and are delimited by “{{” and “}}”. Data items
may be values or pointers; the interface hides the indirection.

462

Ivo Balbaert

15.7.1. Field substitution: {{.FieldName}}

To include the content of a field within a template, enclose it within double curly braces and add
a dot at the beginning, e.g. if Name is a field within a struct and its value needs to be substituted
while merging, then include the text {{.Name}} in the template; this also works when Name is
a key of a map.A new template is created with template.New whitch takes the template name
as a string parameter. As we have already encountered in § 15.5, the Parse methods generate a
template as an internal representation by parsing some template definition string, use ParseFile
when the parameter is the path to a file with the template definition. When there was a problem
with the parsing their second return parameter is an Error != nil. In the last step the content of
a datastructure is merged with the template through the Execute method, and written to its 1st
argument which is an io.Writer; again an error can be returned. This is illustrated in the following
program, where the output is written to the console through os.Stdout:

Listing 15.13—template_field.go:

package main

import (

 “os”

 “text/template”

)

type Person struct {

 Name string

}

func main() {

 t := template.New(“hello”)

 t, _ = t.Parse(“hello {{.Name}}!”)

 p := Person{Name:“Mary”, nonExportedAgeField: “31”} // data

 if err := t.Execute(os.Stdout, p); err != nil {

 fmt.Println(“There was an error:”, err.Error())

 }

}

// Output: hello Mary!

Our datastructure contains a non exported field, and when we try to merge this through a definition
string like

t, _ = t.Parse(“your age is {{.nonExportedAgeField}}!”)

The Way to Go

463

the following error occurs: There was an error: template: nonexported template hello:1: can’t
evaluate field nonExportedAgeField in type main.Person.

If you simply want to substitute the 2nd argument of Execute() use {{.}}

When this is being done in a browser context, first filter the content with the html filter, like
this: {{html .}} or with a field FieldName {{ .FieldName |html }}

the |html part asks the template engine to pass the value of FieldName through the htmlformatter
before outputting it, which escapes special HTML characters (such as replacing > with >). This
will prevent user data from corrupting the form HTML.

15.7.2. Validation of the templates

To check whether the template definition syntax is correct, use the Must function executed on the
result of the Parse. In the following example tOk is correct, tErr has a validation error and causes
a runtime panic!s

Listing 15.14—template_validation.go:

package main

import (

 “text/template”

 “fmt”

)

func main() {

 tOk := template.New(“ok”)

 //a valid template, so no panic with Must:

 template.Must(tOk.Parse(“/* and a comment */ some static text: {{ .Name

 }}”))

 fmt.Println(“The first one parsed OK.”)

 fmt.Println(“The next one ought to fail.”)

 tErr := template.New(“error_template”)

 template.Must(tErr.Parse(“ some static text {{ .Name }”))

}

/* Output:

The first one parsed OK.

The next one ought to fail.

panic: template: error_template:1: unexpected “}” in command

*/

464

Ivo Balbaert

Errors in template syntax should be uncommon, therefore use the defer/recover mechanism
outlined in § 13.3 to report this error and correct it.

It is common to see in code the 3 basic functions being chained, like:

var strTempl = template.Must(template.New(“TName”).Parse(strTemplateHTML))

Exercise 15.7: template_validation_recover.go

Implement the defer/recover mechanism in the example above.

15.7.3 If-else

The output from a template resulting from Execute contains static text, and text contained within
{{ }} which is called a pipeline. For example, running this code (program Listing 15.15 pipeline1.
go):

 t := template.New(“template test”)

 t = template.Must(t.Parse(“This is just static text. \n{{\“This is pipeline

data—because it is evaluated within the double braces.\”}} {{`So is this, but within

reverse quotes.`}}\n”))

 t.Execute(os.Stdout, nil)

gives this output:

This is just static text.

This is pipeline data—because it is evaluated within the double braces. So is this,

but within reverse quotes.

Now we can condition the output of pipeline data with if-else-end: if the pipeline is empty, like
in: {{if ``}} Will not print. {{end}}

then the if condition evaluates to false and nothing will be output, but with this:
{{if `anything`}} Print IF part. {{else}} Print ELSE part.{{end}}

Print IF part will be output. This is illustrated in the following program:

Listing 15.16—template_ifelse.go:

package main

import (

 “os”

The Way to Go

465

 “text/template”

)

func main() {

 tEmpty := template.New(“template test”)

 tEmpty = template.Must(tEmpty.Parse(“Empty pipeline if demo: {{if ``}}

 Will not print. {{end}}\n”)) //empty pipeline following if

 tEmpty.Execute(os.Stdout, nil)

 tWithValue := template.New(“template test”)

 tWithValue = template.Must(tWithValue.Parse(“Non empty pipeline if demo:

 {{if `anything`}} Will print. {{end}}\n”)) //non empty pipeline

 following if condition

 tWithValue.Execute(os.Stdout, nil)

 tIfElse := template.New(“template test”)

 //non empty pipeline following if condition

 tIfElse = template.Must(tIfElse.Parse(“if-else demo: {{if `anything`}}

 Print IF part. {{else}} Print ELSE part.{{end}}\n”))

 tIfElse.Execute(os.Stdout, nil)

}

/* Output:

Empty pipeline if demo:

Non empty pipeline if demo: Will print.

if-else demo: Print IF part.

*/

15.7.4 Dot and with-end

The dot (.) is used in Go templates: its value {{.}} is set to the current pipeline value.

The with statement sets the value of dot to the value of the pipeline. If the pipeline is empty, then
whatever is between the with-end block is skipped; when nested, the dot takes the value according
to closest scope. This is illustrated in the following program:

Listing 15.17—template_with_end.go:

package main

import (

 “os”

 “text/template”

466

Ivo Balbaert

)

func main() {

 t := template.New(“test”)

 t, _ = t.Parse(“{{with `hello`}}{{.}}{{end}}!\n”)

 t.Execute(os.Stdout, nil)

 t, _ = t.Parse(“{{with `hello`}}{{.}} {{with `Mary`}}{{.}}{{end}}

 {{end}}!\n”)

 t.Execute(os.Stdout, nil)

}

/* Output:

hello!

hello Mary!

*/

15.7.5 Template variables $

You can create local variables for the pipelines within the template by prefixing the variable name
with a “$” sign. Variable names have to be composed of alphanumeric characters and the underscore.
In the example below I have used a few variations that work for variable names.

Listing 15.18—template_variables.go:
package main
import (
 “os”
 “text/template”
)

func main() {
 t := template.New(“test”)
 t = template.Must(t.Parse(“{{with $3 := `hello`}}{{$3}}{{end}}!\n”))
 t.Execute(os.Stdout, nil)

 t = template.Must(t.Parse(“{{with $x3 := `hola`}}{{$x3}}{{end}}!\n”))
 t.Execute(os.Stdout, nil)

 t = template.Must(t.Parse(“{{with $x_1 := `hey`}}{{$x_1}} {{.}} {{$x_1}}
 {{end}}!\n”))
 t.Execute(os.Stdout, nil)
}

/* Output:

hello!

The Way to Go

467

hola!

hey hey hey!*/

15.7.6 Range-end

This construct has the format: {{range pipeline}} T1 {{else}} T0 {{end}}

range is used for looping over collections: the value of the pipeline must be an array, slice, or map.
If the value of the pipeline has length zero, dot is unaffected and T0 is executed; otherwise, dot is
set to the successive elements of the array, slice, or map and T1 is executed.

If t is the template: {{range .}}

{{.}}

{{end}}

then this code: s := []int{1,2,3,4}

t.Execute(os.Stdout, s)

will output: 1

2

3

4

For a more useful example, see § 20.7 where data from the App Engine datastore is shown through
a template with:

 {{range .}}

 {{with .Author}}

 <p>{{html .}} wrote:</p>

 {{else}}

 <p>An anonymous person wrote:</p>

 {{end}}

 <pre>{{html .Content}}</pre>

 <pre>{{html .Date}}</pre>

 {{end}}

range . here loops over a slice of structs, each containing an Author, Content and Date field.

15.7.7 Predefined template functions

There are also a few predefined template functions that you can use within your code, e.g.
the printf function which works similar to the function fmt.Sprintf:

468

Ivo Balbaert

Listing 15.19—predefined_functions.go:

package main

import (

 “os”

 “text/template”

)

func main() {

 t := template.New(“test”)

 t = template.Must(t.Parse(“{{with $x := `hello`}}{{printf `%s %s` $x

 `Mary`}}{{end}}!\n”))

 t.Execute(os.Stdout, nil)

}

// hello Mary!

This was also used in §15.6: {{ printf “%s” .Body|html}}

otherwise the bytes of Body are printed out as numbers.

15.8 An elaborated webserver with different functions

To further deepen your understanding of the http-package and how to build webserver functionality,
study and experiment with the following example: first the code is listed, then the usage of the
different functionalities of the program and its output are shown in a table.

Listing 15.20—elaborated_webserver.go:

package main

import (

 “bytes”

 “expvar”

 “flag”

 “fmt”

 “net/http”

 “io”

 “log”

 “os”

 “strconv”

)

// hello world, the web server

var helloRequests = expvar.NewInt(“hello-requests”)

The Way to Go

469

// flags:

var webroot = flag.String(“root”, “/home/user”, “web root directory”)

// simple flag server

var booleanflag = flag.Bool(“boolean”, true, “another flag for testing”)

// Simple counter server. POSTing to it will set the value.

type Counter struct {

 n int

}

// a channel

type Chan chan int

func main() {

 flag.Parse()

 http.Handle(“/”, http.HandlerFunc(Logger))

 http.Handle(“/go/hello”, http.HandlerFunc(HelloServer))

 // The counter is published as a variable directly.

 ctr := new(Counter)

 expvar.Publish(“counter”, ctr)

 http.Handle(“/counter”, ctr)

 http.Handle(“/go/”, http.StripPrefix(“/go/”, http.FileServer(http.

 Dir(*webroot))))

 http.Handle(“/flags”, http.HandlerFunc(FlagServer))

 http.Handle(“/args”, http.HandlerFunc(ArgServer))

 http.Handle(“/chan”, ChanCreate())

 http.Handle(“/date”, http.HandlerFunc(DateServer))

 err := http.ListenAndServe(“:12345”, nil)

 if err != nil {

 log.Panicln(“ListenAndServe:”, err)

 }

}

func Logger(w http.ResponseWriter, req *http.Request) {

 log.Print(req.URL.String())

 w.WriteHeader(404)

 w.Write([]byte(“oops”))

}

func FlagServer(w http.ResponseWriter, req *http.Request) {

470

Ivo Balbaert

 w.Header().Set(“Content-Type”, “text/plain; charset=utf-8”)

 fmt.Fprint(w, “Flags:\n”)

 flag.VisitAll(func(f *flag.Flag) {

 if f.Value.String() != f.DefValue {

 fmt.Fprintf(w, “%s = %s [default = %s]\n”, f.Name, f.Value.

 String(), f.DefValue)

 } else {

 fmt.Fprintf(w, “%s = %s\n”, f.Name, f.Value.String())

 }

 })

}

// simple argument server

func ArgServer(w http.ResponseWriter, req *http.Request) {

 for _, s := range os.Args {

 fmt.Fprint(w, s, “ ”)

 }

}

func HelloServer(w http.ResponseWriter, req *http.Request) {

 helloRequests.Add(1)

 io.WriteString(w, “hello, world!\n”)

}

// This makes Counter satisfy the expvar.Var interface, so we can export

// it directly.

func (ctr *Counter) String() string { return fmt.Sprintf(“%d”, ctr.n) }

func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {

 switch req.Method {

 case “GET”: // increment n

 ctr.n++

 case “POST”: // set n to posted value

 buf := new(bytes.Buffer)

 io.Copy(buf, req.Body)

 body := buf.String()

 if n, err := strconv.Atoi(body); err != nil {

 fmt.Fprintf(w, “bad POST: %v\nbody: [%v]\n”, err, body)

 } else {

 ctr.n = n

The Way to Go

471

 fmt.Fprint(w, “counter reset\n”)

 }

 }

 fmt.Fprintf(w, “counter = %d\n”, ctr.n)

}

func ChanCreate() Chan {

 c := make(Chan)

 go func(c Chan) {

 for x := 0; ; x++ {

 c <- x

 }

 }(c)

 return c

}

func (ch Chan) ServeHTTP(w http.ResponseWriter, req *http.Request) {

 io.WriteString(w, fmt.Sprintf(“channel send #%d\n”, <-ch))

}

// exec a program, redirecting output

func DateServer(rw http.ResponseWriter, req *http.Request) {

 rw.Header().Set(“Content-Type”, “text/plain; charset=utf-8”)

 r, w, err := os.Pipe()

 if err != nil {

 fmt.Fprintf(rw, “pipe: %s\n”, err)

 return

 }

p, err := os.StartProcess(“/bin/date”, []string{“date”}, &os.ProcAttr{Files:

[]*os.File{nil, w, w}})

 defer r.Close()

 w.Close()

 if err != nil {

 fmt.Fprintf(rw, “fork/exec: %s\n”, err)

 return

 }w

 defer p.Release()

 io.Copy(rw, r)

 wait, err := p.Wait(0)

472

Ivo Balbaert

 if err != nil {

 fmt.Fprintf(rw, “wait: %s\n”, err)

 return

 }

 if !wait.Exited() || wait.ExitStatus() != 0 {

 fmt.Fprintf(rw, “date: %v\n”, wait)

 return

 }

}

handler /call with url: response in browser

Logger: http://localhost:12345/ (root) oops

The Logger prints a 404 Not Found header with w.WriteHeader(404).

This technique is generally useful, whenever an error is encountered in the web processing code, it
can be applied like this: if err != nil {

 w.WriteHeader(400)

 return

 }

It also prints date + time through the logger function and the url for each request on the command
window of the webserver

HelloServer: http://localhost:12345/go/hello hello, world!

The package expvar makes it possible to create variables (of types Int, Float, String) and make them
public by publishing them. It exposes these variables via HTTP at /debug/vars in JSON format. It
is typically used for e.g. operation counters in servers; helloRequests is such an int64 variable, this
handler adds 1 to it, and then writes “hello, world!” to the browser.

Counter: http://localhost:12345/counter counter = 1
refresh (= GET) counter = 2

The counter object ctr has a String() method and thus implements the Var interface. This makes
it publishable, although it is a struct. The function ServeHTTP is a handler for ctr because it has
the right signature.

The Way to Go

473

FileServer: http://localhost:12345/go/ggg.html 404 page not found

FileServer returns a handler that serves HTTP requests with the contents of the file system rooted
at root. To use the operating system’s file system, use http.Dir, as in:

http.Handle(“/go/”, http.FileServer(http.Dir(“/tmp”)))

FlagServer: http://localhost:12345/flags
Flags: boolean = true root = /home/rsc

This handler uses the flag.VisitAll function to loop through all the flags, prints their name, value
and default value (if different from value).

ArgServer: http://localhost:12345/args ./elaborated_webserver.exe

This handler loops through os.Args to prints out all command-line arguments; if there are none
only the program name (the path to the executable) is printed.

Channel: http://localhost:12345/chan channel send #1
Refresh: channel send #2

The channel’s ServeHTTP method shows the next integer from the channel at each new request.
So a webserver can take its response from a channel, populated by another function (or even a
client). The following snippet shows a handler function which does exactly that, but also times out
after 30 s:

func ChanResponse(w http.ResponseWriter, req *http.Request) {

 timeout := make (chan bool)

 go func () {

 time.Sleep(30e9)

 timeout <- true

 }()

 select {

 case msg := <-messages:

 io.WriteString(w, msg)

 case stop := <-timeout:

 return

 }

}

474

Ivo Balbaert

DateServer: http://localhost:12345/date shows current datetime
(works only on Unix because calls /bin/date)

Possible output: Thu Sep 8 12:41:09 CEST 2011

os.Pipe() returns a connected pair of Files; reads from r, and returns bytes written to w. It returns
the files and an error, if any: func Pipe() (r *File, w *File, err error)

15.9 Remote procedure calls with rpc

Go programs can communicate with each other through the net/rpc-package, so this is another
application of the client-server paradigm. It provides a convenient means of making function
calls over a network connection. Of course this is only useful when the programs run on different
machines. The rpc package builds on gobs (see § 12.11) to turn its encode/decode automation into
transport for method calls across the network.

A server registers an object, making it visible as a service with the type-name of the object: this
provides access to the exported methods of that object across a network or other I/O connection
for remote clients. It is all about exposing methods on types over a network.

The package uses the http- and tcp-protocol, and the gob package for data-transport. A server may
register multiple objects (services) of different types but it is an error to register multiple objects of
the same type.

Here we discuss a simple example: we define a type Args and a method Multiply on it, preferably
in its own package; the methods have to return a possible error

Listing 15.21—rpc_objects.go:

package rpc_objects

import “net”

type Args struct {

 N, M int

}

func (t *Args) Multiply(args *Args, reply *int) net.Error {

 *reply = args.N * args.M

 return nil

}

The Way to Go

475

The server makes an object calc of that type and registers it with rpc.Register(object), calls
HandleHTTP(), and starts listening with net.Listen on an address. You can also register the object
by name like: rpc.RegisterName(“Calculator”, calc)

For every listener that comes in, a goroutine http.Serve(listener, nil) is started, creating a new service
thread for each incoming HTTP-connection. We have to keep the server awake for a specified
period with e.g. time.Sleep(1000e9).

Listing 15.22—rpc_server.go:

package main

import (

 “net/http”

 “log”

 “net”

 “net/rpc”

 “time”

 “./rpc_objects”

)

func main() {

 calc := new(rpc_objects.Args)

 rpc.Register(calc)

 rpc.HandleHTTP()

 listener, e := net.Listen(“tcp”, “localhost:1234”)

 if e != nil {

 log.Fatal(“Starting RPC-server -listen error:”, e)

 }

 go http.Serve(listener, nil)

 time.Sleep(1000e9)

}

/* Output:

Starting Process E:/Go/GoBoek/code_examples/chapter_14/rpc_server.exe ...

** after 5 s: **

End Process exit status 0

*/

The client has to know the definition of the object type and its methods. It calls rpc.DialHTTP(),
and when the connection client is made, can invoke remote methods upon it with client.Call(“Type.
Method”, args, &reply), where Type and Method is the remotely defined Type and the Method

476

Ivo Balbaert

you want to call, args is an initialized object of that type, and reply is a variable which has to be
declared before and in which the result of the method call will be stored.

Listing 15.23—rpc_client.go:

package main

import (

 “fmt”

 “log”

 “net/rpc”

 “./rpc_objects”

)

const serverAddress = “localhost”

func main() {

 client, err := rpc.DialHTTP(“tcp”, serverAddress + “:1234”)

 if err != nil {

 log.Fatal(“Error dialing:”, err)

 }

 // Synchronous call

 args := &rpc_objects.Args{7, 8}

 var reply int

 err = client.Call(“Args.Multiply”, args, &reply)

 if err != nil {

 log.Fatal(“Args error:”, err)

 }

 fmt.Printf(“Args: %d * %d = %d”, args.N, args.M, reply)

}

First start the server, and then a client process: this then gets the following result:

/* Output:

Starting Process E:/Go/GoBoek/code_examples/chapter_14/rpc_client.exe ...

Args: 7 * 8 = 56

End Process exit status 0

*/

This call is synchronous, so waits for the result to come back. An asynchronous call can be made
as follows: call1 := client.Go(“Args.Multiply”, args, &reply, nil)

replyCall := <- call1.Done

The Way to Go

477

If the last argument has value nil, a new channel will be allocated when the call is complete.

If you have a Go server running as root and want to run some of your code as a different user, the
package go-runas by Brad Fitz uses the rpc package to accomplish just that: https://github.com/
bradfitz/go-runas. We will see an application of rpc in a full fledged project in chapter 19.

15.10 Channels over a network with netchan

Remark: The Go team decided to improve and rework the existing version of the package
netchan. This package has been moved to old/netchan, and the old/ package hierarchy, which
holds deprecated code, will not be part of Go 1. This § discusses the concept of the netchan
package for backward compatibility reasons.

A technique closely related to rpc is the usage of channels over a network. The channels as used
in chapter 14 are local, they exist only in the memory space of the machine on which they are
executed. The package netchan implements type-safe networked channels: it allows the two ends
of a channel to appear on different computers connected by a network. It does this by transporting
data sent to a channel on one machine so it can be received by a channel of the same type on the
other computer. An exporter publishes a (set of) channel(s) by name. An importer connects to the
exporting machine and imports the channel(s) by name. After importing the channel(s), the two
machines can use the channel(s) in the usual way. Networked channels are not synchronized, they
act like buffered channels.

On the sending machine, the code goes schematically like this:

exp, err := netchan.NewExporter(“tcp”, “netchanserver.mydomain.com:1234”)

if err != nil {

 log.Fatalf(“Error making Exporter: %v”, err)

}

ch := make(chan myType)

err := exp.Export(“sendmyType”, ch, netchan.Send)

if err != nil {

 log.Fatalf(“Send Error: %v”, err)

}

And on the receiving side:

imp, err := netchan.NewImporter(“tcp”, “netchanserver.mydomain.com:1234”)

if err != nil {

 log.Fatalf(“Error making Importer: %v”, err)

478

Ivo Balbaert

}

ch := make(chan myType)

err = imp.Import(“sendmyType”, ch, netchan.Receive)

if err != nil {

 log.Fatalf(“Receive Error: %v”, err)

}

15.11 Communication with websocket

Remark: The Go team decided for Go 1 to move the package websocket out of the Go
standard library to the subrepository websocket of code.google.com/p/go. It is also expected to
change significantly in the near future.

The line import “websocket” will then become:
import websocket “code.google.com/p/go/websocket”

The websocket protocol in contrast to the http-protocol is based upon a lasting connection between
client and server throughout their dialogue, but otherwise it functions in almost the same way as
http. In Listing 15.24 we have a typical websocket server, which is started on its own and listens to
websocket-clients dialing in. Listing 15.25 shows code for such a client that terminates after 5 s.
When the connection comes in, the server first prints: new connection; when the client stops, the
server prints: EOF => closing connection

Listing 15.24—websocket_server.go:

package main

import (

 “fmt”

 “net/http”

 “websocket”

)

func server(ws *websocket.Conn) {

 fmt.Printf(“new connection\n”)

 buf := make([]byte, 100)

 for {

 if _, err := ws.Read(buf); err != nil {

 fmt.Printf(“%s”, err.Error())

 break

 }

 }

The Way to Go

479

 fmt.Printf(“ => closing connection\n”)

 ws.Close()

}

func main() {

 http.Handle(“/websocket”, websocket.Handler(server))

 err := http.ListenAndServe(“:12345”, nil)

 if err != nil {

 panic(“ListenAndServe: “ + err.Error())

 }

}

Listing 15.25—websocket_client.go:

package main

import (

 “fmt”

 “time”

 “websocket”

)

func main() {

 ws, err := websocket.Dial(“ws://localhost:12345/websocket”, “”,

 “http://localhost/”)

 if err != nil {

 panic(“Dial: “ + err.Error())

 }

 go readFromServer(ws)

 time.Sleep(5e9)

 ws.Close()

}

func readFromServer(ws *websocket.Conn) {

 buf := make([]byte, 1000)

 for {

 if _, err := ws.Read(buf); err != nil {

 fmt.Printf(“%s\n”, err.Error())

 break

 }

 }

}

480

Ivo Balbaert

15.12 Sending mails with smtp

The package smtp implements the Simple Mail Transfer Protocol for sending mails. It contains a
type Client that represents a client connection to an SMTP server:

•	 Dial	returns	a	new	Client	connected	to	an	SMTP	server
•	 Set	Mail	(=from)	and	Rcpt	(=	to)
•	 Data	returns	a	writer	that	can	be	used	to	write	the	data,	here	with	buf.WriteTo(wc)

Listing 15.26—smtp.go:

package main

import (

 “bytes”

 “log”

 “net/smtp”

)

func main() {

 / Connect to the remote SMTP server.

 client, err := smtp.Dial(“mail.example.com:25”)

 if err != nil {

 log.Fatal(err)

 }

 // Set the sender and recipient.

 client.Mail(“sender@example.org”)

 client.Rcpt(“recipient@example.net”)

 // Send the email body.

 wc, err := client.Data()

 if err != nil {

 log.Fatal(err)

 }

 defer wc.Close()

 buf := bytes.NewBufferString(“This is the email body.”)

 if _, err = buf.WriteTo(wc); err != nil {

 log.Fatal(err)

 }

}

The Way to Go

481

The function SendMail can be used if authentication is needed and when you have a number of
recipients. It connects to the server at addr, switches to TLS (Transport Layer Security encryption
and authentication protocol) if possible, authenticates with mechanism a if possible, and then
sends an email from address from, to addresses to, with message msg:

func SendMail(addr string, a Auth, from string, to []string, msg []byte) error

Listing 15.27—smtp_auth.go:
package main
import (
 “log”
 “smtp”
)

func main() {
 // Set up authentication information.
 auth := smtp.PlainAuth(
 “”,
 “user@example.com”,
 “password”,
 “mail.example.com”,
)
 // Connect to the server, authenticate, set the sender and recipient,
 // and send the email all in one step.
 err := smtp.SendMail(
 “mail.example.com:25”,
 auth,
 “sender@example.org”,
 []string{“recipient@example.net”},
 []byte(“This is the email body.”),
)
 if err != nil {
 log.Fatal(err)
 }
}

PART 4
aPPLyInG Go

485

Chapter 16—Common Go Pitfalls or Mistakes

In the previous text we sometimes warned with !! … !! for Go misuses. So be sure to look for the
specific section in the book on that subject when you encounter a difficulty in a coding situation
like that. Here is an overview of pitfalls for your convenience, refering to where you can find more
explanations and examples:

•	 Never	use	var	p*a	to	not	confuse	pointer	declaration	and	multiplication	(§	4.9)
•	 Never	change	the	counter-variable	in	the	for-loop	itself	(§	5.4)
•	 Never	use	the	value	in	a	for-range	loop	to	change	the	value	itself	(§	5.4.4)
•	 Never	use	goto	with	a	preceding	label	(§	5.6)
•	 Never	forget	()	after	a	function-name	(chapter	6),	specifically	when	calling	a	method on a

receiver or invoking a lambda function as a goroutine
•	 Never	use	new()	with	maps	(§	8.1),	always	make
•	 When	coding	a	String()	method	 for	a	 type,	don’t	use	 fmt.Print	or	alike	 in	 the	code	 (§	

10.7)
•	 Never	forget	to	use	Flush()	when	terminating	buffered	writing	(§	12.2.3)
•	 Never	ignore	errors,	ignoring	them	can	lead	to	program	crashes	(§	13.1)
•	 Do	not	use	global	variables	or	shared	memory,	they	make	your	code	unsafe	for	running	

concurrently (§ 14.1)
•	 Use	println	only	for	debugging purposes

Best practices: In contrast use the following:

Initialize a slice of maps the right way (§ 8.1.3).•	
Always use the comma, ok (or checked) form for type assertions (§ 11.3).•	
Make and initialize your types with a factory (§10.2-§18.4).•	
Use a pointer as receiver for a method on a struct only when the method modifies the •	
structure, otherwise use a value (§ 10.6.3).

In this chapter we assemble some of the most common mistakes or do-not’s in Go-programming.
We often refer to the full explanation and examples in previous chapters. Read the paragraph titles
as what you should not do!

486

Ivo Balbaert

16.1 Hiding (shadowing) a variable by misusing short declaration.

var remember bool = false

if something {

 remember := true // Wrong.

}

// use remember

In the previous code-snippet the variable remember will never become true outside of the if-body.
If something is true, inside the if-body a new remember variable which hides the outer remember
is declared because of :=, and there it will be true. But after the closing } of if remember regains its
outer value false. So write it as:

if something {

 remember = true

}

This can also occur with a for-loop, and can be particularly subtle in functions with named return
variables, as the following snippet shows:

func shadow() (err error) {

 x, err := check1() // x is created; err is assigned to

 if err != nil {

 return // err correctly returned

 }

 if y, err := check2(x); err != nil { // y and inner err are created

 return // inner err shadows outer err so nil is wrongly returned!

 } else {

 fmt.Println(y)

 }

 return

}

16.2 Misusing strings.

When you need to do a lot of manipulations on a string, mind that strings in Go (like in Java
and C#) are immutable. String concatenations of the kind a += b are inefficient, especially when
performed inside a loop. They cause numerous reallocations and copying of memory. Instead one
should use a bytes.Buffer to accumulate string content, like in the following snippet:

The Way to Go

487

var b bytes.Buffer

...

for condition {

 b.WriteString(str) // appends string str to the buffer

}

return b.String()

Remark: Due to compiler-optimizations and depending on the size of the strings using a
Buffer only starts to become more efficient when the number of iterations is > 15.

16.3 Using defer for closing a file in the wrong scope.

Suppose you are processing a range of files in a for-loop, and you want to make sure the files are
closed after processing by using defer, like this:

for _, file := range files {

 if f, err = os.Open(file); err != nil {

 return

 }

 // This is /wrong/. The file is not closed when this loop iteration ends.

 defer f.Close()

 // perform operations on f:

 f.Process(data)

}

But at the end of the for-loop defer is not executed, so the files are not closed! Garbage collection
will probably close them for you, but it can yield errors. Better do it like this:

for _, file := range files {

 if f, err = os.Open(file); err != nil {

 return

 }

 // perform operations on f:

 f.Process(data)

 // close f:

 f.Close()

}

Defer is only executed at the return of a function, not at the end of a loop or some other limited scope.

488

Ivo Balbaert

16.4 Confusing new() and make()

We have talked about this and illustrated it with code already at great length in § 7.2.4 and §
10.2.2. The point is:

•	 for	slices,	maps	and	channels:	use	make
•	 for	arrays,	structs	and	all	value	types:	use	new

16.5 No need to pass a pointer to a slice to a function

A slice, as we saw in § 4.9, is a pointer to an underlying array. Passing a slice as a parameter to a
function is probably what you always want: namely passing a pointer to a variable to be able to
change it, and not passing a copy of the data.

So you want to do this:
func findBiggest(listOfNumbers []int) int {}

not this:
func findBiggest(listOfNumbers *[]int) int {}

Do not dereference a slice when used as a parameter!

16.6 Using pointers to interface types

Look at the following program: nexter is an interface with a method next() meaning read the next
byte. nextFew1 has this interface type as parameter and reads the next num bytes, returning them
as a slice: this is ok. However nextFew2 uses a pointer to the interface type as parameter: when
using the next() function, we get a clear compile error: n.next undefined (type *nexter has no

field or method next)

Listing 16.1 pointer_interface.go (does not compile!):

package main

import (

 “fmt”

)

type nexter interface {

 next() byte

}

func nextFew1(n nexter, num int) []byte {

The Way to Go

489

 var b []byte

 for i:=0; i < num; i++ {

 b[i] = n.next()

 }

 return b

}

func nextFew2(n *nexter, num int) []byte {

 var b []byte

 for i:=0; i < num; i++ {

b[i] = n.next() // compile error:

 // n.next undefined (type *nexter has no field or method next)

 }

 return b

}

func main() {

 fmt.Println(“Hello World!”)

}

So never use a pointer to an interface type, this is already a pointer!

16.7 Misusing pointers with value types

Passing a value as a parameter in a function or as receiver to a method may seem a misuse of
memory, because a value is always copied. But on the other hand values are allocated on the
stack, which is quick and relatively cheap. If you would pass a pointer to the value instead the Go
compiler in most cases will see this as the making of an object, and will move this object to the
heap, so also causing an additional memory allocation: therefore nothing was gained in using a
pointer instead of the value!

16.8 Misusing goroutines and channels

For didactic reasons and for gaining insight into their working, a lot of the examples in chapter 14
applied goroutines and channels in very simple algorithms, for example as a generator or iterator.
In practice often you don’t need the concurrency, or you don’t need the overhead of the goroutines
with channels, passing parameters using the stack is in many cases far more efficient.

Moreover it is likely to leak memory if you break or return or panic your way out of the loop,
because the goroutine then blocks in the middle of doing something. In real code, it is often
better to just write a simple procedural loop. Use goroutines and channels only where concurrency is
important!

490

Ivo Balbaert

16.9 Using closures with goroutines

Look at the following code:

Listing 16.2 closures_goroutines.go:

package main

import (

 “fmt”

 “time”

)

var values = [5]int{10, 11, 12, 13, 14}

func main() {

 // version A:

 for ix := range values { // ix is the index

 func() {

 fmt.Print(ix, “ ”)

 }() // call closure, prints each index

 }

 fmt.Println()

 // version B: same as A, but call closure as a goroutine

 for ix := range values {

 go func() {

 fmt.Print(ix, “ ”)

 }()

 }

 fmt.Println()

 time.Sleep(5e9)

 // version C: the right way

 for ix := range values {

 go func(ix interface{}) {

 fmt.Print(ix, “ ”)

 }(ix)

 }

 fmt.Println()

 time.Sleep(5e9)

 // version D: print out the values:

 for ix := range values {

The Way to Go

491

 val := values[ix]

 go func() {

 fmt.Print(val, “ ”)

 }()

 }

 time.Sleep(1e9)

}

/* Output: 0 1 2 3 4

 4 4 4 4 4

 1 0 3 4 2

 10 11 12 13 14

*/

Version A calls 5 times a closure which prints the value of the index, version B does the same but
invokes each closure as a goroutine, argumenting that this would be faster because the closures
execute in parallel. If we leave enough time for all goroutines to execute, the output of version B is:
4 4 4 4 4 . Why is this ? The ix variable in the above loop B is actually a single variable that takes
on the index of each array element. Because the closures are all only bound to that one variable,
there is a very good chance that when you run this code you will see the last index (4) printed for
every iteration instead of each index in sequence, because the goroutines will probably not begin
executing until after the loop, when ix has got the value 4.

The right way to code that loop is version C: invoke each closure with ix as a parameter. ix is then
evaluated at each iteration and placed on the stack for the goroutine, so each index is available to
the goroutine when it is eventually executed. Note that the output can be 0 2 1 3 4 or 0 3 1 2 4
or . . . , depending on when each of the goroutines can start.

In version D we print out the values of the array; why does this work and version B does not ?

Because variables declared within the body of a loop (as val here) are not shared between iterations,
and thus can be used separately in a closure.

16.10 Bad error handling

Stick to the patterns described in chapter 13 and summarized in §17.1 and § 17.2 (4).

16.10.1 Don’t use booleans:

Making a boolean variable whose value is a test on the error-condition like in the following is
superfluous: var good bool

492

Ivo Balbaert

// test for an error, good becomes true or false

if !good {

 return errors.New(“things aren’t good”)

}

Test on the error immediately: ... err1 := api.Func1()

if err1 != nil { … }

16.10.2 Don’t clutter your code with error-checking:

Avoid writing code like this: ... err1 := api.Func1()

if err1 != nil {

 fmt.Println(“err: “ + err.Error())

 return

}

err2 := api.Func2()

if err2 != nil {

...

 return

}

First include the call to the functions in an initialization statement of the if ’s.

But even then the errors are reported (by printing them) with if-statements scattered throughout
the code. With this pattern, it is hard to tell what is normal program logic and what is error
checking/reporting. Also notice that most of the code is dedicated to error conditions at any point
in the code. A good solution is to wrap your error conditions in a closure wherever possible, like
in the following example:

func httpRequestHandler(w http.ResponseWriter, req *http.Request) {

 err := func () error {

 if req.Method != “GET” {

 return errors.New(“expected GET”)

 }

 if input := parseInput(req); input != “command” {

 return errors.New(“malformed command”)

 }

 // other error conditions can be tested here

The Way to Go

493

 } ()

 if err != nil {

 w.WriteHeader(400)

 io.WriteString(w, err)

 return

 }

 doSomething() ...

This approach clearly separates the error checking, error reporting, and normal program logic (for
a more elaborated treatment see § 13.5).

Answer the following questions before starting to read Chapter 17:

Question 16.1: Sum up all occurrences of the comma,ok pattern you can remember.
Question 16.2: Sum up all occurrences of the defer pattern you can remember.

494

Chapter 17—Go Language Patterns

17.1 The comma, ok pattern

While studying the Go-language in parts 2 and 3, we encountered several times the so called
comma, ok Idiom: an expression returns 2 values, the first of which is a value or nil, and the second
is true/false or an error. An if-condition with initialization and then testing on the second-value
leads to succinct and elegant code. This is a very important pattern in idiomatic Go-code. Here are
all cases summarized:

(1) Testing for errors on function return (§ 5.2):

if value, err := pack1.Func1(param1); err != nil {

fmt.Printf(“Error %s in pack1.Func1 with parameter %v”, err.Error(), param1)

 return err

 }

// no error in Func1:

 Process(value)

e.g.: os.Open(file) strconv.Atoi(str)

The function in which this code occurs returns the error to the caller, giving it the value nil
when the normal processing was successful and so has the signature:

func SomeFunc() error {

 …

 if value, err := pack1.Func1(param1); err != nil {

 …

 return err

 }

 …

 return nil

}

The Way to Go

495

The same pattern is used when recovering from a panic with defer (see §17.2 (4)).

A good pattern for clean error checking is using closures, see § 16.10.2

(2) Testing if a key-value item exists in a map (§ 8.2): does map1 have a value for key1?

if value, isPresent = map1[key1]; isPresent {

 Process(value)

}

// key1 is not present

…

(3) Testing if an interface variable varI is of type T: type-assertions (§ 11.3):

if value, ok := varI.(T); ok {

 Process(value)

}

// varI is not of type T

(4) Testing if a channel ch is closed (§ 14.3):

for input := range ch {

Process(input)

}

or:

for {

 if input, open := <-ch; !open {

 break // channel is closed

 }

 Process(input)

}

17.2 The defer pattern

Using defer ensures that all resources are properly closed or given back to the ‘pool’ when the
resources are not needed anymore. Secondly it is paramount to recover from panicking.

496

Ivo Balbaert

(1) Closing a file stream: (see § 12.7)

// open a file f

defer f.Close()

(2) Unlocking a locked resource (a mutex): (see §9.3)

mu.Lock()

defer mu.Unlock()

(3) Closing a channel (if necessary):

ch := make(chan float64)

defer close(ch)

or with 2 channels:

answerα, answerβ := make(chan int), make(chan int)

defer func() { close(answerα); close(answerβ) }()

(4) Recovering from a panic: (see §13.3)

defer func() {

 if err := recover(); err != nil {

 log.Printf(“run time panic: %v”, err)

}

(5) Stopping a Ticker: (see §14.5)

tick1 := time.NewTicker(updateInterval)

defer tick1.Stop()

(6) Release of a process p: (see §13.6)

p, err := os.StartProcess(…, …, …)

defer p.Release()

(7) Stopping CPUprofiling and flushing the info: (see § 13.10)

pprof.StartCPUProfile(f)

The Way to Go

497

defer pprof.StopCPUProfile()

It can also be used for not forgetting to print a footer in a report.

17.3 The visibility pattern

In § 4.2.1 we saw how the simple Visibility rule dictates the access-mode to types, variables and
functions in Go. § 10.2.1 showed how you can make the use of the Factory function mandatory
when defining types in separate packages.

17.4 The operator pattern and interface

An operator is a unary or binary function which returns a new object and does not modify its
parameters, like + and *. In C++, special infix operators (+, -, *, etc) can be overloaded to support
math-like syntax, but apart from a few special cases Go does not support operator overloading:
to overcome this limitation operators must be simulated with functions. Since Go supports a
procedural as well as an object-oriented paradigm there are 2 options:

17.4.1 Implement the operators as functions

The operator is implemented as a package-level function to operate on one or two parameters and
return a new object, implemented in the package dedicated to the objects on which they operate.
For example if we implement matrix manipulation in a package matrix, this would contain addition
of matrices Add() and multiplication Mult() which result in a matrix. These would be called on
the package name itself, so that we could make expressions of the form: m := matrix.Add(m1,

matrix.Mult(m2, m3))

If we would like to differentiate between different kinds of matrices (sparse, dense) in these
operations because there is no function overloading, we would have to give them different names,
as in: func addSparseToDense (a *sparseMatrix, b *denseMatrix) *denseMatrix

 func addDenseToDense (a *denseMatrix, b *denseMatrix) *denseMatrix

 func addSparseToSparse (a *sparseMatrix, b *sparseMatrix) *sparseMatrix

This is not very elegant, and the best we can do is hide these as private functions and expose as
public API a single public function Add(). This can operate on any combination of supported
parameters by type-testing them in a nested type switch:

func Add(a Matrix, b Matrix) Matrix {

 switch a.(type) {

 case sparseMatrix:

498

Ivo Balbaert

 switch b.(type) {

 case sparseMatrix:

 return addSparseToSparse(a.(sparseMatrix), b.(sparseMatrix))

 case denseMatrix:

 return addSparseToDense(a.(sparseMatrix), b.(denseMatrix))

…

 default:

 // unsupported arguments

 …

 }

}

But the more elegant and preferred way is to implement the operators as methods, as it is
done everywhere in the standard library. More information on this package by Ryanne Dolan
implementing linear algebra can be found at: http://code.google.com/p/gomatrix/

17.4.2 Implement the operators as methods

Methods can be differentiated according to their receiver type, so instead of having to use different
function names, we can simply define an Add method for each type:

func (a *sparseMatrix) Add(b Matrix) Matrix

func (a *denseMatrix) Add(b Matrix) Matrix

Each method returns a new object which becomes the receiver of the next method call, so we can
make chained expressions: m := m1.Mult(m2).Add(m3)

which is shorter and cleared than the procedural form of §17.4.1

The correct implementation can again be selected at runtime based on a type-switch:

func (a *sparseMatrix) Add(b Matrix) Matrix {

 switch b.(type) {

 case sparseMatrix:

 return addSparseToSparse(a.(sparseMatrix), b.(sparseMatrix))

 case denseMatrix:

 return addSparseToDense(a.(sparseMatrix), b.(denseMatrix))

 …

 default:

 // unsupported arguments

 …

The Way to Go

499

 }

}

again easier than the nested type switch of §17.4.1

17.4.3 Using an interface

When operating with the same methods on different types, the concept of creating a generalizing
interface to implement this polymorphism should come to mind.

We could for example define the interface Algebraic: type Algebraic interface {

 Add(b Algebraic) Algebraic

 Min(b Algebraic) Algebraic

 Mult(b Algebraic) Algebraic

 …

Elements()

}

and define the methods Add(), Min(), Mult(), … for our matrix types.

Each type which implements the Algebraic interface above will allow for method chaining. Each
method implementation should use a type-switch to provide optimized implementations based
on the parameter type. Additionally, a default case should be specified which relies only on the
methods in the interface: func (a *denseMatrix) Add(b Algebraic) Algebraic {

 switch b.(type) {

 case sparseMatrix:

 return addDenseToSparse(a, b.(sparseMatrix))

 default:

 for x in range b.Elements() …

 …

}

If a generic implementation cannot be implemented using only the methods in the interface,
you probably are dealing with classes that are not similar enough, and this operator pattern
should be abandoned. For example, it does not make sense to write a.Add(b) if a is a set and
b is a matrix; therefore, it will be difficult to implement a generic a.Add(b) in terms of set and
matrix operators. In this case, split your package in two and provide separate AlgebraicSet and
AlgebraicMatrix interfaces.

500

Chapter 18—Useful Code Snippets—Performance
Advice

18.1 Strings

(1) How to change a character in a string:

str:=“hello”

c:=[]byte(s)

c[0]=’c’

s2:= string(c) // s2 == “cello”

(2) How to take a part(substring) of a string str:

substr := str[n:m]

(3) How to loop over a string str with for or for-range:

// gives only the bytes:

for i:=0; i < len(str); i++ {

 … = str[i]

}

// gives the Unicode characters:

for ix, ch := range str {

…

}

(4) Number of bytes in a string str: len(str)

Number of characters in a string str:

FASTEST: utf8.RuneCountInString(str)

len([]int(str))

The Way to Go

501

(5) Concatenating strings:

FASTEST: with a bytes.Buffer (see § 7.2.6)

Strings.Join() (see § 4.7.10)

+=

(6) How to parse command-line arguments: use the os or flag package

see examples § 12.4

18.2 Arrays and slices

Making: arr1 := new([len]type)

 slice1 := make([]type, len)

Initialization: arr1 := [...]type{i1, i2, i3, i4, i5}

arrKeyValue := [len]type{i1: val1, i2: val2}

var slice1 []type = arr1[start:end]

(1) How to cut the last element of an array or slice line:

line = line[:len(line)-1]

(2) How to loop over an array(or slice) arr with for or for-range:

for i:=0; i < len(arr); i++ {

 … = arr[i]

}

for ix, value := range arr {

 …

 }

(3) Searching for a value V in a 2 dimensional array/slice arr2Dim:

found := false

Found: for row := range arr2Dim {

 for column := range arr2Dim[row]

 if arr2Dim[row][column] == V

 found = true

 break Found

502

Ivo Balbaert

 }

 }

}

18.3 Maps

Making: map1 := make(map[keytype]valuetype)

Initialization: map1 := map[string]int{“one”: 1, “two”: 2}

(1) How to looping over a map map1 with for, range:

for key, value := range map1 {

…

}

(2) Testing if a key value key1 exists in a map1:

val1, isPresent = map1[key1]

which gives: val or zero-value, true or false

(3) Deleting a key in a map:

delete(map1, key1)

18.4 Structs

Making: type struct1 struct {

 field1 type1

 field2 type2

 …

 }

ms := new(struct1)

 Initialization: ms := &struct1{10, 15.5, “Chris”}

 Capitalize the first letter of the struct name to make it visible outside its package.

Often it is better to define a factory function for the struct, and force using that (see
§10.2): ms := Newstruct1{10, 15.5, “Chris”}

func Newstruct1(n int, f float32, name string) *struct1 {

The Way to Go

503

 return &struct1{n, f, name}

}

18.5 Interfaces

(1) How to test if a value v implements an interface Stringer:

if v, ok := v.(Stringer); ok {

fmt.Printf(“implements String(): %s\n”, v.String());

}

(2) A type classifier:

func classifier(items ...interface{}) {

 for i, x := range items {

 switch x.(type) {

 case bool: fmt.Printf(“param #%d is a bool\n”, i)

 case float64: fmt.Printf(“param #%d is a float64\n”, i)

 case int, int64: fmt.Printf(“param #%d is an int\n”, i)

 case nil: fmt.Printf(“param #%d is nil\n”, i)

 case string: fmt.Printf(“param #%d is a string\n”, i)

 default: fmt.Printf(“param #%d’s type is unknown\n”, i)

 }

 }

}

18.6 Functions

How to use recover to stop a panic terminating sequence (see § 13.3):

func protect(g func()) {

 defer func() {

 log.Println(“done”)

 // Println executes normally even if there is a panic

 if x := recover(); x != nil {

 log.Printf(“run time panic: %v”, x)

 }

 }()

 log.Println(“start”)

 g()

}

504

Ivo Balbaert

18.7 Files

(1) How to open and read a file:

file, err := os.Open(“input.dat”)

 if err!= nil {

 fmt.Printf(“An error occurred on opening the inputfile\n” +

 “Does the file exist?\n” +

 “Have you got acces to it?\n”)

 return

 }

 defer file.Close()

 iReader := bufio.NewReader(file)

for {

 str, err := iReader.ReadString(‘\n’)

 if err!= nil {

 return // error or EOF

 }

 fmt.Printf(“The input was: %s”, str)

}

(2) How to read and write a file with a sliced buffer:
func cat(f *file.File) {
 const NBUF = 512
 var buf [NBUF]byte
 for {
 switch nr, er := f.Read(buf[:]); true {
 case nr < 0:
 fmt.Fprintf(os.Stderr, “cat: error reading from %s: %s\n”,
 f.String(), er.String())
 os.Exit(1)
 case nr == 0: // EOF
 return
 case nr > 0:
 if nw, ew := file.Stdout.Write(buf[0:nr]); nw != nr {
 fmt.Fprintf(os.Stderr, “cat: error writing from %s: %s\n”,
 f.String(), ew.String())
 }
 }
 }
 }

The Way to Go

505

18.8 Goroutines and channels

Performance advice:

A rule of thumb if you use parallelism to gain efficiency over serial computation: the amount
of work done inside goroutine has to be much higher than the costs associated with creating
goroutines and sending data back and forth between them.

1- Using buffered channels for performance:

A buffered channel can easily double its throughput, depending on the context the
performance gain can be 10x or more. You can further try to optimize by adjusting the
capacity of the channel.

2- Limiting the number of items in a channel and packing them in arrays:

Channels become a bottleneck if you pass a lot of individual items through them. You can
work around this by packing chunks of data into arrays and then unpacking on the other
end. This can be a speed gain of a factor 10x.

Making: ch := make(chan type, buf)

(1) How to loop over a channel ch with a for—range:

for v := range ch {

 // do something with v

}

(2) How to test if a channel ch is closed:

//read channel until it closes or error-condition

for {

 if input, open := <-ch; !open {

 break

 }

 fmt.Printf(“%s “, input)

}

Or use (1) where the detection is automatic.

506

Ivo Balbaert

(3) How to use a channel to let the main program wait until the goroutine completes?

(Semaphore pattern):

ch := make(chan int) // Allocate a channel.

// Start something in a goroutine; when it completes, signal on the channel.

go func() {

 // doSomething

 ch <- 1 // Send a signal; value does not matter.

}()

doSomethingElseForAWhile()

<-ch // Wait for goroutine to finish; discard sent value.

If the routine must block forever, omit ch <- 1 from the lambda function.

(4) Channel Factory pattern: the function is a channel factory and starts a lambda

function as goroutine populating the channel

func pump() chan int {

 ch := make(chan int)

 go func() {

 for i := 0; ; i++ {

 ch <- i

 }

 }()

 return ch

}

(5) Channel Iterator pattern:

(6) How to limit the amount of requests processed concurrently: see § 14.11

(7) How to parallelize a computation over a number of cores: see § 14.13

(8) Stopping a goroutine: runtime.Goexit()

(9) Simple timeout pattern:

timeout := make(chan bool, 1)

go func() {

 time.Sleep(1e9) // one second

The Way to Go

507

 timeout <- true

}()

select {

case <-ch:

 // a read from ch has occurred

case <-timeout:

 // the read from ch has timed out

}

(10) How to use an in- and out-channel instead of locking:

func Worker(in, out chan *Task) {

 for {

 t := <-in

 process(t)

 out <- t

 }

}

(11) How to abandon synchronous calls that run too long: see § 14.5 2nd variant

(12) How to use a Ticker and Timers with channels: see § 14.5

(13) Typical server backend patterns: see § 14.4

18.9 Networking and web applications

18.9.1. Templating:

- make, parse and validate a template:

var strTempl = template.Must(template.New(“TName”).Parse(strTemplateHTML))

- when used in a web context: use the html filter to escape HTML special characters:
{{html .}} or with a field FieldName {{ .FieldName |html }}

- use template-caching (see § 15.7)

508

Ivo Balbaert

18.10 General

How to stop a program when an error occurs:

if err != nil {

 fmt.Printf(“Program stopping with error %v”, err)

 os.Exit(1)

}

or: if err != nil {

panic(“ERROR occurred: “ + err.Error())

}

18.11 Performance best practices and advice

(1) Use the initializing declaration form := wherever possible (in functions).
(2) Use bytes if possible instead of strings
(3) Use slices instead of arrays.
(4) Use arrays or slices instead of a map where possible (see ref. 15)
(5) Use for range over a slice if you only need the value and not the index; this is slightly

faster than having to do a slice lookup for every element.
(6) When the array is sparse (containing many 0 or nil-values), using a map can result in

lower memory consumption.
(7) Specify an initial capacity for maps.
(8) When defining methods: use a pointer to a type (struct) as a receiver.
(9) Use constants or flags to extract constant values from the code.
(10) Use caching whenever possible when large amounts of memory are being allocated.
(11) Use template caching (see §15.7)

509

Chapter 19—Building a complete application

19.1 Introduction

In this chapter we will develop a complete program: goto, a URLShortener web application, because
the web is all pervasive. The example is taken from the excellent lecture from Andrew Gerrand (see
ref. 22). We will do this in 3 stages, each stage has more functionality and shows progressively more
features of the Go language. We will draw heavily on what we have learned on web applications in
chapter 15.

Version 1: a map and a struct are used, together with a Mutex from the sync package and a struct
factory.
Version 2: the data is made persistent because written to a file in gob-format.
Version 3: the application is rewritten with goroutines and channels (see chapter 14)
Version 4: what to change if we want a json-version?
Version 5: a distributed version is made with the rpc protocol.

Because the code changes frequently it is not printed here, but instead you are referred to the
download site.

19.2 Introducing Project UrlShortener

You certainly know that some addresses in the browser (called URLs) are (very) long and/or
complex, and that there are services on the web which turn these into a nice short url, to be used
instead. Our project is like that: it is a web service with 2 functionalities:

Add: given a long URL, it returns a short version, e.g.:

http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=tokyo&sll=37.0625,-95.6
77068&sspn=68.684234,65.566406&ie=UTF8&hq=&hnear=Tokyo,+Japan&t=h&z=9

(A) becomes: http://goto/UrcGq
(B) and stores this pair of data

510

Ivo Balbaert

Redirect: whenever a shortened URL is requested, it redirects the user to the original, long URL:
so if you type (B) in a browser, it redirects you to the page of (A).

VERSION 1—DATA STRUCTURE AND WEB SERVER FRONTEND:

The code of the 1st version goto_v1 (discussed in §19.3 and §19.4) can be found in the map
code_examples\chapter_19\goto_v1

19.3 Data structure

[the code for this § can be found in goto_v1\store.go]

When our application is running in production, it will receive many requests with short urls, and
a number of requests to turn a long URL into a short one. But in which data structure will our
program stock these data ? Both url-types (A) and (B) from § 19.2 are strings, moreover they relate
to each other: given (B) as key we need to fetch (A) as value, they map to each other. To store our
data in memory we need such a structure, which exists in nearly all programming languages under
different names as hash table, dictionary, etc.

Go has such a map built-in: a map[string]string.

The key type is written between [], and the value type follows; we will learn all about maps in
chapter 8. In any non trivial program it is useful to give the special types that you use a name. In
Go we do this with the keyword type, so we define a: type URLStore map[string]string

It maps short URLs to long URLs, both are strings.

To make a variable of that type named m, just use: m := make(URLStore)

Suppose we want to store the mapping of http://goto/a to http://google.com/ in m, we can do this
with the statement: m[“a”] = “http://google.com/”

(We just store the suffix of http://goto/ as key, what comes before the key stays always the same).
To retrieve its corresponding long url given “a”, we write: url := m[“a”]

and then the value of url is equal to “http://google.com/”.

Note that with := we don’t need to say that url is of type string: the compiler deduces the type from
the value on the right side.

The Way to Go

511

Making it thread-safe:

Our URLStore variable is the central memory datastore here: once we get some traffic there will
be many requests of type Redirect. These are in fact only read operations: read with the given
short URL as key and return the long URL as value. But requests of type Add are different, they
change our URLStore adding new key-value pairs. When our service gets many of that update
type-requests at once, the following problem could arise: the add operation could be interrupted
by another request of the same type, and the long URL would perhaps not be written as value.
Also there could be modifications together with reads, resulting perhaps in wrong values read. Our
map does not guarantee that once an update starts it will terminate completely before a new update
begins; in other words: a map is not thread-safe, goto will serve many requests concurrently, so we
must make our URLStore type safe to access from separate threads. The simplest and classical way
to do this is to add a lock to it. In Go this is a Mutex type from the sync package in the standard
library which we now must import into our code (for locking in detail see §9.3).

We change the type definition of our URLStore to a struct type (which is just a collection of fields
like in C or Java, we explain structs in Chapter 10) with two fields: the map and a RWMutex from
the sync package:

import “sync”

type URLStore struct {

 urls map[string]string // map from short to long URLs

 mu sync.RWMutex

}

An RWMutex has two locks: one for readers, and one for writers. Many clients can take the read
lock simultaneously, but only one client can take the write lock (to the exclusion of all readers),
effectively serializing the updates, making them take place consecutively.

We will implement our read request type Redirect in a Get function, and our write request type
Add as a Set function. The Get function looks like this:

func (s *URLStore) Get(key string) string {

 s.mu.RLock()

 url := s.urls[key]

 s.mu.RUnlock()

 return url

}

512

Ivo Balbaert

It takes a key (short URL) and returns the corresponding map value as url. The function works on
a variable s, which is a pointer (see § 4.9) to our URLStore. But before reading the value we set a
read-lock with s.mu.RLock(), so that no update can interrupt the read. After the read we unlock
so that pending updates can start. What if the key is not present in the map? Then the zero value
for the string type (an empty string) will be returned. Notice the .-notation familiar from OO
languages: the method RLock() is called on the field mu of s.

The Set function needs both a key and url, and has to use the write lock Lock() to exclude any
other updates at the same time. It returns a boolean true or false value to signal whether the Set
was successful or not:

func (s *URLStore) Set(key, url string) bool {

 s.mu.Lock()

 _, present := s.urls[key]

 if present {

 s.mu.Unlock()

 return false

 }

 s.urls[key] = url

 s.mu.Unlock()

 return true

}

With the form _, present := s.urls[key] we can test to see whether our map already contains
the key, then present become true, otherwise false. This is the so called comma, ok form which we
will encounter frequently in Go code. If the key is already present Set returns a boolean false value
and the map is not updated because we return from the function (so we don’t allow shorts urls to
be reused). If the key is not present, we add it to the map and return true. The _ on the left side is
a placeholder for the value and we indicate that we will not use it because we assign it to _ . Note
that as soon as possible (after the update) we Unlock() our URLStore.

Using defer to simplify the code:

In this case the code is still simple and it was easy to remember to do the Unlock(). However in
more complex code this might be forgotten or put in the wrong place, leading to problems often
difficult to track down. For these kinds of situations Go has a special keyword defer (see § 6.4),
which allows in this case to signal the Unlock immediately after the Lock, however its effect is that
the Unlock() will only be done just before returning from the function.

Get can be simplified to (we have eliminated the local variable url):

The Way to Go

513

func (s *URLStore) Get(key string) string {

 s.mu.RLock()

 defer s.mu.RUnlock()

 return s.urls[key]

}

The logic for Set also becomes somewhat clearer (we don’t need to think about unlocking
anymore): func (s *URLStore) Set(key, url string) bool {

 s.mu.Lock()

 defer s.mu.Unlock()

 _, present := s.urls[key]

 if present {

 return false

 }

 s.urls[key] = url

 return true

}

A factory for URLStore:

The URLStore struct contains a map field, which must be initialized with make before it can be
used. Making an instance of a struct is done in Go by defining a function with prefix New, that
returns an initialized instance of the type (here, and in most cases, a pointer to it):

func NewURLStore() *URLStore {

 return &URLStore{ urls: make(map[string]string) }

}

In the return we make a URLStore literal with our map initialized, the lock doesn’t need to be
specifically initialized; this is the standard way in Go of making struct objects. & is the address-of
operator, to turn what we return into a pointer because NewURLStore returns a pointer *URLStore.
We just call this function to make a URLStore variable s: var store = NewURLStore()

Using our URLStore:

To add a new short/long URL pair to our map, all we have to do is call the Set method on s, and
since this was a boolean, we can immediately wrap it in an if-statement:

if s.Set(“a”, “http://google.com”) {

 // success

}

514

Ivo Balbaert

To retrieve the long URL given a short URL we call the Get method on s and put the result in a
variable url:

if url := s.Get(“a”); url != “” {

 // redirect to url

} else {

 // key not found

}

Here we make use of the fact that in Go an if can start with an initializing statement before the
condition. We also need a method Count to give us the number of key-value pairs in the map, this
is given by the built in len function:

func (s *URLStore) Count() int {

 s.mu.RLock()

 defer s.mu.RUnlock()

 return len(s.urls)

}

How will we compute the short URL given the long URL? For this we use a function genKey(n
int) string {…} and for its integer parameter we give it the current value of s.Count().

[The exact algorithm is of little importance, an example code can be found in key.go.]

We can now make a Put method that takes a long URL, generates its short key with genKey, stores
the URL under this (short url) key with the Set method, and returns that key:

func (s *URLStore) Put(url string) string {

 for {

 key := genKey(s.Count())

 if s.Set(key, url) {

 return key

 }

 }

 // shouldn’t get here

 return “”

}

The for loop retries the Set until that is successful (meaning that we have generated a not yet
existing short URL). Until now we have defined our datastore and functions to work with it (the

The Way to Go

515

code can be found in store.go). But this in itself doesn’t do anything, we will have to define a
webserver to deliver the Add and the Redirect services.

19.4 Our user interface: a web server frontend

[the code for this § can be found in goto_v1\main.go]

We haven’t yet coded the function with which our program must be started up. This is (always)
the function main() as in C, C++ or Java; in it we will start our webserver, e.g. we can start a local
webserver on port 8080 with the command: http.ListenAndServe(“:8080”, nil)

(The functionality of a webserver comes from the package http, we treat this in depth in chapter
15). The webserver listens for incoming requests in an infinite loop, but we must also define how
this server must respond to these requests. We do this by making so called HTTP handlers with
the function HandleFunc, for example by coding:

http.HandleFunc(“/add”, Add)

we say that every request which ends in /add will call a function Add (still to be made).

Our program will have two HTTP handlers:

•	 Redirect,	which	redirects	short	URL	requests,	and
•	 Add,	which	handles	the	submission	of	new	URLs.

Schematically:

Fig 19.1: Handler functions in goto

Our minimal main() could look like:

func main() {

 http.HandleFunc(“/”, Redirect)

 http.HandleFunc(“/add”, Add)

516

Ivo Balbaert

 http.ListenAndServe(“:8080”, nil)

}

Requests to /add will be served by the Add handler; all other requests will be served by the Redirect
handler. Handler functions get information from an incoming request (a variable r of type *http.
Request), and they make and write their response to a variable w of type http.ResponseWriter .

What must our Add function do ?

i) reading in the long URL, that is: read the url from an html-form contained in an HTTP
request with r.FormValue(“url”)

ii) put it into the store using our Put method on store
iii) send the corresponding short URL to the user

Each requirement translates in one codeline:

func Add(w http.ResponseWriter, r *http.Request) {

 url := r.FormValue(“url”)

 key := store.Put(url)

 fmt.Fprintf(w, “http://localhost:8080/%s”, key)

}

The function Fprintf of the fmt package is used here to substitute key in the string containing
%s, and then sending that string as response back to the client. Notice that Fprintf writes to a
ResponseWriter, in fact Fprintf can write to any data structure that implements io.Writer(), which
means that it implements a Write() method. io.Writer() is what is called in Go an interface, and we
see that through the use of interfaces Fprintf is very general, it can write to a lot of different things.
The use of interfaces is pervasive in Go, and makes code more generally applicable (see Chapter
11).

But we still need a form, we can display a form by using Fprintf again, this time writing a constant
to w. Let’s modify Add to display an HTML form when no url is supplied:

func Add(w http.ResponseWriter, r *http.Request) {

 url := r.FormValue(“url”)

 if url == “” {

 fmt.Fprint(w, AddForm)

 return

 }

 key := store.Put(url)

The Way to Go

517

 fmt.Fprintf(w, “http://localhost:8080/%s”, key)

}

const AddForm = `

<form method=“POST” action=”/add”>

URL: <input type=“text” name=“url”>

<input type=“submit” value=“Add”>

</form>

`

In that case we send the constant string AddForm to the client, which is in fact the html necessary
for creating a form with an input field url, and a submit button, which when pushed will post a
request ending in /add. So the Add handler function is again invoked, now with a value for url
from the text field. (The `` are needed to make a raw string, otherwise strings are enclosed in “”
as usual).

The Redirect function finds the key in the HTTP request path (the short url key is the request path
minus the first character, this can be written in Go as [1:]; for the request “/abc” the key would be
“abc”), retrieves the corresponding long URL from the store with the Get function, and sends an
HTTP redirect to the user. If the URL is not found, a 404 “Not Found” error is sent instead:
func Redirect(w http.ResponseWriter, r *http.Request) {

 key := r.URL.Path[1:]

 url := store.Get(key)

 if url == “” {

 http.NotFound(w, r)

 return

 }

 http.Redirect(w, r, url, http.StatusFound)

}

(http.NotFound and http.Redirect are helpers for sending common HTTP responses.)

 Now we have gone through all the code of goto_v1

Compiling and running:

The executable is present in the map, so you can skip this section and test immediately if you want
to. Within the map with the 3 go source-files there is also a Makefile, with which the application
can be compiled and linked, just do:

518

Ivo Balbaert

for Linux, OS X: start make in the map in a terminal window or build the project in LiteIDE
for Windows: start the MINGW-environment via Start, All Programs, MinGW, MinGW Shell
(see § 2.5 (5)), type: make in the command-window and enter:

the source files are compiled and linked into a native .exe

The result is the executable program: goto in Linux/OS X or goto.exe in Windows.

To run it and thus start the webserver, give

for Linux, OS X: the command ./goto
for Windows: start the application from GoIde (if Windows Firewall blocks the starting
program: set allow this program)

Testing the program:

Open a browser and request the url: http://localhost:8080/add

This starts our Add handler function. There isn’t yet any url variable in the form, so the response
is the html-form with asks for input:

Fig 19.2: The Add handler

Add a (long) URL for which you want a short equivalent, like http://golang.org/pkg/bufio/#Writer
and press the button. The application makes a short URL for you and prints that, e.g. http://
localhost:8080/2

The Way to Go

519

Fig 19.3: The response of the Add handler

Copy and paste that URL in your browser address box and request it. The result is the Redirect
handler in action, and the page of the long URL is shown.

Fig 19.4: The response of the Redirect handler

VERSION 2—ADDING PERSISTENT STORAGE:

The code of the 2nd version goto_v2 (discussed in §19.5) can be found in the map code_examples\
chapter_19\goto_v2

19.5 Persistent storage: gob

[the code for this § can be found in goto_v2\store.go and main.go]

When the goto process (the webserver on port 8080) ends, and this has to happen sooner or later,
the map with the shortened URLs in memory will be lost. To preserve our map data, we need to
save them in a disk file. We will modify URLStore so that it writes its data to a file, and restores
that data on goto start-up. For this we will use Go’s encoding/gob package: this is a serialization
and deserialization package that turns data structures into arrays (or more accurately slices) of bytes
and vice versa (see § 12.11).

520

Ivo Balbaert

With the gob package’s NewEncoder and NewDecoder functions you can decide where you write
the data to or read it from. The resulting Encoder and Decoder objects provide Encode and Decode
methods for writing and reading Go data structures to and from files. By the way: Encoder also
implements the Writer interface, and so does Decoder for the Reader interface. We will add to
URLStore a new file field (of type *os.File) that will be a handle to an open file that can be used
for writing and reading.

type URLStore struct {

 urls map[string]string

 mu sync.RWMutex

 file *os.File

}

We will call this file store.gob and give that name as a parameter when we instantiate the
URLStore: var store = NewURLStore(“store.gob”)

Now we have to adapt our NewURLStore function:

func NewURLStore(filename string) *URLStore {

 s := &URLStore{urls: make(map[string]string)}

 f, err := os.OpenFile(filename, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)

 if err != nil {

 log.Fatal(“URLStore:”, err)

 }

 s.file = f

 return s

}

The NewURLStore function now takes a filename argument, opens the file (see Chapter 12), and
stores the *os.File value in the file field of our URLStore variable store, here locally called s.

The call to OpenFile can fail (our disk file could be removed or renamed for example).

It can return an error err, notice how Go handles this:

f, err := os.OpenFile(filename, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)

if err != nil {

 log.Fatal(“URLStore:”, err)

}

The Way to Go

521

When err is not nil, meaning there really was an error, we stop the program with a message. This is
one way of doing it, mostly the error is returned to the calling function, but this pattern of testing
errors again is ubiquitous in Go code. After the } we are certain the file is opened.

We open this file with writing enabled, more exactly in append-mode. Each time a new (short,
long) URL pair is made in our program, we will store it through gob in the file “store.gob”.

For that purpose we define a new struct type record:

type record struct {

 Key, URL string

}

and a new save method that writes a given key and url to disk as a gob-encoded record:

func (s *URLStore) save(key, url string) error {

 e := gob.NewEncoder(s.file)

 return e.Encode(record{key, url})

}

At the start of goto our datastore on disk must be read into the URLStore map, for this we have a
load method func (s *URLStore) load() error {

 if _, err := s.file.Seek(0, 0); err != nil {

 return err

 }

 d := gob.NewDecoder(s.file)

 var err error

 for err == nil {

 var r record

 if err = d.Decode(&r); err == nil {

 s.Set(r.Key, r.URL)

 }

 }

 if err == io.EOF {

 return nil

 }

 return err

}

522

Ivo Balbaert

The new load method will Seek to the beginning of the file, read and Decode each record, and
store the data in the map using the Set method. Again notice the all pervasive error-handling. The
decoding of the file is an infinite loop which continues as long as there is no error:

for err == nil {

 …

}

If we get an error, it could be because we have just decoded the last record and then the error
io.EOF (EndOfFile) occurs; if this is not the case we had an error while decoding and this is
returned with return err. This method must be added to NewURLStore:

func NewURLStore(filename string) *URLStore {

 s := &URLStore{urls: make(map[string]string)}

 f, err := os.OpenFile(filename, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)

 if err != nil {

 log.Fatal(“Error opening URLStore:”, err)

 }

 s.file = f

 if err := s.load(); err != nil {

 log.Println(“Error loading data in URLStore:”, err)

 }

 return s

}

Also in the Put function when we add a new url-pair to our map, this should also be saved
immediately to the datafile:

func (s *URLStore) Put(url string) string {

 for {

 key := genKey(s.Count())

 if s.Set(key, url) {

 if err := s.save(key, url); err != nil {

 log.Println(“Error saving to URLStore:”, err)

 }

 return key

 }

 }

 panic(“shouldn’t get here”)

}

The Way to Go

523

Compile and test this 2nd version or simply use the executable that is present, and verify that it still
knows the short urls after closing down the webserver (you can stop this process with CTRL/C
in the terminal window). The 1st time goto is started the file store.gob doesn’t yet exist, so when
loading you get the error: 2011/09/11 11:08:11 Error loading URLStore: open store.gob: The
system cannot find the file specified.

Stop the process and restart, and then it works. Alternatively you can simply make an empty store.
gob file before starting goto.

Remark: When starting goto the 2nd time, you probably get the error:

Error loading URLStore: extra data in buffer

This is because gob is a stream based protocol that doesn’t support restarting. In Version 4 we will
remedy this situation by using json as storage protocol.

524

Ivo Balbaert

VERSION 3—ADDING GOROUTINES:

The code of the 3rd version goto_3 (discussed in §19.6) can be found in the map code_examples\
chapter_19\goto_v3

19.6 Using goroutines for performance

There is still a performance problem with the 2nd version if too many clients attempt to add URLs
simultaneously: our map is safely updated for concurrent access thanks to the locking mechanism,
but the immediate writing of each new record to disk is a bottleneck. The disk writes may happen
simultaneously and depending on the characteristics of your OS, this may cause corruption.
Even if the writes do not collide, each client must wait for their data to be written to disk before
their Put function will return. Therefore, on a heavily I/O-loaded system, clients will wait longer
than necessary for their Add requests to go through.

To remedy these issues, we must decouple the Put and save processes: we do this by using Go’s
concurrency mechanism. Instead of saving records directly to disk, we send them to a channel,
which is a kind of buffer, so the sending function doesn’t have to wait for it.

The save process which writes to disk reads from that channel and is started on a separate thread
by launching it as a goroutine called saveloop. The main program and saveloop are now executed
concurrently, so there is no more blocking.

We replace the file field in URLStore by a channel of records: save chan record.

type URLStore struct {

 urls map[string]string

 mu sync.RWMutex

 save chan record

}

A channel, just like a map, must be made with make; we will do this in our changed factory
NewURLStore and give it a buffer length of 1000, like: save := make(chan record,

saveQueueLength). To remedy our performance situation instead of making a function call to save
each record to disk, Put can send a record to our buffered channel save:

func (s *URLStore) Put(url string) string {

 for {

 key := genKey(s.Count())

 if s.Set(key, url) {

The Way to Go

525

 s.save <- record{key, url}

 return key

 }

 }

 panic(“shouldn’t get here”)

}

At the other end of the save channel we must have a receiver: our new method saveLoop will run
in a separate goroutine; it receives record values and writes them to a file. saveLoop is also started
in the NewURLStore() function with the keyword go, and we can remove the now-unnecessary file
opening code. Here is the modified NewURLStore():

const saveQueueLength = 1000

func NewURLStore(filename string) *URLStore {

 s := &URLStore{

 urls: make(map[string]string),

 save: make(chan record, saveQueueLength),

 }

 if err := s.load(filename); err != nil {

 log.Println(“Error loading URLStore:”, err)

 }

 go s.saveLoop(filename)

 return s

}

Here is the code for the method saveloop:

func (s *URLStore) saveLoop(filename string) {

 f, err := os.Open(filename, os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0644)

 if err != nil {

 log.Fatal(“URLStore:”, err)

 }

 defer f.Close()

e := gob.NewEncoder(f)

 for {

// taking a record from the channel and encoding it

r := <-s.save

 if err := e.Encode(r); err != nil {

 log.Println(“URLStore:”, err)

526

Ivo Balbaert

 }

 }

}

Records are read from the save channel in an infinite loop and encoded to the file.

In chapter 14 we study goroutines and channels in depth, but here we have seen a useful example
for better managing the different parts of a program. Notice also that now we only make our
Encoder object once, instead of each save, which also conserves some memory and processing.

Another ameloriation can be made to make goto more flexible: instead of coding the filename,
the listener address and the host name hard-coded or as constants in the program, we can define
them as flags. That way they can be given new values if these are typed in on the command line
when starting the program, if this is not done the default value from the flag will be taken. This
functionality comes from a different package, so we have to: import “flag” (for more info on
this package, see §12.4).

We first create some global variables to hold the flag values:

var (

 listenAddr = flag.String(“http”, “:8080”, “http listen address”)

 dataFile = flag.String(“file”, “store.gob”, “data store file name”)

 hostname = flag.String(“host”, “localhost:8080”, “host name and port”)

)

For processing command-line parameters we must add flag.Parse() to the main function, and
instantiate the URLStore after the flags have been parsed, once we know the value of dataFile (in
the code *dataFile is used, this is because a flag is a pointer and must be dereferenced to get the
value, see §4.9):

var store *URLStore

func main() {

 flag.Parse()

 store = NewURLStore(*dataFile)

 http.HandleFunc(“/”, Redirect)

 http.HandleFunc(“/add”, Add)

 http.ListenAndServe(*listenAddr, nil)

}

In the Add handler we must now substitute *hostname instead of localhost:8080:

The Way to Go

527

fmt.Fprintf(w, “http://%s/%s”, *hostname, key)

Compile and test this 3rd version or use the executable that is present.

VERSION 4—PERSISTENT STORAGE WITH JSON:

The code of the 4th version goto_4 (discussed in §19.7) can be found in the map code_examples\
chapter_19\goto_v4.

19.7 Using json for storage

If you are a keen tester you will perhaps have noticed that when goto is started 2 times, the 2nd
time it has the short urls and works perfectly, however from the 3rd start onwards, we get the
error: Error loading URLStore: extra data in buffer. This is because gob is a stream based
protocol that doesn’t support restarting. We will remedy this situation here by using json as storage
protocol (see § 12.9), which stores the data as plain text, so it can also be read by processes written
in other languages than Go. This also shows how easy it is to change to a different persistent
protocol, because the code dealing with the storage is cleanly isolated in 2 methods, namely load
and saveLoop.

Start by creating a new empty file store.json, and change the line in main.go where the variable for
the file is declared:

var dataFile = flag.String(“file”, “store.json”, “data store file name”)

In store.go import json instead of gob. Then in saveLoop the only line that has to be changed is:

e := gob.NewEncoder(f)

We change it in: e := json.NewEncoder(f)

Similarly in the load method the line d := gob.NewDecoder(f)
is changed to d := json.NewDecoder(f).

This is everything we need to change! Compile, start and test: you will see that the previous error
does not occur anymore.

528

Ivo Balbaert

VERSION 5—DISTRIBUTING THE PROGRAM:

The code of the 5th version goto_5 (discussed in §19.8 and § 19.9) can be found in the map
code_examples\chapter_19\goto_v5. This version continues with the gob-storage, but could be
easily adapted to use json as demonstrated in Version 4.

19.8 Multiprocessing on many machines

So far goto runs as a single process, but even with using goroutines a single process running on one
machine can only serve so many concurrent requests. A URL Shortener typically serves many more
Redirects (reads, using Get()) than it does Adds (writes, using Put()). Therefore we can create an
arbitrary number of read-only slaves that serve and cache Get requests, and pass Puts through to
the master, like in the following schema:

The Way to Go

529

Fig 19.5: Distributing the work load over master- and slave computers

To run a master instance of the application goto on another computer in a network than the slave(s)
process(es), they have to be able to communicate with each other. Go’s rpc package provides a
convenient means of making function calls over a network connection, making URLStore an RPC
service (we discuss rpc in detail in §15.9). The slave process(es) will handle Get requests to deliver
the long urls. When a new long url has to be transformed into a short one (using a Put() method)

530

Ivo Balbaert

they delegate that task to the master process through an rpc-connection; so only the master will
have to write to the datafile.

The basic Get() and Put() methods of URLStore until now have the signature:

func (s *URLStore) Get(key string) string

func (s *URLStore) Put(url string) string

RPC can only work through methods with the form (t is a value of type T):

func (t T) Name(args *ArgType, reply *ReplyType) error

To make URLStore an RPC service we need to alter the Put and Get methods so that they match
this function signature. This is the result:

func (s *URLStore) Get(key, url *string) error

func (s *URLStore) Put(url, key *string) error

The code for Get() becomes:

func (s *URLStore) Get(key, url *string) error {

 s.mu.RLock()

 defer s.mu.RUnlock()

 if u, ok := s.urls[*key]; ok {

 *url = u

 return nil

 }

 return errors.New(“key not found”)

}

where now, because key and url are pointers, we must take their value by prefixing them with *,
like in *key ; u is a value, we can assign it to pointer u with: *url = u

And the same goes for the code of Put():

func (s *URLStore) Put(url, key *string) error {

 for {

 *key = genKey(s.Count())

 if err := s.Set(key, url); err == nil {

 break

The Way to Go

531

 }

 }

 if s.save != nil {

 s.save <- record{*key, *url}

 }

 return nil

}

Because Put() calls Set(), the latter also has to be adapted to the fact that key and url are now
pointers, and that it must return an error instead of a boolean:

func (s *URLStore) Set(key, url *string) error {

 s.mu.Lock()

 defer s.mu.Unlock()

 if _, present := s.urls[*key]; present {

 return errors.New(“key already exists”)

 }

 s.urls[*key] = *url

 return nil

}

For the same reason, when we call Set() from load(), the call must be adapted to:

s.Set(&r.Key, &r.URL)

We must also modify the HTTP handlers to accommodate the changes to URLStore. The Redirect
handler now returns the error string provided by the URLStore:

func Redirect(w http.ResponseWriter, r *http.Request) {

 key := r.URL.Path[1:]

 var url string

 if err := store.Get(&key, &url); err != nil {

 http.Error(w, err.Error(), http.StatusInternalServerError)

 return

 }

 http.Redirect(w, r, url, http.StatusFound)

}

The Add handler changes in much the same way:

532

Ivo Balbaert

func Add(w http.ResponseWriter, r *http.Request) {

 url := r.FormValue(“url”)

 if url == “” {

 fmt.Fprint(w, AddForm)

 return

 }

 var key string

if err := store.Put(&url, &key); err != nil {

 http.Error(w, err.Error(), http.StatusInternalServerError)

 return

 }

 fmt.Fprintf(w, “http://%s/%s”, *hostname, key)

}

To make our application flexible, as we have done in the previous section, we can add a command-line
flag to enable the RPC server in main():

var rpcEnabled = flag.Bool(“rpc”, false, “enable RPC server”)

To make rpc work, we then have to register the URLStore with the rpc package and set up the
RPC-over-HTTP handler with HandleHTTP, like this:

func main() {

 flag.Parse()

 store = NewURLStore(*dataFile)

 if *rpcEnabled { // flag has been set

 rpc.RegisterName(“Store”, store)

 rpc.HandleHTTP()

 }

 ... (set up http like before)

}

19.9 Using a ProxyStore

Now that we have the URLStore available as an RPC service, we can build another type that
represents the rpc-client and that will forward requests to the RPC server; we call it ProxyStore:

type ProxyStore struct {

 client *rpc.Client

}

The Way to Go

533

An rpc-client has to use the DialHTTP() method to connect to an rpc-server, so we incorporate
that in the function NewProxyStore which makes our ProxyStore object:

func NewProxyStore(addr string) *ProxyStore {

 client, err := rpc.DialHTTP(“tcp”, addr)

 if err != nil {

 log.Println(“Error constructing ProxyStore:”, err)

 }

 return &ProxyStore{client: client}

}

This ProxyStore has Get and Put methods that pass the requests directly to the RPC server using
the Call method of the rpc client:

func (s *ProxyStore) Get(key, url *string) error {

 return s.client.Call(“Store.Get”, key, url)

}

func (s *ProxyStore) Put(url, key *string) error {

 return s.client.Call(“Store.Put”, url, key)

}

A caching ProxyStore:

But if the slave(s) simply delegate all work to the master, there is no benefit! We intended the slaves
to handle the Get requests. To be able to do that, they must have a copy (a cache) of the URLStore
with the map. So we expand the definition of our ProxyStore to include URLStore:

type ProxyStore struct {

 urls *URLStore

 client *rpc.Client

}

and NewProxyStore must be changed as well:

func NewProxyStore(addr string) *ProxyStore {

 client, err := rpc.DialHTTP(“tcp”, addr)

 if err != nil {

 log.Println(“ProxyStore:”, err)

 }

534

Ivo Balbaert

 return &ProxyStore{urls: NewURLStore(“”), client: client}

}

And we must modify the URLStore so that it doesn’t try to write to or read from disk if an empty
filename is given:

func NewURLStore(filename string) *URLStore {

 s := &URLStore{urls: make(map[string]string)}

 if filename != “” {

 s.save = make(chan record, saveQueueLength)

 if err := s.load(filename); err != nil {

 log.Println(“Error loading URLStore: “, err)

 }

 go s.saveLoop(filename)

 }

 return s

}

Our Get method needs to be expanded: it should first check if the key is in the cache. If present,
Get returns the cached result. If not, it should make the RPC call, and update its local cache with
the result:

func (s *ProxyStore) Get(key, url *string) error {

 if err := s.urls.Get(key, url); err == nil { // url found in local map

 return nil

 }

 // url not found in local map, make rpc-call:

 if err := s.client.Call(“Store.Get”, key, url); err != nil {

 return err

 }

 s.urls.Set(key, url)

 return nil

}

Similarly the Put method need only update the local cache when it performs a successful
RPC-Put: func (s *ProxyStore) Put(url, key *string) error {

 if err := s.client.Call(“Store.Put”, url, key); err != nil {
 return err
 }
 s.urls.Set(key, url)
 return nil

}

The Way to Go

535

To summarize: the slave(s) use the ProxyStore, only the master uses the URLStore. But the way we
made them, they look very much alike: they both implement Get and Put methods with the same
signature, so we can specify an interface Store to generalize their behavior:

type Store interface {

 Put(url, key *string) error

 Get(key, url *string) error

}

Now our global variable store can be of type Store: var store Store

Finally we adapt our main() function so that either a slave- or a master process is started up (and
we can only do that because store is now of the interface type Store!).

To that end we add a new command line flag masterAddr with no default value.

var masterAddr = flag.String(“master”, “”, “RPC master address”)

If a master address is given, we start a slave process and make a new ProxyStore; otherwise we start
a master process and make a new URLStore:

func main() {

 flag.Parse()

 if *masterAddr != “” { // we are a slave

 store = NewProxyStore(*masterAddr)

 } else { // we are the master

 store = NewURLStore(*dataFile)

 }

 ...

}

This way we have enabled ProxyStore to use the web front-end, in the place of URLStore.

The rest of the front-end code continues to work as before. It does not need to be aware of the Store
interface. Only the master process will write to the datafile.

Now we can launch a master and several slaves, and stress-test the slaves.

Compile this 4th version or use the executable that is present.

536

Ivo Balbaert

To test it first start the master on a command-line with:

./goto -http=:8081 -rpc=true (or goto replacing ./goto on Windows)

providing 2 flags: the master listens on port 8081 and rpc is enabled.

A slave is started up with: ./goto -master=127.0.0.1:8081

It gets its master-address and will receive client requests on port 8080.

Included in the code map is the following shell script demo.sh to do an automated start up in Unix
like systems:

#!/bin/sh

gomake

./goto -http=:8081 -rpc=true &

master_pid=$!

sleep 1

./goto -master=127.0.0.1:8081 &

slave_pid=$!

echo “Running master on :8081, slave on :8080.”

echo “Visit: http://localhost:8080/add”

echo “Press enter to shut down”

read

kill $master_pid

kill $slave_pid

To test under Windows, start a MINGW shell and start the master, then per slave start a new
MINGW shell and start the slave process.

19.10 Summary and enhancements

By gradually building up our goto application we encountered practically all Go’s important
features.

While this program does what we set out to do, there are a few ways it could be improved:

•	 Aesthetics: the user interface could be (much) prettier. For this you would use Go’s template
package (see §15.7).

The Way to Go

537

•	 Reliability: the master/slave RPC connections could be more reliable: if the client-server
connection goes down, the client should attempt to re-dial. A “dialer” goroutine could
manage this.

•	 Resource	exhaustion: as the size of the URL database grows, memory usage might become
an issue. This could be resolved by dividing (sharding) the master servers by key.

•	 Deletion: to support deletion of shortened URLs, the interactions between master and
slave would need to be made more complex.

538

Chapter 20—Go in Google App Engine

20.1 What is Google App Engine ?

Google App Engine (from now on shortened to GAE) is the Google way of cloud computing:
executing your web applications and storing your data on the vast Google infrastructure, without
having to worry about the servers, the network, the operating system, the data store, and so on.
This collection of resources is commonly referred to as the cloud, and its maintenance is the sole
responsibility of Google itself. For you as developer only your application counts and the services
it can deliver to its users, who can work with and run your application on any device which can
connect to the internet. You only pay for the resources (CPU processing time, network bandwidth,
disk storage, memory, etc.) your software really needs. When there are peak moments the cloud
platform automatically increases resources for your application, and decreases them when they are
no longer needed: scalability is one of the biggest advantages of cloud computing. Collaborative
applications (where groups of people work together on, share data, communicate, etc.), applications
that deliver services and applications that perform large computations are excellent candidates for
cloud computing. The typical user interface for a cloud application is a browser environment.

GAE was launched with support for Python apps in 2008 and added Java support in 2009; since
2011 there is also Go support. The start page is: http://code.google.com/appengine/

 Google’s App Engine provides a reliable, scalable and easy way to build and deploy applications
for the web. Over a hundred thousand apps are hosted at appspot.com and custom domains
using the App Engine infrastructure. It is a “platform-as-as-service” environment that operates
on a higher level than an “infrastructure cloud” like Amazon EC2, attempting to share resources
with even greater efficiency.

The Sandbox:

Your applications run in a secure environment called the Sandbox, that provides limited access to
the underlying operating system. These limitations allow App Engine to distribute web requests
for the application across multiple servers, and start and stop servers to meet traffic demands. The

The Way to Go

539

sandbox isolates your application in its own secure, reliable environment that is independent of the
hardware, operating system and physical location of the web server. Some of the limitations are:

- The application cannot write to the file system of the server; only files uploaded within the
application can be read. It must use the App Engine datastore, memcache or other services
for all data that persists between requests.

- Code runs only in response to a web request, a queued task, or a scheduled task, and the
response must be within 60 seconds; a request handler cannot spawn a sub-process or
execute code after the response has been sent.

- It can only access other computers on the Internet through the provided URL fetch and
email services. Other computers can only connect to the application by making HTTP (or
HTTPS) requests on the standard ports.

An overview of its services:

1) Data is stored in the GAE Datastore based on Google’s Bigtable: this is a distributed data
storage service that features a query engine and transactions; it grows automatically with
your data. It is not a traditional relational database, so the classic SQL and joins are not
allowed; but it provides you with a SQL-like query language, called GQL. Data objects,
called entities, have a kind and a set of properties. Queries can retrieve entities of a given
kind filtered and sorted by the values of the properties. Property values can be of any of
the supported property value types. Entities can be grouped, and this is the unit on which
transactions work: a transaction must be within a group. There is no database schema
for your entities: any structure between the entities must be provided and enforced by
your application code. Updates use optimistic concurrency control, meaning the last update
changes the data.

2) User authentication of the app can integrate with Google Accounts
3) URL Fetch: through this service your app can access resources on the Internet, such as web

services or other data.
4) Mail: is also a built-in service for use in apps.
5) Memcache: a high performance in-memory key-value cache; it is useful for data that does

not need the persistence and transactional features of the datastore, such as temporary data
or data copied from the datastore to the cache for high speed access.

6) Image Manipulation:
7) Scheduled tasks and task queues (cron jobs): an appl can perform tasks besides responding

to web requests; it can perform these tasks on a schedule that you configure, such as on a
daily or hourly basis. Alternatively the application can perform tasks added to a queue by
the application itself, such as a background task created while handling a request.

540

Ivo Balbaert

20.2 Go in the cloud

Go support for GAE was first announced on May 10 2011 at the Google I/O conference. First
experimental and for registered testers only, it was completely opened for every developer on July
21 2011. At the time of writing (Jan 2012) the current Go App Engine SDK is 1.6.1 (released
2011-12-13); it exists only for Linux and Mac OS X (10.5 or greater), both 32 and 64 bit. The
supporting Go tool chain is release r60.3; some changes are backwards incompatible, the SDK
api_version is 3.

When Go app runs on App Engine it is compiled with the 64-bit x86 compiler (6g). Only one
thread is run in a given instance. That is, all goroutines run in a single operating system thread, so
there is no CPU parallelism available for a given client request.

Go is the first compiled language to run on AppEngine. It shines because it is positioned so well
compared to the other two runtimes:

- against Java: Go has much better instance start-up time and more concurrency possibilities.
- against Python: Go has a much more better speed of execution.

20.3 Installation of the Go App Engine SDK: the development environment
for Go

20.3.1. Installation

Download the GAE SDK zip file appropriate to your system from the Google App Engine
downloads page: http://code.google.com/appengine/downloads.html

e.g. if your OS is a 64 bit Linux Ubuntu 11.10 then download go_appengine_sdk_linux_
amd64-1.6.1.zip.

Open with Archive Manager and extract this file to a directory of your choice (e.g. your home
directory): it will make 1 big folder called google_appengine which contains the entire AppEngine
for Go development environment, e.g. under /home/user/google_appengine or in general “install
root”/google_appengine/goroot.

This environment contains everything you need to develop, build and test your Apps locally: it
includes an AppEngine server to test your applications with, a DataStore where you can store data
similar to how you would eventually do with a live app hosted on the AppEngine servers in the

The Way to Go

541

cloud, and other API support and tools that allow you to mimic the real AppEngine for purposes
of development and testing. Since this AppEngine environment is for Go, it also contains the
appropriate Go compilers, packages, and tools as part of the download.

Differences between GAE-Go and regular Go:

The GAE-Go runtime provides the full Go language and almost all the standard libraries, except
for a few things that don’t make sense in the App Engine environment:

- there is no unsafe package and the syscall package is trimmed.
- it does not support cgo (no interaction with C libraries), even more so: you cannot use any

binary libraries (Go or otherwise) in a GAE project. You need source for everything since
GAE compiles/links it all.

- go install is not supported
- GAE often lags the main distribution by one or more major versions

Furthermore the limitations of the Sandbox environment (§ 20.1) have to be taken into account.
So for example attempts to open a socket or write to a file will return an os.EINVAL error.

Therefore treat your GAE and non-GAE Go tools as completely separate; if you’re only doing GAE
development, you could do without the standard tools altogether.

Under google_appengine reside a few Python scripts, the basic workhorses of Google App Engine.
Make sure that they are executable (if not issue the chmod +x *.py command in the map). Also
add their path to the PATH variable in order that you don’t have to include the complete path
when invoking them: e.g. if you have a bash shell, do this by adding the line: export PATH=/

home/user/google_appengine:$PATH to your .bashrc or .profile file.

Remarks:

1) If you already have a working Go environment (as you would when working through this
book), this AppEngine installation is outside and parallel to it, not affecting it; in particular
you don’t have to change your Go environment variables in your OS. Go on AppEngine has its
own completely separate environment containing its own Go version, which it picks up from
“install root”/google_appengine/goroot

2) It is also a good idea to download the documentation, so you can browse that when offline:
download google-appengine-docs-20111011.zip and extract.

3) GAE heavily uses Python, by default installed on Mac OS X and Linux; if for some reason this
is not the case, download and install Python 2.5 from www.python.org

542

Ivo Balbaert

4) Source code: the libraries and SDK are open source, hosted at http://code.google.com/p/
appengine-go/.

 Download it with: hg clone https://code.google.com/p/appengine-go/
5) All Go packages for a given app are built into a single executable, and request dispatch is

handled by the Go program itself; this is unlike what happens in the Java and Python SDK’s.

In § 20.8 we will see how to connect to the GAE cloud to deploy your application. But before you
are ready to do that, you will develop, test and run your app in the local GAE environment which
you just installed, which is as good a simulation of the production environment as it gets.

20.3.2. Checking and testing

Check the installation:

To control that everything works fine go in a console to the map google_appengine and invoke the
local AppEngine server by invoking dev_appserver.py

If you see text starting with: Invalid arguments

Runs a development application server for an application.

dev_appserver.py [options]

Application root must be …

everything is fine.

Running a demo app:

There are a few demo apps along with the SDK bundle. Let’s check one to ensure things are going
good so far.

- Go to the map google_appengine/demos: there you see a few folders, e.g.helloworld, guestbook,
etc.

- From within the demos directory, execute the command: dev_appserver.py helloworld
Note that this automatically compiles, links and runs the Go program.
- There are a few WARNINGs and INFOs, but if the last line is: Running application

helloworld on port 8080: http://localhost:8080, we are good. At this point
the helloworld application has been instantiated within the local AppEngine server and is
ready to serve the user on your machine at the port 8080.

- Open a browser and navigate to http://localhost:8080

The Way to Go

543

If you see a webpage with
Hello, World! 세상아 안녕!!

You are successfully running a Go web application executing on the local AppEngine.

Which Go code have you just run ? This is its source code:

Listing 20.1 helloworld.go:

package helloworld

import (

 “fmt”

 “net/http”

)

func init() {

 http.HandleFunc(“/”, handle)

}

func handle(w http.ResponseWriter, r *http.Request) {

 // some Chinese characters after World!

 fmt.Fprint(w, “<html><body>Hello, World! 세상아 안녕!! </body></html>”)

}

It is a simple web application (see chapter 15), that starts the overall handler in the init() function.
Also note that it is contained in its own package.

20.4 Building your own Hello world app

Let us now build the same application as the demo we saw in § 20.3, but this time exploring a bit
deeper.

20.4.1 Map structure—Creating a simple http-handler

Create a directory and give it a name characteristic for your app, like helloapp. All files for this
application reside in this directory, and inside it create another directory named hello. This will
contain the Go source files for our hello package. Then inside the hello directory, create a file
named helloworld2.go, and give it the following contents (in fact almost the same as the demo
app):

544

Ivo Balbaert

Listing 20.2 helloworld2_version1.go:

package hello

import (

 “fmt”

 “net/http”

)

func init() {

 http.HandleFunc(“/”, handler)

}

func handler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprint(w, “Hello, world!”)

}

Mind the package name: when writing a stand-alone Go program we would place this code in
package main, but the Go GAE Runtime provides the main package and HTTP Listener, so you
should put your code in a package of your choice, in this case, hello. Secondly, since Go App
Engine applications communicate with the outside world via a web server writing them is very
much like writing a stand-alone Go web application (see chapter 15). So we import the http
package and define handler-functions for the different url-patterns used in our app. We have no
main() function, so the handler’s setup has to move to the init() function! Also the starting of the
webserver itself is done by GAE for us. Our Go package hello responds to any request by sending
a response containing the message “Hello, world!”

20.4.2 Creating the configuration file app.yaml

All GAE apps need a yaml configuration file app.yaml, it contains app metadata for GAE (yaml
is a file format for text-files often used in open source projects, for more info see www.yaml.org).
Among other things, this file tells the App Engine service which runtime to use and which URLs
should be handled by our Go program. You can take a copy of the app.yaml file from the demo
app, placing it inside the map helloapp, and removing the handler for favicon.ico.

So the applications map/file-structure should be:

 helloapp\ // map of the GAE application

 app.yaml // configuration file

 hello\ // map containing the source files

 helloworld2.go

The Way to Go

545

Only app.yaml is a required name, the names of the maps, Go files and packages can be chosen
differently, but by convention their names are the same or analogous, and the root-map has suffix
app.

app.yaml is read and interpreted by the AppEngine that hosts and executes your programs when
at several times:

- when you upload your application to the AppEngine for it to be hosted;
- when it is executed;
- when users access it;

It can contain comments preceded by a #, and contains the following statements:

application: helloworld

version: 1

runtime: go

api_version: 3

routing-table: routing of different urls to different types of handlers

handlers:

- url: /.*

 script: _go_app

The application: value helloworld in app.yaml is your application identifier. This value can be
anything during development; later when registering your application with App Engine, you will
select a unique identifier (unique among all GAE applications!) and update this value.

version indicates which version of your app is running: indeed GAE can run several versions of your
app in parallel, but one of them must be designated as the default. It can contain alphanumeric
characters, and hyphens. So you can have running a testversion like T2-31 and a production
version P2-1.

runtime is the language in which the app is written (other allowed values are Java and Python). If
you adjust this before uploading new versions of your application software, App Engine will retain
previous versions, and let you roll back to a previous version using the administrative console.

api_version is the version of the Go API’s used in this SDK; they are probably incompatible with
previous versions. You could have build earlier versions of your app in a previous api_version SDK;
if GAE still permits they can continue to run, but usually there is a time limit for this, and you

546

Ivo Balbaert

should update your app to the new api version: the gofix tool in the bin map will probably be able
to do most of the updating required.

The handlers section is the routing table: it tells GAE how to map requests that are sent to the
server on to the code. For every incoming request the url pattern (the part that comes after http://
localhost:8080/ when developing locally or after http://appname.appspot.com/ when running in
the cloud) is matched with the regular expressions after url:

For the first url-pattern that matches, the corresponding script is executed. In our case every request
to a URL whose path matches the regular expression /.* (that is: all URLs) should be handled by
the Go program. The _go_app value is a magic string recognized by the dev_appserver.py; it is
ignored by the production App Engine servers.

If you look at the app.yaml file for the demo helloworld application, you will see that it contains
an initial section in handlers:

handlers:

- url: /favicon\.ico

 static_files: favicon.ico

 upload: favicon\.ico

- url: /.*

 script: _go_app

Some files (static_files) like images do not change (in this case the image favicon.ico). These files
could be put in a sort of common cache across different AppEngine servers, allowing them to be
served faster to the user. If your application has a number of them, put them in a separate directory
which is by convention named static.

upload indicates what must be uploaded to the cloud when you deploy your app; for example if
it contained images/(*.ico|*.gif|*.jpg), it will upload all these types of files within the local images
directory onto the AppEngine server.

Most GAE applications as we will see also use template files, these can be stored in the root app
map, or in a special directory tmpl.

So a general structure for a GAE application could be:

The Way to Go

547

yourapp\ // map of the GAE application

 app.yaml // configuration file

 yourpackage\ // map containing the source files

 package1.go

 …

 tmpl\ // map containing template files

 root.html

 update.html

 …

 static\ // map containing static files

 yourapp.ico

 …

As with the demo go in a console window to the map containing the map helloapp, and issue the
command: dev_appserver.py helloapp

Alternatively you could get a console window in any map and invoking:

dev_appserver.py /path_to_map_helloapp/helloapp

In both cases the web server is now running, listening for requests on port 8080. Test the application
by visiting the following URL in your web browser: http://localhost:8080/

And you should see: Hello, world!

In the server console the following text appears:

$ dev_appserver.py helloapp

INFO 2011-10-31 08:54:29,021 appengine_rpc.py:159] Server: appengine.google.com

INFO 2011-10-31 08:54:29,025 appcfg.py:463] Checking for updates to the SDK.

INFO 2011-10-31 08:54:29,316 appcfg.py:481] The SDK is up to date.

WARNING 2011-10-31 08:54:29,316 datastore_file_stub.py:512] Could not read datastore

data from /tmp/dev_appserver.datastore

INFO 2011-10-31 08:54:29,317 rdbms_sqlite.py:58] Connecting to SQLite database ‘’

with file ‘/tmp/dev_appserver.rdbms’

INFO 2011-10-31 08:54:29,638 dev_appserver_multiprocess.py:637] Running application

helloworld on port 8080: http://localhost:8080

 <-(A)

INFO 2011-10-31 08:56:13,148 __init__.py:365] building _go_app

 <-(B)

548

Ivo Balbaert

INFO 2011-10-31 08:56:15,073 __init__.py:351] running _go_app

INFO 2011-10-31 08:56:15,188 dev_appserver.py:4143] “GET / HTTP/1.1” 200 -

 <-(C)

At <-(A) the server is ready, at <-(B) the server compiles and runs the Go program, at <-(C) the
request for our app came in and the HTML output page is served.

When the server is terminated or not yet started and a client requests the url http://localhost:8080/
the browser prints a message like this in FireFox: Unable to connect Firefox can’t

establish a connection to the server at localhost:8080.

20.4.3 Iterative development

The development app server watches for changes in your file: as you update your source (edit + save!),
it recompiles them and relaunches your local app; there is no need to restart dev_appserver.py!

Try it now: leave the web server running, then edit helloworld2.go to change “Hello, world!” to
something else. Reload http://localhost:8080/ to see the change: this works just as dynamically as
writing a Rails- or Django-application!

To shut down the web server, make sure the terminal window is active, and then press Control-C
(or the appropriate “break” key for your console).

INFO 2011-10-31 08:56:21,420 dev_appserver.py:4143] “GET / HTTP/1.1” 200 -

INFO 2011-10-31 08:57:59,836 __init__.py:365] building _go_app <-(D)

INFO 2011-10-31 08:58:00,365 __init__.py:351] running _go_app

INFO 2011-10-31 08:58:00,480 dev_appserver.py:4143] “GET / HTTP/1.1” 200 -

^CINFO 2011-10-31 08:58:32,769 dev_appserver_main.py:665] Server interrupted by user,

terminating <-(E)

This can be seen in the listing above of server console output which comes after the first listing:
at (D) the appserver sees that the Go source has been changed and recompiles; at (E) the server is
terminated.

20.4.4. Integrating with the GoClipse IDE

a) Window / Preferences / Go:

point everything to the Go root of GAE

The Way to Go

549

b) Run / External Tools / External Tools Configuration / select Program
Make New Configuration: click New Button,
 Name: GAE
 Location: /home/user/google_appengine/dev_appserver.py
 Working Directory: /home/user/workspace/bedilly/src/pkg/helloapp
 Arguments: home/user/workspace/bedilly/src/pkg/helloapp
Apply / Run

Deploying your app is also easy by configuring an external tool: http://code.google.com/p/goclipse/
wiki/DeployingToGoogleAppEngineFromEclipse

20.5 Using the Users service and exploring its API

GAE provides several useful services based on Google infrastructure. As mentioned in § 20.1,
GAE offers a Users service, which lets your application integrate with Google user accounts. With
the Users service, your users can employ the Google accounts they already have to sign in to your
application. The Users service makes it easy to personalize this application’s greeting.

Edit the file helloworld2.go and replace it with the following Go code:

Listing 20.3 helloworld2_version2.go:

package hello

import (

 “appengine”

 “appengine/user”

 “fmt”

 “net/http”

)

func init() {

 http.HandleFunc(“/”, handler)

}

func handler(w http.ResponseWriter, r *http.Request) {

 c := appengine.NewContext(r)

 u := user.Current(c)

 if u == nil {

 url, err := user.LoginURL(c, r.URL.String())

 if err != nil {

 http.Error(w, err.Error(), http.StatusInternalServerError)

550

Ivo Balbaert

 return

 }

 w.Header().Set(“Location”, url)

 w.WriteHeader(http.StatusFound)

 return

 }

 fmt.Fprintf(w, “Hello, %v!”, u)

}

Test it out by reloading the page in your browser. Your application presents you with a link that,
when followed, will redirect you to the local version of the Google sign-in page suitable for testing
your application. You can enter any username you like in this screen, and your application will see
a fake user.User value based on that username. When your application is running on App Engine,
users will be directed to the Google Accounts sign-in page, and then redirected back to your
application after successfully signing in or creating an account.

The Users API:

In order to access this we need to import some Go packages specifically targeted at GAE, namely
the general appengine and appengine/user.

In the handler we first need to make a Context object associated with the current request r. This is
done in the line: c := appengine.NewContext(r)

The appengine.NewContext function returns an appengine.Context value named c here: this is a
value used by many functions in the Go App Engine SDK to communicate with the App Engine
service. Then from this context we test whether there is already a user logged in at this point
with: u := user.Current(c)

If this is the case user.Current returns a pointer to a user.User value for the user; otherwise it
returns nil. If the user has not yet signed in, that is when u == nil, redirect the user’s browser to the
Google account sign-in screen by calling:

url, err := user.LoginURL(c, r.URL.String())

The 2nd parameter r.URL.String() is the currently requested url so that the Google account sign-in
mechanism can perform a redirection after successful login: it will send the user back here after
signing in or registering for a new account. The sending of the login screen is finished by setting
a Location header and returning an HTTP status code of 302 “Found”.

The Way to Go

551

The LoginURL() function returns an error value as its 2nd argument. Though an error is unlikely
to occur here, it is good practice to check it and display an error to the user, if appropriate (in this
case, with the http.Error helper):

if err != nil {

 http.Error(w, err.Error(), http.StatusInternalServerError)

 return

}

When the user has signed in, we display a personalized message using the name associated with the
user’s account: fmt.Fprintf(w, “Hello, %v!”, u)

In this case, the fmt.Fprintf function calls *user.User’s String method to get the user’s name in
string form. More information can be found at this reference: http://code.google.com/appengine/
docs/go/users/

20.6 Handling forms

As we saw in chapter 15 § 15.6/7 the template package is frequently used in web-applications,
so also in GAE apps. The following app lets a user input a text. First a guestbook form is shown
(via the / root handler), and when this is posted the sign handler substitutes this text in the
resulting html response. The sign function gets the form data by calling r.FormValue and passes it
to signTemplate.Execute that writes the rendered template to the http.ResponseWriter.

Edit the file helloworld2.go, replace it with the following Go code and try it out:

Listing 20.4 helloworld2_version3.go:

package hello

import (

 “fmt”

 “net/http”

 “template”

)

const guestbookForm = `

<html>

 <body>

 <form action=”/sign” method=“post”>

 <div><textarea name=“content” rows=”3” cols=”60”></textarea></div>

 <div><input type=“submit” value=“Sign Guestbook”></div>

552

Ivo Balbaert

 </form>

 </body>

</html>

`

const signTemplateHTML = `

<html>

 <body>

 <p>You wrote:</p>

 <pre>{{html .}}</pre>

 </body>

</html>

`

var signTemplate = template.Must(template.New(“sign”).Parse(signTemplateHTML))

func init() {

 http.HandleFunc(“/”, root)

 http.HandleFunc(“/sign”, sign)

}

func root(w http.ResponseWriter, r *http.Request) {

 // w.Header().Set(“Content-Type”, “text/html”)

 fmt.Fprint(w, guestbookForm)

}

func sign(w http.ResponseWriter, r *http.Request) {

 // w.Header().Set(“Content-Type”, “text/html”)

 err := signTemplate.Execute(w, r.FormValue(“content”))

 if err != nil {

 http.Error(w, err.Error(), http.StatusInternalServerError)

 }

}

20.7 Using the datastore

We now have a way with html-forms to collect information from the user. Often we want to make
this information persistent: we need a place to put it and a way to get it back. GAE here offers
us its DataStore facility: a non-relational database which persists your data across webservers and
even across machines. Indeed the next request of a user could very well go to a different webserver
running on a different computer, but GAE’s infrastructure takes care of all of the distribution,

The Way to Go

553

replication and load balancing of data behind a simple API—and you get a powerful query engine
as well.

We will now expand our example a bit and making a Greeting struct, that can contain the author,
the content and the time of the greeting, and we want to store them. This is the 1st thing you
have to do: make a suitable data structure for your program entity (that is the kind of object your
program handles), most of the time this will be a struct. The in-memory values of this struct in the
running program will contain the data from the DataStore of that entity.

The following version of our program:

(A) url: / : retrieves all stored greetings and shows them through the template package (see §
15.7)

(B) url: /sign: stores a new greeting in the DataStore

We now also need to import the appengine/datastore package.

Listing 20.5 helloworld2_version4.go:

package hello

import (

 “appengine”

 “appengine/datastore”

 “appengine/user”

 “net/http”

 “template”

 “time”

)

const guestbookTemplateHTML = `

<html>

 <body>

 {{range .}}

 {{with .Author}}

 <p>{{html .}} wrote:</p>

 {{else}}

 <p>An anonymous person wrote:</p>

 {{end}}

 <pre>{{html .Content}}</pre>

 {{end}}

554

Ivo Balbaert

 <form action=”/sign” method=“post”>

 <div><textarea name=“content” rows=”3” cols=”60”></textarea></div>

 <div><input type=“submit” value=“Sign Guestbook”></div>

 </form>

 </body>

</html>

`

var guestbookTemplate =

template.Must(template.New(“book”).Parse(guestbookTemplateHTML))

type Greeting struct {

 Author string

 Content string

 Date datastore.Time

}

func init() {

 http.HandleFunc(“/”, root)

 http.HandleFunc(“/sign”, sign)

}

func root(w http.ResponseWriter, r *http.Request) {

 // w.Header().Set(“Content-Type”, “text/html”)

 c := appengine.NewContext(r)

 q := datastore.NewQuery(“Greeting”).Order(“-Date”).Limit(10)

 greetings := make([]Greeting, 0, 10)

 if _, err := q.GetAll(c, &greetings); err != nil {

 http.Error(w, err.Error(), http.StatusInternalServerError)

 return

 }

 if err := guestbookTemplate.Execute(w, greetings); err != nil {

 http.Error(w, err.Error(), http.StatusInternalServerError)

 }

}

func sign(w http.ResponseWriter, r *http.Request) {

 // w.Header().Set(“Content-Type”, “text/html”)

 c := appengine.NewContext(r)

 g := Greeting{

 Content: r.FormValue(“content”),

The Way to Go

555

 Date: datastore.SecondsToTime(time.Seconds()),

 }

 if u := user.Current(c); u != nil {

 g.Author = u.String()

 }

 _, err := datastore.Put(c, datastore.NewIncompleteKey(c, “Greeting”,

 nil), &g)

 if err != nil {

 http.Error(w, err.Error(), http.StatusInternalServerError)

 return

 }

 http.Redirect(w, r, “/”, http.StatusFound)

}

The sign-handler (B) constructs a Greeting value g from the form- and context data, and then stores
this with datastore.Put(). DataStore internally generates its own unique keys for data records; in
order to do this we call the Put() function with datastore.NewIncompleteKey(c, “Greeting”, nil)
as 2nd argument (this function needs the name of the entity Greeting). The 3rd argument to Put()
&g is the struct which contains the values.

The datastore package provides a Query type for querying the datastore and iterating over the
results. The root handler does just that by constructing a query q that requests Greeting objects
from DataStore in Date-descending order, with a limit of 10:

q := datastore.NewQuery(“Greeting”).Order(“-Date”).Limit(10)

We need a data structure to store the results of our query, this is greetings, a slice of Greeting
values. The call to q.GetAll(c, &greetings) retrieves the data and stores them in our slice; of
course we check for a possible error which could have occurred in the retrieval.

When everything is ok we show the data by merging with our template:

guestbookTemplate.Execute(w, greetings)

which is performed by a range-construct (see § 15.7.6).

Again test it out by editing the file helloworld2.go, replace it with the code from listing 20.5;
closing your browser session in between greetings, so that you can check that they are persisted.

556

Ivo Balbaert

Clearing the Development Server Datastore:

The development web server uses a local version of the datastore for testing your application, using
temporary files. The data persists as long as the temporary files exist, and the web server does not
reset these files unless you ask it to do so. If you want the development server to erase its datastore
prior to starting up, use the --clear_datastore option when starting the server: dev_appserver.

py --clear_datastore helloapp/

Debugging:

The gdb debugger works with Go (see http://golang.org/doc/debugging_with_gdb.html), and you
can attach gdb to an existing process. Thus: start the dev_appserver.py as usual, and browse to
localhost:8080 to start your Go app. Then do: $ ps ax | grep _go_app to find the PID and
path of the _go_app. If you attach gdb to that, then the next HTTP request you make to the dev
appserver should hit any breakpoints you can set in your code. Remember that if you modify your
Go source, then the dev appserver will recompile and exec a different _go_app.

20.8 Uploading to the cloud

Our guest book application authenticates users using Google accounts, lets them submit messages,
and displays messages other users have left, let us call it base feature complete: we will now deploy
it in the cloud. If our application would get immensely popular, we don’t need to change anything
because GAE handles scaling automatically.

But first you need to have a Google account, like a gmail-address; you can make one quickly at
www.google.com/accounts

Creating and managing App Engine web applications takes place from the App Engine Administration
Console at this URL: https://appengine.google.com/

After a quick SMS verification procedure you get the “Create an Application” page. Choose an
application identifier (which is unique for all GAE applications) like ib-tutgae.appspot.com; with
prefix http:// this becomes the url of your application. This identifier cannot be changed afterwards,
prefixing it with your initials for private apps or your company name for commercial apps is a good
idea. Then choose an application title, this is visible in your app and can be changed afterwards, e.g.
“Tutorial GAE App”. Leave the defaults Google Authentication and High Replication Datastore
as they are. Below certain quotas GAE runs your applications at no cost! After clicking the button
Create Application, a screen will appear with the message “Application Registered Successfully”.

The Way to Go

557

To upload your app in the cloud, do the following:

1) Edit the app.yaml file changing the value of the application: setting from helloworld to
your registered application ib-tutgae

2) To upload and configure your application in GAE use the script appcfg.py by issuing the
command: appcfg.py update helloapp/

Verification is done by asking your Google account data and if everything succeeds, your application
is now deployed on App Engine!

Step 2) has to be performed every time you upload a new version of your application.

If you see compilation errors, fix the source and rerun appcfg.py; it won’t launch (or update) your
app until compilation is successful.

Test it out in the cloud with: http://application-id.appspot.com

using your own unique application-id, in our case http://ib-tutgae.appspot.com

This also works in a browser on a Windows platform, not only on Linux or OS X.

Monitoring your application:

Visiting https://appengine.google.com/ again will now show a list of your applications. Clicking
the link of your application shows its Control Panel, which serves to monitor your application:

558

Ivo Balbaert

Fig 20.1: The Application Control Panel

This is very important because your application runs in the cloud and this is your only means of
accessing it (apart from uploading a new version with app_cfg)! You cannot profile or debug your
code yourself when it is running in the cloud. There is a graphical representation of the load of
your application (amount of requests per sec), how much resources it has consumed (cpu usage,
bandwidth, storage, replicated data, backend usage) and how this is billed. There is also a load
view: per uri pattern what was the number of requests and the cpu load, and very important: an
Errors view: summary information about the errors that occurred in your application. The Data
panel, and more specifically the Datastore Viewer, lets you visualize and query your stored data. In
addition there are specific views for Administration and links to the GAE documentation. Main
/ Logs gives you access to the application log where every request and error/exception is logged
(exceptions are not shown to the users)

559

Chapter 21—Real World Uses of Go

In the following sections we discuss some real use cases of Go: we explore a number of Go
applications used in businesses today, and point out why Go was chosen in these domains. This
is quite impressive taking into account the language is only been public since 2 years and that
established businesses building initial projects in a new language often don’t want this to be public
knowledge.

21.1 Heroku—a highly available consistent data store in Go.

http://www.heroku.com/ (ref. 39)

Heroku is a Silicon Valley company based in San Francisco U.S. and recently purchased by
Salesforce.com which provides powerful, scalable and above all very manageable cloud hosting
for Ruby and Rails, Java, Clojure and node.js applications. Two engineers from Heroku, Keith
Rarick and Blake Mizerany, designed an open source “distributed init system” called Doozer for
managing processes across clusters of machines, and recovering gracefully from instance failures
and network partitions. One of the requirements was that they needed to reliably synchronize and
share information among many servers.

Every server in the system needs to have a lot of information (configuration data, locks, etc.) about
the system as a whole in order to be able to coordinate, and that information needs to be consistent
and available even during data store failures, so they needed a data store with solid consistency
guarantees. For that purpose they developed Doozer, a new, consistent, highly-available data
store written in Go, modeled after Google’s (closed source) Chubby program for managing their
back-end infrastructure.

Doozer is based upon Paxos, a family of protocols for solving consensus in an unreliable network
of unreliable nodes. While Paxos is essential to running a fault-tolerant system, it is notorious for
being difficult to implement. Even example implementations that can be found online are complex
and hard to follow, despite being simplified for educational purposes. Existing production systems
have a reputation for being worse.

Doozer is developed as a rock-solid basis for building distributed systems:

560

Ivo Balbaert

•	 A	highly	available	(works	during	network	partitions),
•	 Consistent	(no	inconsistent	writes),
•	 Data	store	(for	small	amounts	of	data).

As the developers say: “Doozer is where you put the family jewels.”

It provides a single fundamental synchronization primitive: compare-and-set.

Example use cases:

•	 Database	master	election
•	 Name	service
•	 Configuration

Why Go was chosen and how did Go’s characteristics make it a successful product:

Paxos is defined in terms of independent, concurrent processes that communicate via passing
messages. This is the kind of problem where Go’s concurrency primitives (goroutines and channels,
see chapter 14) excel. In Doozer, these processes are implemented as goroutines, and their
communications as channel operations. In the same way that Go’s garbage collector keeps memory
usage to a minimum, the developers of Doozer found that goroutines and channels improve upon
the lock-based approach to concurrency. These tools let them avoid complex bookkeeping and
stay focused on the problem at hand. They are still amazed at how few lines of code it took to achieve
something renowned for being difficult.

The standard packages in Go were another big win for Doozer, most notably the websocket
package.

Here follows some of the afterthoughts of the developers themselves:

“. . . For instance, a package we quickly found useful was websocket. Once we had a working data store,
we needed an easy way to introspect it and visualize activity. Using the websocket package, Keith was
able to add the web viewer on his train ride home and without requiring external dependencies. This is
a real testament to how well Go mixes systems and application programming.

Deploying Doozer was satisfyingly simple. Go builds statically linked binaries which means Doozer has
no external dependencies; it’s a single file that can be copied to any machine and immediately launched
to join a cluster of running Doozers.”

The Way to Go

561

Finally, Go’s maniacal focus on simplicity and orthogonality aligns with our view of software engineering.
Like the Go team, we are pragmatic about what features go into Doozer. We sweat the details, preferring
to change an existing feature instead of introducing a new one. In this sense, Go is a perfect match
for Doozer. We already have future projects in mind for Go. Doozer is just the start of much bigger
system.”

They also liked the automatic formatting tool gofmt, to achieve consistent code styling and layout,
avoiding discussions about these topics.

Other languages provide somewhat similar mechanisms for concurrency—such as Erlang and
Scala—but Go is designed to provide maximum efficiency and control, as well. In another article
(ref. 12) Keith Rarick states:

“Go comes from a line of systems programming languages like C and C++, so it gives you the ability to
really control the performance characteristics. When it comes time to measure things and make sure they
run fast, you have the flexibility to really get in there and do what you need. And when you figure out
why your program is being slow, you really have the control you need to fix it. Go gives you a unique
combination: C gives you control, but it’s not good for concurrency. It doesn’t even give you garbage
collection. Go gives you concurrency and garbage collection, but it still gives you control over memory
layout and resource use.”

In Doozer Go is primarily used as a systems programming language. A more technical description
can be found in ref. 38; the code can be found at https://github.com/ha/doozer

21.2 MROffice—a VOIP system for call centers in Go.

http://mroffice.org/

This example demonstrates that Go is also suitable for simple, reliable applications programming.
MROffice is a New Zealand based company specialized in market research software. They have
built a telephony solution on top of Freeswitch for market research call centers using Go.Kees
Varekamp who is the developer has a background in market research software. He found most
existing software in that space to be pretty bad and launched MROffice in 2010 to provide better
software to the marketrResearch industry.

His flagship product is named Dialer (http://mroffice.org/telephony.html).

What does Dialer primarily do?

•	 It	connects	interviewers	in	a	call	center	to	interviewees.

562

Ivo Balbaert

•	 It	provides	a	bridge	between	interview	platforms	(that	provide	scripts	and	collect	statistics)	
and a VoIP dialer (to do the actual telephony).

Why Go?

The 1st version of Dialer was written in Python, but his experience was that Python as a dynamic
scripting language was perhaps not such a good choice for long-running server processes: lots of
runtime errors occurred that could have been caught at compile time.

As Mr. Varekamp stated at the Sydney Go user group (March 2011): “When Go came out it
immediately made sense to me: type safe, compiled, feels like a scripting language.” So he ported the
Python code to Go. Go’s concurrency model suited the problem: a goroutine is started to handle each
call, interviewer, and interviewee, all communicating via channels.The http and websocket libraries
made it easy to write a management UI.

The product is now running in multiple call centers, and work is being done on a predictive dialer
design that uses neural networks.

21.3 Atlassian—a virtual machine cluster management system.

http://www.atlassian.com/

At Atlassian Go is used in utility programming with concurrency support for provisioning and
monitoring test servers. They make development and collaboration tools for software developers
and are primarily a Java shop. They have a testing cluster of virtual machines (VMs), run over a
large number of diskless hosts. Its provisioning and monitoring system is written in Go; the system
consists of 3 parts:

•	 Agent	processes	that	run	on	each	server,	broadcasting	the	state	of	their	VMs.
•	 A	manager	process	that	listens	to	the	agent’s	broadcasts	and	takes	action	if	a	VM	fails	to	

report
•	 A	command-line	tool	for	issuing	commands	to	the	manager.

The Agent uses protocol buffer to encode the state information it has read, and broadcasts this
info via UDP. The Manager reads a configuration file and launches one goroutine for each VM
in the cluster. Each goroutine listens for announcements from its corresponding VM, and issues
instructions (shell commands) to keep it in the correct state.

Why Go works here: One goroutine per VM maps nicely to their configuration.

The Way to Go

563

The system is also easy to deploy because they can ship binaries with no dependencies.

As Dave Cheney, Atlassian Engineer states it: “The agent process runs on machines that netboot and
run completely from RAM. A single static binary was a major saving, compared to a JVM or Python
runtime.”

21.4 Camlistore—a content addressable storage system.

http://camlistore.org/

In Camlistore “full stack” programming is happening in Go, from the data store to the UI.

The system is being developed by Brad Fitzpatrick is a system for storing personal data in the cloud
and sharing that data with friends and the public. It is composed out of a content-addressable data
store, a synchronization and access-control mechanism, an API, a user interface, a personal “home
directory for the web”.

It is programming language-agnostic bu the largest parts of it are written in Go. They comprise a
blob dataserver, an http-server, an http user interface, and a number of command-line tools.

It could be used for:

Personal backups automatically synced to remote servers.•	
Dropbox-style file synchronization across machines.•	
Photo management and sharing.•	
Web site content management.•	

Here are some comments from Brad about this Go-project:

“I bust out lots of fast, correct, maintainable testable code in very small amounts of time, without much
code.I haven’t been this excited about a language in ages.I had the idea for Camlistore a long time ago,
but before I learned Go it had always seemed too painful.”

21.5 Other usages of the Go language.

In the preceding sections we discussed only a few of the many places where Go is already used in
business environments. Some other organizations using Go are:

564

Ivo Balbaert

1) Canonical—the Ubuntu company (http://www.canonical.com/): developing backend
infrastructure using Go, with main developer Gustavo Niemeyer, e.g. the project Ensemble
(see ref. 30)

2) FeedBooks (http://www.feedbooks.com/): distributing e-books with Go.

FeedBooks is a distributor of e-books, it uses Go and mgo to serve more than a million
book covers a day. A comment from Benoît Larroque, R&D Engineer at Feedbooks:

“mgo (a Go library for talking to MongoDB) enables us to blazingly serve more
than 1.000.000 book covers a day while reducing our servers load ”

3) Anchor-Orchestra (http://www.anchor.com.au/): a distributed execution framework using
Go. The hallmark of this company is high level server support, configuring application
settings, caching and resolve scalability issues. They can also work with other site hosting
companies to expertly set up load balancing, database clusters and virtual environments.
For that purpose they developed and use the Orchestra distributed execution framework
using Go.

(More info: http://www.anchor.com.au/blog/2011/08/the-automation-waltz/)

4) Open Knowledge Foundation (http://eris.okfn.org/ww/2011/03/gockan):

This organization uses Go for (meta) data catalogue aggregation and linked data. All of the existing
software was written in Python, so the developer could compare both and he concludes:

- Go is simple. Once the initial, shallow, learning curve is passed it is about as convenient
and comfortable to work in as Python. The only disadvantage is that there are not as
many libraries as with Python.

- Go is a statically typed language. This may seem like an esoteric detail but it has some
important consequences. Much programming in Python involves extensive unit and
functional tests. This can get to be quite burdensome, the CKAN test suite, despite some
major improvements takes quite a long time to run. It soon becomes clear, however,
that many of these tests are basically testing duck typing and variable existence (such
as when you rename a variable in refactoring and aren’t sure you renamed everything
properly). These of things are caught by the compiler in a language like Go and do
not need separate tests. This means you can write fewer tests because the compiler itself is
quite a formidable test suite.

- Even though it is a compiled language, the compilation process is very fast and the
write-compile-test loop is no slower than the write-test loop in Python. Because fewer tests
need to be run, see above, this loop is further compressed.

The Way to Go

565

- Go can be much more memory efficient than Python . . . , the difference is striking.
- Go programs are fast compared to Python ones, being a compiled and type-checked

language.
- Go is not object-oriented, at least not in the same sense as Python is. Instead it has a

concept of interfaces. This makes for cleaner design because it does not encourage an
elaborate multiply inheriting class hierarchy , interfaces just feel cleaner.

- Go has built-in concurrency. There are many opportunities for parallelism in this work
and this is nice to have.

5) Tinkercad Inc.(http://tinkercad.com/) : this Finnish company started by Kai Backman
is designing software for 3D solid modeling and printing in the browser/cloud, using
WebGL for rendering on the client. Watch this video http://www.youtube.com/
watch?v=5aY4a9QnLhw for a tech talk on the subject. A phrase from Kai: “At this time
(2011) Go is probably the best language for writing concurrent servers in.”

6) Clarity Services Inc. (http://www.clarityservices.com) : this company is a real-time credit
bureau and uses Go for event based post-processing of credit applications

7) Cablenet Communication Systems Ltd (http://www.cablenet.com.cy/en/): this Cyprus
cablenet provider developed an in-house Provisioning System in Go.

8) Tonika (http://pdos.csail.mit.edu/~petar/5ttt.org/): is an open source secure social
networking platform developed in Go.

9) Medline (http://eris.okfn.org/ww/2011/05/medline/): uses Go’s XML parser to transform
compressed XML from Medline (data from medical journals) into RDF

10) Iron.io (www.iron.io): building cloud infrastructure software.

Its first product developed in Go is SimpleWorker, a large scale background processing
and scheduling system; they are using Go for other services as well.

11) SmartTweets (http://www.facebook.com/apps/application.php?id=135488932982): a
Facebook application built in Go. This application re-posts your Twitter status updates to
your Facebook profile, and allows filtering retweets, mentions, hashtags, replies, and more.
The application has now over 120,000 users. “It’s a stable language,” Michael Hoisie says.
“It can handle the load.”

12) At Sandia National Laboratories (http://www.sandia.gov/about/index.html) a U.S.
government institute to develop science-based technologies that support national security, a
good number of people who used to program using C, C++, Perl, Python or whatever for
the HPC management software, have moved to Go and have no intention of going back:
Go hits a good place between efficiency and language capability and ease of writing code
(according to Ron Minnich).

13) Carbon Games (http://carbongames.com/): an online game company, uses Go for their
backend server stuff.

566

Ivo Balbaert

14) Vaba Software (http://vabasoftware.com/): rewrote their message and storage engines in Go.
15) Institute for Systems Biology (http://systemsbiology.org/): developed the Golem (see

http://code.google.com/p/golem/) distributed computational analysis system in Go.
16) Second Bit (http://www.secondbit.org/): using Go to power their 2cloud service.
17) Numerotron Inc (http://www.stathat.com/): developed their StatHat statistics and event

tracking system in Go.

Last but not least there is Google Inc. itself, the home of (the inventors) of Go.

The usage of Go within Google itself is kept rather secret. But in May 2010 Rob Pike declared
that Google’s back-end infrastructure was running applications built with Go (ref. 27). Go is being
used in a number of systems (web servers, but also storage systems and databases) that play a role in
the distributed infrastructure that spans Google’s worldwide network of data centers. Go probably
will become the standard back-end language at Google over the next few years. Andrew Gerrand
also says Google employees are using Go to simply grab information from servers. “Google has
people who administer apps and services, and they need to write tools that scrape a few thousand
machines statuses and aggregate the data,” he says. “Previously, these operations people would write
these in Python, but they’re finding that Go is much faster in terms of performance and time to
actually write the code.”

A comprehensive list of usage of Go in organizations can be found at http://go-lang.cat-v.org/
organizations-using-go

567

APPENDICES

(A) CODE REFERENCE

gotemplate.go:
package main

import (

“fmt”

)

const c = “C”

var v int = 5

type T struct{}

func init() {

 // initialization of package

}

func main() {

 var a int

 Func1()

 // ...

 fmt.Println(a)

}

func (t T) Method1() {

 //...

}

func Func1() { // exported function Func1

568

Ivo Balbaert

 //...

}

Format specifiers:

%t booleans
%c character (like ‘s’)
%U Unicode code point (U+hhhh notation)
%s strings or []bytes: shows raw bytes
%n.mf n is the minimum width of the string, and m the maximum width.
%q for strings and []byte produces a quoted string format (%#q uses backquotes)
%b bit representation (base 2)
%d integers (base 10) (%x or %X is hexadecimal (base 16) notation (can also be used for
strings and []byte), %o is octal (base 8) notation,), (see example in § 5.4.4)
%f of %g floats or complex (%e is scientific notation), or their equivalent uppercase versions
%F, %G, %E
 %n.mf n is the maximum amount of digits shown, and m the number of digits
after the decimal point.
%p pointers (hexadecimal address with prefix 0x)
%v default format, when String() exists, this is used.
%+v gives us a complete output of the instance with its fields
%#v gives us a complete output of the instance with its fields and qualified type name
%T gives us the complete type specification
Write %% if you want to print a literal % sign
Default is right-justified output, a—between % and the letter makes it left justified.
A 0 between % and the letter shows leading 0s instead of spaces.

Operator precedence:

Precedence Operator(s)

Highest ^ !

 * / % << >> & &^

 + - | ^

To == != < <= >= >

 <-

 &&

Lowest ||

The Way to Go

569

Value types Reference types

new(T) returns type *T make(T) returns type T

 (allocated) (initialized)

strings (immutable) func
array (mutable) slice
struct (mutable) map
 channel

index-notation [i] is used for strings, arrays, slices, maps

Nice to know:

math.MaxInt32 is the largest integer (also equal to int(^uint(0) >> 1))
other related constants can be found in the math package.

Overview for-range construct (iterator):

If only one value is used on the left of a range expression, it is the 1st value in this table; T, K and
V are types.

Range expression 1st value 2nd value notes

string s string type
index i

int
rune int

range iterates over Unicode code

points, not bytes

array or slice a [n]T, *[n]

T, or []T

index i

int
a[i] T

map m map[K]V key k K value m[k] V

channel c chan T
element e

T
none

Some elementary idiomatic code snippets:

(1) Distributed keyword:

import (

 “fmt”

 “os”

)

570

Ivo Balbaert

type (

 Protocol string

 Hostname string

)

var (

 a int

 b bool

 str string

)

const (

 Unknown = 0

 Female = 1

 Male = 2

)

(2) Enums:

const (

 a = iota

 b

 c

)

(3) Multiple declarations of variables of the same type on a single line

var a,b,c int

(4) Declaration and assignment together:

a := 100

(5) Multiple assignments of variables on a single line:

a,b,c = 5,7,9 Swapping: a,b = b,a

a,b,c := 5,7,9

The Way to Go

571

(6) Conversions to typeB: valueOfTypeB = typeB(valueOfTypeA)

(7) No else branch:

if condition {

 return x

}

return y

(8) Initialization in if:

if value := process(data); value > max {

 …

}

(B) CUTE GO QUOTES.

1) Go allows me to say: “I would actively encourage my competition to use Java.”
2) if _, ok := reality.(Reasonable); !ok {
 panic(reality)
 }
 (Eleanor McHugh—Games With Brains—http://feyeleanor.tel)

3) “After Go, programming in anything else seems as difficult as balancing the State of California’s
budget.” -- Charles Thompson

4) “Go is like a better C, from the guys that didn’t bring you C++” -- Ikai Lan
5) “Go seems to be a counterpoint to the old stroustop adage ‘There are only two kinds of languages:

the ones people complain about and the ones nobody uses.’ Go seems to be a language people
complain about without being used.” -- tef in reddit.

6) “From the tutorial: “The language forces the brace style to some extent.” Well, that’s it. If I can’t
have a brace-war tearing the dev group apart for months and kill productivity, I want nothing
to do with that language.” -- SoftwareMaven in hackernews

7) Programming in Go is like being young again (but more productive!).”—Anneli
8) Four out of five language designers agree: Go sucks. The fifth was too busy [to answer] actually

writing code [in Go].”—aiju
9) [Go] is a WTF-language. Compiler fails (not warns) if you have any unused variables, even

though it has garbage collection -- @myfreeweb
10) everytime I get [a variable not used] error I’m like “come on compiler, give me a break. ok, ok,

you’re right, thanks for not letting me code too much like a pig.”

572

Ivo Balbaert

GO QUOTES: TRUE BUT NOT SO CUTE.

1) Most of the appeal for me is not the features that Go has, but rather the features that have been
intentionally left out.”—from Hacker News

2) “Go is not meant to innovate programming theory. It’s meant to innovate programming practice.”
-- Samuel Tesla

3) “One of the reasons I enjoy working with Go is that I can mostly hold the spec in my head—and
when I do misremember parts it’s a few seconds’ work to correct myself. It’s quite possibly the only
non-trivial language I’ve worked with where this is the case.” -- Eleanor McHugh

4) “In Go, the code does exactly what it says on the page.” -- Andrew Gerrand
5) “[the Go authors] designed a language that met the needs of the problems they were facing,

rather than fulfilling a feature checklist” -- ywgdana in reddit
6) “I have reimplemented a networking project from Scala to Go. Scala code is 6000 lines. Go is

about 3000. Even though Go does not have the power of abbreviation, the flexible type system
seems to out-run Scala when the programs start getting longer. Hence, Go produces much shorter
code asymptotically.” -- Petar Maymounko

7) “Go doesn’t implicitly anything.” -- Steven in golang-nuts
8) “Porting my code review tools to Go from Python. Surprised to see a reduction in line counts.”

-- Scott Dunlop
9) “Why would you have a language that is not theoretically exciting? Because it’s very useful.”

-- Rob Pike paraphrased by Roger Peppe
10) Porting a Google App Engine app written in Python to Go: Although I’m new to Go I get much

quicker results than I’ve got with Python. Never used a language before that empowers you to
solve problems as quick as Go does” -- Alexander Orlov

(C) LIST OF CODE EXAMPLES (Listings)

Chapter 2—Installation and Runtime Environment

Listing 2.1—hello_world1.go § 2.3

Listing 2.2—version.go § 2.3 (7)

Chapter 3—Editors, IDE’s and other tools

Listing 3.1—gocomp § 3.4

Listing 3.2—c1.go § 3.9

Listing 3.3—c2.go § 3.9

The Way to Go

573

Chapter 4—Basic constructs and elementary data types

Listing 4.1—hello_world.go § 4.2.1

Listing 4.2—alias.go § 4.2.1

Listing 4.3—hello_world2.go § 4.2.3

Listing 4.4—gotemplate.go § 4.2.5

Listing 4.5—goos.go § 4.4.1

Listing 4.6—init.go § 4.4.5

Listing 4.7—use_init.go § 4.4.5

Listing 4.8—type_mixing.go § 4.5.2

Listing 4.9—casting.go 4.5.2

Listing 4.10—random.go § 4.5.2

Listing 4.11—type.go § 4.5.4

Listing 4.12—char.go § 4.5.5

Listing 4.13—presuffix.go § 4.7

Listing 4.14—index_in_string.go § 4.7

Listing 4.15—count_substring.go § 4.7

Listing 4.16—repeat_string.go § 4.7

Listing 4.17—toupper_lower.go § 4.7

Listing 4.18—strings_splitjoin.go § 4.7

Listing 4.19—string_conversion.go § 4.7

Listing 4.20—time.go § 4.5.6

Listing 4.21—pointer.go § 4.9

Listing 4.22—string_pointer.go § 4.9

Listing 4.23—testcrash.go § 4.9

Chapter 5—Control structures

Listing 5.1—booleans.go § 5.1

Listing 5.2—ifelse.go § 5.1

Listing 5.3—string_conversion2.go § 5.2

Listing 5.4—switch1.go § 5.3

Listing 5.5—switch2.go § 5.3

Listing 5.6—for1.go § 5.4

Listing 5.7—for_string.go § 5.4

Listing 5.8—for2.go § 5.4

Listing 5.9—range_string.go § 5.4

Listing 5.10—for3.go § 5.5

Listing 5.11—for4.go § 5.5

Listing 5.12—for5.go § 5.5

574

Ivo Balbaert

Listing 5.13—for6.go § 5.6

Listing 5.14—goto.go § 5.6

Listing 5.15—goto2.go § 5.6

Chapter 6—Functions

Listing 6.1—greeting.go § 6.1

Listing 6.2—simple_function.go § 6.2

Listing 6.3—multiple_return.go § 6.2

Listing 6.4—blank_identifier.go § 6.2

Listing 6.5—minmax.go § 6.2

Listing 6.6—side_effect.go § 6.2

Listing 6.7—varnumpar.go § 6.3

Listing 6.8—defer.go § 6.4

Listing 6.9—defer_dbconn.go § 6.4

Listing 6.10—defer_tracing.go § 6.4

Listing 6.11—defer_tracing2.go § 6.4

Listing 6.12—defer_logvalues.go § 6.4

Listing 6.13—fibonacci.go § 6.6

Listing 6.14—mut_recurs.go § 6.6

Listing 6.15—function_parameter.go § 6.7

Listing 6.16—function_literal.go § 6.8

Listing 6.17—return_defer.go § 6.9

Listing 6.18—function_return.go § 6.9

Listing 6.19—function_closure.go § 6.9

Listing 6.20—fibonacci.go § 6.9

Listing 6.21—fibonacci_memoization.go § 6.12

Chapter 7—Arrays and Slices

Listing 7.1—for_arrays.go § 7.1

Listing 7.2—pointer_array.go § 7.1

Listing 7.3—array_literals.go § 7.1

Listing 7.4—pointer_array2.go § 7.1

Listing 7.5—multidim_array.go § 7.1

Listing 7.6—array_sum.go § 7.1

Listing 7.7—array_slices.go § 7.2

Listing 7.8—make_slice.go § 7.2

Listing 7.9—slices_forrange.go § 7.3

Listing 7.10—slices_forrange2.go § 7.3

The Way to Go

575

Listing 7.11—reslicing.go § 7.4

Listing 7.12—copy_append_slice.go § 7.5

Listing 7.13—for_string.go § 7.6

Chapter 8—Maps

Listing 8.1—make_maps.go § 8.1

Listing 8.2—map_func.go § 8.1

Listing 8.3—slice_maps.go § 8.1

Listing 8.4—map_testelement.go § 8.2

Listing 8.5—maps_forrange.go § 8.3

Listing 8.6—sort_map.go § 8.5

Listing 8.7—invert_map.go § 8.6

Chapter 9—Packages

Listing 9.1—reboot.go § 9.1

Listing 9.2—pattern.go § 9.2

Listing 9.3—pack1.go § 9.5

Listing 9.4—big.go § 9.5

Listing 9.5—package_test.go § 9.5

Listing 9.6—uc.go § 9.8

Listing 9.7—uc_testgo § 9.8

Listing 9.8—ucmain.go § 9.8

Listing 9.9—use_urlshortener.go § 9.9

Chapter 10—Structs and Methods

Listing 10.1—structs_fields.go § 10.1

Listing 10.2—person.go § 10.1

Listing 10.3—struct_conversions.go § 10.3

Listing 10.4—new_make.go § 10.3

Listing 10.5—structPack.go § 10.3

Listing 10.6—main.go § 10.4

Listing 10.7—struct_tag.go § 10.4

Listing 10.8—structs_anonymous_fields.go § 10.4

Listing 10.9—embed_struct.go § 10.4

Listing 10.10—method.go § 10.5

Listing 10.11—method2.go § 10.5

Listing 10.12—method_on_time.go § 10.6

576

Ivo Balbaert

Listing 10.13—pointer_value.go § 10.5

Listing 10.14—methodset1.go § 10.5

Listing 10.15—person2.go § 10.5

Listing 10.16—use_person2.go § 10.5

Listing 10.17—method3.go § 10.5

Listing 10.18—method4.go § 10.5

Listing 10.19—embed_func1.go § 10.6

Listing 10.20—embed_func2.go § 10.6

Listing 10.21—mult_inheritance.go § 10.5

Listing 10.22—method_string.go § 10.6

Chapter 11—Interfaces

Listing 11.1—interfaces.go § 11.1

Listing 11.2—interfaces_poly.go § 11.1

Listing 11.3—valuable.go § 11.1

Listing 11.4—type_interfaces.go § 11.1

Listing 11.5—methodset2.go § 11.6

Listing 11.6—sort.go § 11.1

Listing 11.7—sortmain.go § 11.1

Listing 11.8—empty_interface.go § 11.3

Listing 11.9—emptyint_switch.go § 11.3

Listing 11.10—node_structures.go § 11.3

Listing 11.11—reflect1.go § 11.9

Listing 11.12—reflect2.go § 11.9

Listing 11.13—reflect_struct.go § 11.9

Listing 11.14—reflect_struct2.go § 11.9

Listing 11.15—print.go § 11.10

Listing 11.16—duck_dance.go § 11.11

Listing 11.17—multi_interfaces_poly.go § 11.11

Listing 11.18—cars.go § 11.12

Chapter 12—Reading and writing

Listing 12.1—readinput.go § 12.1

Listing 12.2—readinput2.go § 12.1

Listing 12.3—switch_input.go § 12.1

Listing 12.4—fileinput.go § 12.2

Listing 12.5—read_write_file1.go § 12.3

Listing 12.6—read_file2.go § 12.3

The Way to Go

577

Listing 12.7—gzipped.go § 12.2

Listing 12.8—fileoutput.go § 12.3

Listing 12.9—filewrite.go § 12.3

Listing 12.10—filecopy.go § 12.3

Listing 12.11—os_argsgo § 12.4

Listing 12.12—echo.go § 12.4

Listing 12.13—cat.go § 12.4

Listing 12.14—cat2.go § 12.4

Listing 12.15—io_interfaces.go § 12.6

Listing 12.16—json.go § 12.9

Listing 12.17—xml.go § 12.9

Listing 12.18—gob1.go § 12.11

Listing 12.19—gob2.go § 12.11

Listing 12.20—hash_sha1.go § 12.12

Chapter 13—Error-handling and Testing

Listing 13.1—errors.go § 13.1

Listing 13.2—panic.go § 13.1

Listing 13.3—panic_recover.go § 13.3

Listing 13.4—parse.go § 13.3

Listing 13.5—panic_defer.go § 13.3

Listing 13.6—exec.go § 13.4

Listing 13.7—main_oddeven.go § 13.6

Listing 13.8—even/even.go § 13.6

Listing 13.9—oddeven_test.go § 13.6

Chapter 14—Goroutines and Channels

Listing 14.1—goroutine1.go § 14.1

Listing 14.2—goroutine2.go § 14.2

Listing 14.3—channel_block.go § 14.2

Listing 14.4—channel_block2.go § 14.2

Listing 14.5—channel_idiom.go § 14.2

Listing 14.6—channel_idiom2.go § 14.2

Listing 14.7—sieve1.go § 14.2

Listing 14.8—sieve2.go § 14.2

Listing 14.9—goroutine3.go § 14.3

Listing 14.10—goroutine_select.go § 14.4

goroutine_select2.go § 14.4

578

Ivo Balbaert

Listing 14.11—lazy_evaluation.go § 14.7

Listing 14.12—timer_goroutine.go § 14.8

Listing 14.13—eneral_lazy_evaluation1.go § 14.8

Listing 14.14—multiplex_server.go § 14.6

Listing 14.15—multiplex_server2.go § 14.6

Listing 14.16—max_tasks.go § 14.7

Listing 14.17—chaining.go § 14.8

Listing 14.18—benchmark_channels.go § 14.14

Listing 14.19—conc_access.go § 14.17

Chapter 15—Networking, templating and web applications

Listing 15.1—server.go § 15.1

Listing 15.2—client.go § 15.1

Listing 15.3—dial.go § 15.1

Listing 15.4—socket.go § 15.1

Listing 15.5—simple_tcp_server.go § 15.1

Listing 15.6—hello_world_webserver.go § 15.2

Listing 15.7—poll_url.go § 15.3

Listing 15.8—http_fetch.go § 15.5

Listing 15.9—twitter_status.go § 15.4

Listing 15.10—simple_webserver.go § 15.4

Listing 15.11—robust_webserver.go § 15.5

Listing 15.12—wiki.go § 15.6

Listing 15.13—template_field.go § 15.7

Listing 15.14—template_validation.go § 15.7

Listing 15.15—pipeline1.go § 15.7

Listing 15.16—template_ifelse.go § 15.7

Listing 15.17—template_with_end.go § 15.7

Listing 15.18—template_variables.go § 15.7

Listing 15.19—predefined_functions.go § 15.7

Listing 15.20—elaborated_webserver.go § 15.8

Listing 15.21—rpc_objects.go § 15.9

Listing 15.22—rpc_server.go § 15.9

Listing 15.23—rpc_client.go § 15.9

Listing 15.24—websocket_server.go § 15.11

Listing 15.25—websocket_client.go § 15.11

Listing 15.26—smtp.go § 15.12

Listing 15.27—smtp_auth.go § 15.12

The Way to Go

579

Chapter 16—Common go pitfalls and mistakes

Listing 16.1—pointer_interface.go § 16.2

Listing 16.2—closures_goroutines.go § 16.10

Chapter 19—Building a complete application

key.go

goto_v1: main.go / store.go

goto_v2: main.go / store.go

goto_v3: main.go / store.go

goto_v4: main.go / store.go

goto_v5: main.go / store.go

Chapter 20—Go in Google App Engine

Listing 20.1 helloworld.go § 20.3

Listing 20.2 helloworld2_version1.go § 20.4

Listing 20.3 helloworld2_version2.go § 20.5

Listing 20.4 helloworld2_version3.go § 20.6

Listing 20.5 helloworld2_version4.go § 20.7

(D) LIST OF EXERCISES

Chapter 4—Basic constructs and elementary data types

Exercise 4.1—local_scope.go § 4.4

Exercise 4.2—global_scope.go § 4.4

Exercise 4.3—function_calls_function.go § 4.4

Exercise 4.4—divby0.go § 4.4

Exercise 4.5—alias § 4.5.5

Exercise 4.6—count_characters.go § 4.6

Chapter 5—Control structures

Exercise 5.1—short declaration § 5.2

Exercise 5.2—season.go § 5.3

Exercise 5.3—i_undefined.go § 5.4

Exercise 5.4—for_loop.go § 5.4

580

Ivo Balbaert

Exercise 5.5—for_character.go § 5.4

Exercise 5.6—bitwise_complement.go § 5.4

Exercise 5.7—fizzbuzz.go § 5.4

Exercise 5.8—rectangle_stars.go § 5.4

Exercise 5.9—output.go § 5.4

Chapter 6—Functions

Exercise 6.1—mult_returnval.go § 6.3

Exercise 6.2—error_returnval.go § 6.3

Exercise 6.3—varargs.go § 6.3

Exercise 6.4—fibonacci2.go § 6.6

Exercise 6.5—10to1_recursive.go § 6.6

Exercise 6.6—factorial.go § 6.6

Exercise 6.7—strings_map.go § 6.7

Exercise 6.8—lambda_value.go § 6.8

Exercise 6.9—fibonacci_closure.go § 6.8

 Exercise 6.10—compose.go § 6.8

Chapter 7—Arrays and Slices

Exercise 7.1—array_value.go § 7.1

Exercise 7.2—for_array.go § 7.1

Exercise 7.3—fibonacci_array.go § 7.1

Exercise 7.4—fibonacci_funcarray.go § 7.2

Exercise 7.5—append(slice, data[]byte) []byte § 7.2

Exercise 7.6—buffer split § 7.2

Exercise 7.7—sum_array.go § 7.3

Exercise 7.8—min_max.go § 7.3

Exercise 7.9—magnify_slice.go § 7.5

Exercise 7.10—filter_slice.go § 7.5

Exercise 7.11—insert_slice.go § 7.5

Exercise 7.12—remove_slice.go § 7.5

Exercise 7.13—string_split.go § 7.6

Exercise 7.14—string_split2.go § 7.6

Exercise 7.15—string_reverse.go § 7.6

Exercise 7.16—uniq.go § 7.6

Exercise 7.17—bubblesort.go § 7.6

Exercise 7.18—map_function.go § 7.6

The Way to Go

581

Chapter 8—Maps

Exercise 8.1—map_days.go § 8.2

Exercise 8.2—map_drinks.go § 8.3

Chapter 9—Packages

Exercise 9.1—dlinked_list.go § 9.1

Exercise 9.2—size_int.go § 9.2

Exercise 9.3—main_greetings.go § 9.5

 greetings\greetings.go

Exercise 9.4—main_oddeven.go § 9.5

 even.go

Exercise 9.5—main_fibo.go § 9.5

fibo\fibonacci.go

Exercise 9.6—package strev § 9.8

Chapter 10—Structs and Methods

Exercise 10.1—vcard.go § 10.1

Exercise 10.2—personex1.go § 10.1

Exercise 10.3—point.go § 10.1

Exercise 10.4—rectangle.go § 10.1

Exercise 10.5—anonymous_struct.go § 10.4

Exercise 10.6—employee_salary.go § 10.4

Exercise 10.7—iteration_list.go § 10.4

Exercise 10.8—inheritance_car.go § 10.4

Exercise 10.9—point_methods.go § 10.5

Exercise 10.10—inherit_methods.go § 10.5

Exercise 10.11—magic.go § 10.5

Exercise 10.12—type_string.go § 10.6

Exercise 10.13—celsius.go § 10.6

Exercise 10.14—days.go § 10.6

Exercise 10.15—timezones.go § 10.6

Exercise 10.16—stack_arr.go § 10.6

 stack_struct.go

Exercise 10.17—stack_struct.go § 10.6

 main_struct.go

582

Ivo Balbaert

Chapter 11—Interfaces

Exercise 11.1 - simple_interface.go § 11.1

Exercise 11.2-3—interfaces_poly2/3.go § 11.1

Exercise 11.4 - simple_interface2.go § 11.1

Exercise 11.5—interfaces_ext.go § 11.6

Exercise 11.6—point_interfaces.go § 11.6

Exercise 11.7—float_sort.go / § 11.6

 float_sortmain.go

Exercise 11.8—sort.go / sort_persons.go § 11.6

Exercise 11.9 - simple_interface3.go § 11.7

Exercise 11.10 - min_interface.go / minmain.go § 11.7

Exercise 11.11—map_function_interface.go § 11.8

Exercise 11.12—map_function_interface_var.go § 11.8

Exercise 11.13 - main_stack.go—stack/stack_general.go § 11.8

Chapter 12—Reading and writing

Exercise 12.1 - word_letter_count.go § 12.1

Exercise 12.2 - calculator.go § 12.1

Exercise 12.3—read_csv.go § 12.4

Exercise 12.4—wiki_part1.go § 12.4

Exercise 12.5—hello_who.go § 12.5

Exercise 12.6—cat_numbered.go § 12.5

Exercise 12.7—remove_3till5char.go § 12.5

Exercise 12.8—degob.go § 12.11

Exercise 12.9—hash_md5.go § 12.12

Chapter 13—Error-handling and Testing

Exercise 13.1 - recover_dividebyzero.go § 13.3

Exercise 13.2 - panic_defer.go § 13.3

Exercise 13.3 - panic_defer_convint.go § 13.3

Exercise 13.4 - string_reverse_test.go § 13.6

Exercise 13.5—panic_defer.go § 13.3

Chapter 14—Goroutines and Channels

Exercise 14.1—channel_block3.go § 14.2

Exercise 14.2 - blocking.go § 14.2

The Way to Go

583

Exercise 14.3—channel_buffer.go § 14.2

Exercise 14.4—give explanation § 14.2

Exercise 14.5—gosum.go § 14.2

Exercise 14.6—producer_consumer.go § 14.6

Exercise 14.7—goroutine_panic.go § 14.4

 goroutine_close.go

 goroutine_select.go

Exercise 14.8—go_fibonacci.go § 14.4

go_fibonacci2.go / go_fibonacci3.go

Exercise 14.9—random_bitgen.go § 14.4

Exercise 14.10 - polar_to_cartesian.go § 14.4

Exercise 14.11 - concurrent_pi.go § 14.4

 concurrent_pi2.go

Exercise 14.12—general_lazy_evaluation2.go § 14.8

Exercise 14.13—multiplex_server3.go § 14.6

Chapter 15—Networking, templating and web applications

Exercise 15.1—client1.go / server1.go § 15.1

Exercise 15.2—webhello2.go § 15.2

Exercise 15.3—hello_server.go § 15.2

Exercise 15.4—http_fetch2.go § 15.3

Exercise 15.5—twitter_status_json.go § 15.3

Exercise 15.6—statistics.go § 15.4

Exercise 15.7—template_validation_recover.go § 15.7

(E) References in the text to Go—packages

appengine NewContext § 20.5

appengine/user Current / LoginURL

appengine/datastore NewQuery / Order / Limit / GetAll / Put /

 NewIncompleteKey / SecondsToTime § 20.7

bufio Reader / NewReader / ReadString/ ReadLine § 12.1

 Writer / New Writer / WriteString / Flush § 12.3

 WriteTo § 15.9

bytes Buffer

 WriteString / String § 7.2.6 / § 9.3 / § 11.1 /

 § 12.1 / § 15.5-6 / § 16.2

compress/gzip NewReader § 12.2.2

crypto/sha1 New / Write / Sum / Reset § 12.12

584

Ivo Balbaert

encoding/gob NewEncoder / Encode / NewDeoder / Decode § 12.11

encoding/json Marshal / NewEncoder / Encode § 12.9

encoding/xml Token / NewParser / Name / Value / Attr

 StartElement / EndElement / CharData § 12.10

 UnMarshal § 14.3

expvar NewInt / Publish § 15.6

filepath Base § 13.1

flag Parse / NArg § 12.4

 Bool / Arg § 12.5

 Int § 14.8

 Name / Value / DefValue / VisitAll § 15.6

fmt Print / Println / Printf § 4.4.3

 Sprintf § 4.4.3 / § 5.1

 Fprint / Fprintf § 12.2.2 § 12.8 / throughout chapter 15

 Scanln / Scanf / Scanf § 12.1

 Fscanln § 12.2

 Errorf § 4.5.2.1 / § 13.1

io Writer everywhere

 ReadAll § 12.7

 WriteString / Copy §12.12 / § 15.1 § 15.6

io/ioutil ReadFile / WriteFile § 12.2 § 15.4

 ReadAll § 15.3

log SetFlags § 6.10

 Print / Println / Printf § 13.3

 Panicln / Exit § 15.6

 Fatalf § 15.8

math Atan § 4.4.5

 Sqrt § 5.2

 Pi § 11.2.3

math/big Int / Rat § 4.5.2.5 / § 9.4

math/rand Int / Intn / Seed / Float32 / Float64 § 4.5.2

net Listener / Conn / Listen / Accept / Read / Error § 15.1

 Dial / RemoteAddr / TCPListener / ResolveTCPAddr / ListenTCP / Addr

net/http Request / Response / ResponseWriter / HandleFunc / ListenAndServe

 § 15.2

 Get / Redirect / NotFound / Error / status constants § 15.3

 DetectContentType § 15.4

 Request.Method / Handle / HandlerFunc § 15.6

 Serve § 15.7

net/rpc Register / HandleHTTP / DialHTTP / Call § 15.9

The Way to Go

585

net/smtp Dial / Mail / Rcpt / Data / SendMail / PlainAuth § 15.12

netchan NewExporter / Export / NewImporter / Import § 15.10

os GetEnv 4.4.1 / § 13.2

 Error / Exit / Open § 5.2

 Stdin / Stdout / Sterr / EOF § 12.1

 File § 12.2

 Errno § 12.4

 Args § 12.4 § 15.6

 NewError § 13.1

 StartProcess § 13.4 § 15.6

 Pipe / Close / Release / Wait § 15.6

os/exec Command / Run § 13.4

reflect StructType / Typeof / Field § 10.4

 ValueOf / Type / Kind / NumField / Field / Method / Call § 10.5

regexp Match / Compile / ReplaceAllString / ReplaceAllStringFunc § 11.10

 MustCompile § 15.4

runtime Version § 2.3

 Caller § 6.10

 SetFinalizer / GC / MemStats § 10.7

 Error § 13.2

 Gosched / Goexit § 14.1 / § 14.5

sort SortInts / IntsAreSorted / SortFloat64s / Strings /SearchInts § 7.6.5

strconv IntSize

 Itoa / Atoi / FormatFloat / ParseFloat § 4.7.8

strings HasPrefix / HasSuffix / Contains / Index / LastIndex / Count / Repeat

 § 4.7

 ToLower / ToUpper / Trim / Fields

 IndexFunc / Map § 6.7

 Join § 12.4

 NewReader § 4.7.11 / § 12.10

sync Mutex / RWMutex / Once / Do § 9.3 § 14.13

syscall Stdin / Stdout / Sterr / Open / Close / Read / Write § 12.4

text/template Template / Execute § 15.7

 Parse / ParseFiles / Must

time Time / Duration / Location § 4.5.6.2 / § 6.9

 Now / Format / Add / Sub § 4.5.6

 Sleep § 14.1

 Ticker / Tick / Stop / Timer / After § 14.5

unicode IsLetter / IsDigit / IsSpace § 4.5.3

unicode/utf8 RuneCountInString Ex 4.6 § 4.6

586

Ivo Balbaert

unsafe Sizeof § 10.2.1 / ex. 9.2

websocket Handler / Conn / Read § 15.14

(F) References in the text to Go—tools

go doc §1.1 godoc in the golang website
 §3.6 documenting code
 §4.2.3 extracting comments from code with godoc
 §9.6 documenting your own packages

go fix §3.7 updating code

go fmt §3.5 formatting code
 imposing standard formatting (various places)

go install § 3.7 installing packages outside of standard library
 § 3.9 using with cgo
 § 9.7 installing custom packages

gomake §3.4 building a program
 §11.1 building and installing a package
 §13.7 testing and benchmarking in Go

go test §13.7 testing and benchmarking in Go

(G) Answers to Questions

Question 4.1: int and int64 are different types, in order to mix variables of these types, you have
to use explicit conversions.

Question 4.2: - multiplication of numeric variables: 3 * 4
- declaration of a pointer type: *float64
- dereferencing a pointer to obtain the value

Question 5.1: was <= 6

was <= 7

was <= 8

default case

The Way to Go

587

Question 5.2: 1) prints increasing value of i infinitely, since the middle check statement does not
exist;

2) prints “value of i is: 0” infinitely since the incrementing part is not there and
i can never reach 3;

3) here both initialization and incrementing is missing in the for statement, but
it is managed outside of it:

a

aa

aaa

aaaa

4) Value of i, j, s: 0 5 a

 Value of i, j, s: 1 6 aa

 Value of i, j, s: 2 7 aaa

 (see listing multiple_for.go)

Question 5.3: 1) Value of i is: 0
Value of i is: 1

Value of i is: 2

A statement just after for loop.

2) Odd: 1

 Odd: 3

 Odd: 5

Question 6.1: The compiler gives the error: “function ends without a return statement”

The for loop contains a return, but this executes only after the if

condition is satisfied; the compiler reasons that it could be that no if

condition is true, so return never executes.

Correction: place a return 0 after the for-loop:

func (st *Stack) Pop() int {

 v := 0

 for ix:= len(st)-1; ix>=0; ix-- {

 if v=st[ix]; v!=0 {

 st[ix] = 0

 return v

 }

 }

 return 0

}

588

Ivo Balbaert

Question 6.2: In case A) both a and b are pointers to the same value of type A.

If through b in DoSomething the value is changed, a sees that change.

In case B) a is passed by value, so a copy of the value is made and b is a pointer to
that copy.

So a and b refer to different copies of the (same) value of type A.

If through b in DoSomething the value is changed, a doesn’t see that change, the
value of a doesn’t change.

Question 7.1: Array item 0 is a

Array item 1 is b

Array item 2 is c

Array item 3 is d

Question 7.2: Given the slice of bytes b := []byte{‘g’, ‘o’, ‘l’, ‘a’, ‘n’, ‘g’}
b[1:4] == []byte{‘o’, ‘l’, ‘a’} // this slice has length 3 and indices 0,

1 and 2

b[:2] == []byte{‘g’, ‘o’}

b[2:] == []byte{‘l’, ‘a’, ‘n’, ‘g’}

b[:] == b

Question 7.3: Given s := make([]byte, 5), len(s) == cap(s) is 5

s = s[2:4], len(s) is 2 and cap(s) is 3

Question 7.4: Suppose s1 := []byte{‘p’, ‘o’, ‘e’, ‘m’} and s2 := d[2:]
What is the value of s2 ? s2 == []byte{‘e’, ‘m’}
We do: s2[1] == ‘t’, what is now the value of s1 and s2 ?

s2 == []byte{‘e’, ‘t’} and s1 == []byte{‘p’, ‘o’, ‘e’, ‘t’}

Question 7.5: a) items will be unchanged, because the local variable item is a copy of the real
value, so the real values cannot be changed through it!

b) for ix := range items {

 items[ix] *= 2

}

The Way to Go

589

Question 7.6: 1) in variadic functions: func myFunc(a, b, arg ...int) {}
myFunc receives a variable number of values in arg

the built-in append function is an example
2) when defining an array without indicating the length

arrLazy = [...]int{5, 6, 7, 8, 22}

3) when calling a variadic function with an array/slice:
myFunc(5, 10, sl1...)

Question 7.7: 1) the length of s[n:n] is 0, this slice is empty.
2) the length of s[n:n+1] is 1, this slice contains the element at index n.

Question 8.1: Map item: Capital of Japan is Tokyo

Map item: Capital of Italy is Rome

Map item: Capital of France is Paris

Question 9.1:
a) Can a package be divided over multiple source files ? yes
b) Can a single source file contain multiple packages ? no

Question 10.1: 1) packagename.Constant or packagename.Method()
2) struct.field

3) variable.method()

Question 10.2: a) Suppose we define: type Integer int

Fill in the body of the get() function: func (p Integer) get() int { return
in(p) }

b) Defined are: func f(i int) { }
var v Integer

How would you call f with as parameter v ? f(int(v))
f(v) is not valid, because type int and type Integer are not the same!

c) Suppose Integer is define as : type Integer struct { n int }
Now fill in the body of the get() function: func (p Integer) get() int {
return p.n }

d) Same question as in b) for the Integer struct type.
 How would you call f with as parameter v ? f(v.n))

590

Ivo Balbaert

Question 14.1: Use a buffered channel throttle and a NewTicker object tick:
import “time”

rate_per_sec := 10

burst_limit := 100

tick := time.NewTicker(1e9 / rate_per_sec)

defer tick.Stop()

throttle := make(chan int64, burst_limit)

go func() {

 for ns := range tick {

 select {

 case: throttle <- ns

 default:

 }

 } // exits after tick.Stop()

}()

for req := range requests {

 <- throttle // rate limit our Service.Method RPCs

 go client.Call(“Service.Method”, req, ...)

}

Question 17.1: see § 17.1

Question 17.2: see § 17.2

(H) ANSWERS TO EXERCISES

Exercise 4.4: type Rope string

var r1 Rope = “Admiral Blake”

Exercise 5.1: anInt, err := strconv.Atoi(origStr)

The declarations var anInt int and var err error can then be omitted

Exercise 5.3: The variable i in the last line of main() is out of scope, it was only

known within the body of the for-loop where it was declared.

We can make it work by declaring I before the loop, like:

func main() {

var i int

for i=0; i<10; i++ {

fmt.Printf(“%v\n”, i)

The Way to Go

591

}

fmt.Printf(“%v\n”, i)

}

Exercise 5.6: 0 0 0 0 0 (think about the initialization)

Exercise 7.5: func Append(slice, data[]byte) []byte {

 l := len(slice)

 if l + len(data) > cap(slice) { // reallocate

 // Allocate double what’s needed, for future growth.

 newSlice := make([]byte, (l+len(data))*2)

// The copy function is predeclared and works for

// any slice type.

 copy(newSlice, slice)

 slice = newSlice

 }

 slice = slice[0:l+len(data)]

 for i, c := range data {

 slice[l+i] = c

 }

 return slice

}

Exercise 7.6: header, tail := buf[0:n], buf[n:len(buf)]

Exercise 10.2: Difference in behavior: only the copied value in upPerson is changed, not the
value in main()

Exercise 10.7: The type list.List is defined in the package container/list, so it is not local (belonging
to the current package); therefore you cannot define a new method like Iter() on
it in the local package.

Exercise 10.8: magic.go

The output is: voodoo magic

base magic base magic

So when MoreMagic() is called the Magic() method is also called on Base.

592

Ivo Balbaert

This composition is achieved via delegation, not inheritance. Once the anonymous
member’s method has been called, flow has been delegated to that method entirely.
So you cannot simulate a type hierarchy

Exercise 12. 7: remove_3till5char.go

The logical error is that in the if test on EOF, a return is done: this returns from
main(), so Flush() doesn’t get executed. For small files the whole output contents
is still in the flush buffer, so nothing gets written.

That no message “Conversion done” was printed should have alerted you.

Solution: use a break instead of return, this jumps out of the for-loop, so the
Flush() gets executed.

if readerError == io.EOF {

 fmt.Println(“EOF”)

 break

}

Exercise 13.1: The output is:
Calling g.

Printing in g 0

Printing in g 1

Printing in g 2

Printing in g 3

Panicking!

Defer in g 3

Defer in g 2

Defer in g 1

Defer in g 0

Recovered in f 4

Returned normally from f.

Remember: defer is executed in LIFO-order, panic returns the ‘wrong’ variable value with Sprintf,
and because the panic occurs in g, “Returned normally from g.” is not printed!

Remove the defer function in f() and see what happens: the program crashes and the output
sequence is the same except for:

The Way to Go

593

…

Defer in g 0

panic: 4

runtime.panic+0x9e /go/src/pkg/runtime/proc.c:1060

runtime.panic(0x43fa1c, 0x12740260)

…

Exercise 14.2: blocking.go

out is an unbuffered channel, out <- 2 blocks because the goroutine which must
do the receiving has not been started yet: so we have a deadlock situation.

Solutions: 1) start the go routine before putting something on out
2) make out a buffered channel: out:=make(chan int, 1)
 then the send can proceed without blocking.

Exercise 14.3: The main() routine ends before getData() can receive and print the data.

(I) BIBLIOGRAPHY (Resources and References)

1) The official Go language website: http://golang.org/
2) The official Go Language FAQ: http://golang.org/doc/go_faq.html
3) The official Go Language Specification: http://golang.org/doc/go_spec.html
4) The official Go-Tutorial: http://golang.org/doc/go_tutorial.html
5) Effective Go—http://golang.org/doc/effective_go.html
6) The Go Programming language Blog: http://blog.golang.org/
7) ARTICLE: “Go For C++ Programmers”—http://golang.org/doc/go_for_cpp_

programmers.html
8) The French Go-wiki: http://fr.wikibooks.org/wiki/Programmation_en_Go
9) ARTICLE: “CodeLab: Writing Web Applications”—http://golang.org/doc/codelab/wiki/
10) Wiki-list of Go articles: http://code.google.com/p/go-wiki/w/list
11) Website: The Computer Language Benchmark Game: http://shootout.alioth.debian.org/
12) ARTICLE: “Google Go boldly goes where no code has gone before”—The Register, May

2011—http://www.theregister.co.uk/2011/05/05/google_go/
13) BOOK: “Go Programming”—John P. Baugh—jun 2010—La Vergne TN USA—ISBN:

1453636676 / EAN-13: 9781453636671
14) ARTICLE: “Go Data Structures”—Russ Cox—http://research.swtch.com/2009/11/

go-data-structures.html
15) ARTICLE: “Profiling Go Programs “—Russ Cox—The Go Programming Language Blog,

Jun 2011—http://blog.golang.org/2011/06/profiling-go-programs.html
16) VIDEO: Go Programming—Russ Cox / Rob Pike—Google IO 2010

594

Ivo Balbaert

17) ARTICLE: “Benchmarking Go and Python webservers.”—Michał Derkacz http://ziutek.
github.com/web_bench/

18) WEB SITE: “Go Language Patterns”—Ryanne Dolan—http://www.golangpatterns.info/
19) VIDEO: Real World Go—Andrew Gerrand—Google IO BootCamp 2011
20) VIDEO: “Writing Go Packages”—Andrew Gerrand
21) VIDEO: “Testing Go Packages”—Andrew Gerrand
22) VIDEO: Practical Go Programming—Andrew Gerrand—FOSSDEM 2011
23) ARTICLE: “C? Go? Cgo!”—Andrew Gerrand—The Go Programming Language Blog,

Mar 2011—http://blog.golang.org/2011/03/c-go-cgo.html
24) WEB SITE: “Go Snippets”—Andrew Gerrand—http://gosnip.posterous.com/
25) PDF: “Learning Go”—Miek Gieben—oct 2010: http://www.miek.nl/files/go
26) ARTICLE: “Loop Recognition in C++/Java/Go/Scala”—Robert Hundt—http://research.

google.com/pubs/pub37122.html
27) ARTICLE: “Google programming Frankenstein is a Go—Python-C++ crossbreed lands

on Goofrastructure”—Cade Metz—The Register, May 2010—http://www.theregister.
co.uk/2010/05/20/go_in_production_at_google/

28) BOOK: “Systemprogrammierung in Google Go—Skalierbarkeit—Performanz—
Sicherheit”—Frank Müller—jan 2011—dpunkt.verlag—ISBN 978-3-89864-712-0

29) WEBSITE: “Coding in Go”—Frank Müller—http://www.tideland.biz/CodingInGo
30) ARTICLE: “Ensemble, Go, and MongoDB at Canonical”—Gustavo Niemeyer—http://

blog.labix.org/2011/08/05/ensemble-go-and-mongodb-at-canonical#more-706
31) Go-course given at Google by Rob Pike (oct 2009): slides of Day 1, 2, 3: http://golang.

org/doc/GoCourseDay1.pdf, etc.
32) ARTICLE: “Google Discloses New Go Language” -- Nikkei Electronics Asia -- January

2010—Tech-On!
33) VIDEO: The Go Programming Language—Rob Pike—30/10/2009 (the ‘initial’ talk)
34) VIDEO: Public static void—Rob Pike—OSCON 2010
35) VIDEO: Another Go at language design—Rob Pike—OSCON 2010
36) VIDEO: Go—Rob Pike—Emerging languages OSCON 2010
37) ARTICLE: “The Laws of Reclection”—Rob Pike—The Go Programming Language Blog,

Sep 2011—http://blog.golang.org/2011/09/laws-of-reflection
38) ARTICLE: “Introducing Doozer”—Keith Rarick—http://xph.us/2011/04/13/

introducing-doozer.html
39) ARTICLE: “Go at Heroku”—Keith Rarick—The Go Programming Language Blog, Apr

2011—http://blog.golang.org/2011/04/go-at-heroku.html
40) BOOK: “Programming in Go: Creating Applications for the 21st Century”—Mark

Summerfield—May 2012 (estimated)—Addison-Wesley Professional—ISBN-10:
0-321-77463-9 / ISBN-13: 978-0-321-77463-7

The Way to Go

595

41) WEB SITE: “Go Lang Tutorials”—Sathish VJ—http://golangtutorials.blogspot.
com/2011/05/table-of-contents.html

42) ARTICLE: “Google Go: A Primer”—Samuel Tesla, InfoQ Jan 2010
43) WEB SITE: “PhatGoCode”—Chris Umbel—http://www.phatgocode.com/
44) ARTICLE: J. N. White—http://jnwhiteh.net/posts/2010/09/go-examples-1-channels-

and-goroutines.html

597

INDEx
A

alias 53
Android 9, 12
anonymous function 147, 262, 434
ARM 9, 12, 34

B

benchmarking 366
benchmarks 433
Binary tree 230
blank identifier 49, 70, 81, 133, 401
buffered reading 328
buffered writing 330

C

callback 146
capacity 142, 164, 166, 167, 169, 170, 171,

175, 176, 177, 188, 387, 388, 391, 402,
427, 428, 505, 508

closure 147, 150, 151, 152, 153, 307, 389, 390,
421, 434, 460, 490, 491, 492, 574, 580

comma ok 189
comma, ok pattern 106, 494
compiler flags 13
complex number 79
concurrent xix, xxi, 6, 27, 201, 202, 248, 375,

377, 378, 406, 427, 434, 524, 528, 560,
565, 583

coroutines 381
critical section 200
csv-files 321

D

datastore 412, 467, 511, 514, 521, 539, 547,
552, 553, 555, 556, 583

deadlock 385, 387, 405, 412, 593
debugging 32, 33, 34, 55, 142, 153, 261,

485, 556
decoding 335
defer-panic-and-recover 348
DRY-principle 126
duck typing 299, 564

E

empty interface 129, 137, 157, 185, 285, 286,
287, 288, 290, 304, 305, 338, 361, 382,
390, 418

encoding 335
enumerations 62
Express-Go 23
extracting interfaces 301

F

factory 513
factory for structs 232
factory function 152
Fibonacci 143, 144, 145, 152, 154, 161, 170,

208, 406, 419
FreeBSD 11, 15, 23
functional xx, 8, 126, 150, 153, 184, 564
Function overloading 128
futures 420

598

Ivo Balbaert

G

garbage collection xxii, 6, 8, 27, 182, 198, 261,
262, 375, 412, 561, 571

garbage collector 560
Garbage collector 27
gc 7, 11, 13, 14, 23, 34, 378
gccgo 7, 11, 12, 13, 14, 378, 420
generator 386, 416
GOARCH 14, 15, 16, 24, 36, 51
GOARM 15
GOBIN 14, 16, 21, 22, 24, 36
gofix 20, 29, 41, 546, 586
GOHOSTARCH 15
GOHOSTOS 15
GOMAXPROCS 15, 31, 378, 379, 404, 407,

430
Google App Engine 3, 9, 29, 32, 218, 219, 538,

540, 541, 572, 579
GOOS 14, 15, 16, 24, 36, 51, 104, 216
GOPATH 13, 15, 16, 24, 211, 213, 215, 220,

223
GOROOT 13, 14, 15, 16, 17, 18, 19, 20, 22,

24, 26, 27, 30, 36, 37, 38, 45, 51, 206,
207, 211, 214, 215, 217, 368

H

higher order function 178
higher order functions 147, 153, 307, 418

I

inheritance 7, 9, 10, 45, 237, 238, 248, 250,
263, 305, 306, 576, 581, 592

init 58, 59, 70, 71, 104, 114, 118, 205, 206,
216, 223, 354, 457, 460, 543, 544, 547,
548, 549, 552, 554, 559, 567, 573

interface type 74, 240, 248, 263, 264, 265,
269, 270, 275, 277, 282, 284, 298, 299,
305, 353, 356, 439, 488, 489, 535

interface value 263
iota 62

K

Ken Thompson 1

L

lambda function 147, 148, 149, 150, 152, 285,
377, 389, 393, 485, 506

lambda functions 126, 148, 149, 398
lazy evaluation 144, 417, 418, 420
Linked list 230
linker flags 13
Linux 2, 8, 11, 15, 16, 17, 23, 26, 28, 29, 30,

36, 38, 45, 51, 196, 207, 220, 363, 434,
438, 439, 518, 540, 541, 557

M

Makefile 13, 18, 29, 32, 36, 37, 38, 45, 207,
212, 214, 215, 216, 217, 368, 517

map literals 187
marshaled 340
marshaling 335
memcache 539
memoization xx, 154, 155, 574
memory-safe 5, 99
metaprogramming 290
method 24, 84, 172, 182, 185, 221, 228, 232,

233, 234, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 261, 264,
265, 266, 267, 269, 270, 272, 276, 277,
282, 290, 292, 293, 295, 300, 303, 304,
305, 306, 359, 427, 433, 448, 452, 461,

The Way to Go

599

474, 485, 489, 498, 512, 516, 521, 527,
533, 534, 551, 554, 589, 591, 592

MINGW 24
mixins 248
multidimensional arrays 162
multidimensional slices 171, 174
mutex 139, 201, 392, 496
Mutex 416
mutual exclusion 201, 377, 414

N

named return variables 131

O

OS-environment 363
OS X 2, 11, 15, 21, 28, 36, 216, 518, 540,

541, 557
overflow 82, 146, 443
overloading 9, 45, 73, 82, 128, 202, 240,

304, 497
overriding 250

P

Parallelism 375, 377
Pipe and filter pattern 396
polymorphism 266
producer-consumer pattern 395, 402, 403
protocol buffers 334

R

race condition 200
recursive 143, 144, 145, 146, 152, 156, 161,

230, 288, 420, 580
Recursive structs 230
reflection 6, 27, 129, 264, 290, 293, 296, 297,

301, 337, 342, 594

regular expressions 199
result parameters 131
Robert Griesemer 1
Rob Pike 1, 2, 566, 572, 593, 594
routing table 460

S

Sandbox 538
SAX 340
selector 226
semaphore pattern 390
Server backend pattern 407
signature 127
SMTP 480
sorting 181, 197, 281
stack overflow 144, 377, 420
struct-literal 226

T

template caching 460
testing 365
thread 200, 201, 202, 376, 378, 380, 401, 414,

442, 475, 511, 524, 540
timeout pattern 411
Timing 154, 402
Tiobe 2
type assertion 157, 185, 270, 271, 272, 274,

286, 289, 300, 338, 351, 353, 445
type-safe 5, 477
type-switch 113, 137, 273, 285, 297, 342,

498, 499

U

unmarshaling 335

600

Ivo Balbaert

V

variadic 135, 136, 137, 589
virtual machine 23, 42, 562
Visibility 203
VISIBILITY RULE 53

W

Windows 2, 8, 11, 14, 15, 21, 23, 24, 25, 26,
28, 30, 34, 36, 38, 39, 51, 53, 100, 216,
315, 316, 318, 323, 328, 365, 434, 438,
439, 518, 536, 557

Wubi 23

	Copyright
	Preface
	PART 1
	WHY LEARN GO—GETTING STARTED
	Chapter 1—Origins, Context and Popularity of Go
	1.1 Origins and evolution
	1.2 Main characteristics, context and reasons for developing a new language
	1.2.1 Languages that influenced Go
	1.2.2 Why a new language?
	1.2.3 Targets of the language
	1.2.4 Guiding design principles
	1.2.5 Characteristics of the language
	1.2.6 Uses of the language
	1.2.7 Missing features?
	1.2.8 Programming in Go
	1.2.9 Summary

	Chapter 2—Installation and Runtime Environment
	2.1 Platforms and architectures
	(1)	The gc Go-compilers:
	(2)	The gccgo-compiler:
	(3)	File extensions and packages:
	2.2 Go Environment variables
	2.3 Installing Go on a Linux system
	2.4 Installing Go on an OS X system	
	2.5 Installing Go on a Windows system
	2.6 What is installed on your machine?
	2.7 The Go runtime
	2.8 A Go interpreter

	Chapter 3—Editors, IDE’s and Other tools.
	3.1 Basic requirements for a decent Go development environment
	3.2 Editors and Integrated Development Environments
	3.2.1. Golang LiteIDE
	3.2.2. GoClipse
	3.3 Debuggers
	3.4 Building and running go-programs with command- and Makefiles
	3.5 Formatting code: go fmt or gofmt
	3.6 Documenting code: go doc or godoc
	3.7 Other tools
	3.8 Go’s performance
	3.9 Interaction with other languages.

	3.9.1. Interacting with C
	3.9.2. Interacting with C++

	PART 2
	CORE CONSTRUCTS AND TECHNIQUES OF THE LANGUAGE
	Chapter 4—Basic constructs and elementary data types
	4.1. Filenames—Keywords—Identifiers
	4.2. Basic structure and components of a Go-program
	4.2.1 Packages, import and visibility
	4.2.3 Comments
	4.2.4 Types
	4.2.5 General structure of a Go-program
	4.2.6 Conversions
	4.2.7 About naming things in Go
	4.3. Constants
	4.4. Variables

	4.4.1 Introduction
	4.4.2 Value types and reference types
	4.4.3 Printing
	4.4.4 Short form with the := assignment operator	
	4.4.5 Init-functions
	4.5. Elementary types and operators

	4.5.1. Boolean type bool
	4.5.2. Numerical types
	4.5.2.1 ints and floats
	4.5.2.2 Complex numbers
	4.5.2.3 Bit operators
	4.5.2.4 Logical operators
	4.5.2.5 Arithmetic operators
	4.5.2.6 Random numbers
	4.5.3. Operators and precedence
	4.5.4. Aliasing types	
	4.5.5. Character type
	4.6. Strings
	4.7. The strings and strconv package

	4.7.1—Prefixes and suffixes:
	4.7.2—Testing whether a string contains a substring:
	4.7.3—Indicating at which position (index) a substring or character occurs in a string:
	4.7.4—Replacing a substring:
	4.7.5—Counting occurrences of a substring:
	4.7.6—Repeating a string:
	4.7.7—Changing the case of a string:
	4.7.8—Trimming a string:
	4.7.9—Splitting a string:
	4.7.10—Joining over a slice:
	4.7.11—Reading from a string:
	4.8. Times and dates
	4.9. Pointers

	Chapter 5—Control structures
	5.1—The if else construct
	5.2—Testing for errors on functions with multiple return values
	5.3—The switch keyword
	5.4—The for construct

	5.4.1 Counter-controlled iteration
	Character on position 2 is:

	5.4.2 Condition-controlled iteration
	5.4.3 Infinite loops
	5.4.4 The for range construct
	5.5—Break / continue
	5.6—Use of labels with break and continue—goto

	Chapter 6—Functions
	6.1 Introduction
	6.2 Parameters and return values
	6.2.1 Call by value / Call by reference
	6.2.2 Named return variables	
	6.2.3 Blank identifier
	6.2.4 Changing an outside variable
	6.3 Passing a variable number of parameters
	6.4 Defer and tracing
	6.5 Built-in functions
	6.6 Recursive functions
	6.8 Closures (function literals)
	6.9 Applying closures: a function returning another function
	6.10 Debugging with closures
	6.11 Timing a function
	6.12 Using memoization for performance

	Chapter 7—Arrays and Slices
	7.1 Declaration and initialization
	7.1.1 Concept
	7.1.2 Array literals
	7.1.3 Multidimensional arrays
	7.1.4 Passing an array to a function
	7.2 Slices

	7.2.1 Concept
	7.2.2 Passing a slice to a function
	7.2.3 Creating a slice with make()
	7.2.4 Difference between new() and make()
	7.2.5 Multidimensional slices
	7.2.6 The bytes package
	7.3 For range construct
	7.4 Reslicing
	7.5 Copying and appending slices
	7.6 Applying strings, arrays and slices

	7.6.1 Making a slice of bytes from a string
	7.6.2 Making a substring of a string
	7.6.3 Memory representation of a string and a slice
	7.6.4 Changing a character in a string
	7.6.5 Comparison function for byte arrays
	7.6.6 Searching and sorting slices and arrays
	7.6.7 Simulating operations with append
	7.6.8 Slices and garbage collection

	Chapter 8—Maps
	8.1 Declaration, initialization and make
	8.1.1 Concept
	8.1.2 Map capacity
	8.1.3 Slices as map values
	8.2 Testing if a key-value item exists in a map—Deleting an element
	8.3 The for range construct
	8.4 A slice of maps
	8.5 Sorting a map
	8.6 Inverting a map

	Chapter 9—Packages
	A	The standard library
	9.1 Overview of the standard library.
	9.2 The regexp package.
	9.3 Locking and the sync package.
	9.4 Accurate computations and the big package.
	B	Custom and external packages: use, build, test, document, install
	9.5 Custom packages and visibility
	9.6 Using godoc for your custom packages.
	9.7 Using go install for installing custom packages.
	9.8 Custom packages: map structure, go install and go test

	9.8.1 Map-structure for custom packages
	9.8.2 Locally installing the package
	9.8.3 OS dependent code
	9.9 Using git for distribution and installation.

	9.9.1 Installing to github
	9.9.2 Installing from github
	9.10 Go external packages and projects.
	9.11 Using an external library in a Go program.

	Chapter 10—Structs and Methods
	10.1 Definition of a struct
	10.2 Creating a struct variable with a Factory method
	10.2.1 A factory for structs
	10.2.2 new() and make() revisited for maps and structs:
	10.3 Custom package using structs
	10.4 Structs with tags
	10.5 Anonymous fields and embedded structs

	10.5.1 Definition
	10.5.2 Embedded structs
	10.5.3 Conflicting names
	10.6 Methods

	10.6.1 What is a method?
	10.6.2 Difference between a function and a method
	10.6.3 Pointer or value as receiver
	10.6.4 Methods and not-exported fields
	10.6.5 Methods on embedded types and inheritance
	10.6.6 How to embed functionality in a type
	10.6.7 Multiple inheritance
	10.6.8 Universal methods and method naming
	10.6.9 Comparison between Go types and methods and other object-oriented languages.
	10.7 The String()-method and format specifiers for a type
	10.8 Garbage collection and SetFinalizer

	Chapter 11—Interfaces and reflection
	11.1 What is an interface?
	11.2 Interface embedding interface(s)
	11.3 How to detect and convert the type of an interface variable: type assertions
	11.4 The type switch
	11.5 Testing if a value implements an interface
	11.6 Using method sets with interfaces
	11.7 1st example: sorting with the Sorter interface
	11.8 2nd example: Reading and Writing
	11.9 Empty Interface

	11.9.1 Concept
	11.9.2 Constructing an array of a general type or with variables of different types
	11.9.3 Copying a data-slice in a slice of interface{}
	11.9.4 Node structures of general or different types
	11.9.5 Interface to interface
	11.10 The reflect package

	11.10.1 Methods and types in reflect
	11.10.2 Modifying (setting) a value through reflection
	11.10.3 Reflection on structs
	11.11 Printf and reflection.
	11.12 Interfaces and dynamic typing

	11.12.1 Dynamic typing in Go
	11.12.2 Dynamic method invocation
	11.12.3 Extraction of an interface
	11.12.4 Explicitly indicating that a type implements an interface
	11.12.5 Empty interface and function overloading
	11.12.6 Inheritance of interfaces
	11.13 Summary: the object-orientedness of Go
	11.14 Structs, collections and higher order functions

	PART 3
	ADVANCED GO
	Chapter 12—Reading and writing
	12.1 Reading input from the user
	12.2 Reading from and writing to a file
	12.2.1 Reading from a file
	12.2.2 The package compress: reading from a zipped file
	12.2.3 Writing to a file
	12.3 Copying files
	12.4 Reading arguments from the command-line

	12.4.1 With the os-package
	12.4.2 With the flag-package
	12.5 Reading files with a buffer
	12.6 Reading and writing files with slices
	12.7 Using defer to close a file
	12.8 A practical example of the use of interfaces: fmt.Fprintf
	12.9 The json dataformat
	12.10 The xml dataformat
	12.11 Datatransport through gob
	12.12 Cryptography with go

	Chapter 13—Error-handling and Testing
	13.1 Error-handling
	13.1.1 Defining errors
	13.1.2 Making an error-object with fmt
	13.2 Run-time exceptions and panic
	13.4 Error-handling and panicking in a custom package
	13.5 An error-handling scheme with closures
	13.6 Starting an external command or program
	13.7 Testing and benchmarking in Go
	13.8 Testing: a concrete example
	13.9 Using table-driven tests.
	13.10 Investigating performance: tuning and profiling Go programs

	13.10.1 Time and memory consumption
	13.10.2 Tuning with go test
	13.10.3 Tuning with pprof

	Chapter 14—Goroutines and Channels
	14.1 Concurrency, parallelism and goroutines
	14.1.1 What are goroutines?	
	14.1.2 The difference between concurrency and parallelism
	14.1.3 Using GOMAXPROCS
	14.1.4 How to specify the number of cores to be used on the command-line?
	14.1.5 Goroutines and coroutines
	14.2 Channels for communication between goroutines

	14.2.1 Concept
	14.2.2 Communication operator <-
	14.2.3 Blocking of channels
	14.2.4 Goroutines synchronize through the exchange of data on one (or more) channel(s).
	14.2.5 Asynchronous channels—making a channel with a buffer
	14.2.6 Goroutine using a channel for outputting result(s)
	14.2.7 Semaphore pattern
	14.2.8 Implementing a parallel for-loop
	14.2.9 Implementing a semaphore using a buffered channel
	14.2.10 For—range applied to channels
	14.2.11 Channel directionality
	14.3 Synchronization of goroutines: closing a channel—testing for blocked channels
	14.4 Switching between goroutines with select	
	14.5 Channels, Timeouts and Tickers
	14.6 Using recover with goroutines
	14.7 Comparing the old and the new model: Tasks and Worker processes.
	14.8 Implementing a lazy generator
	14.9 Implementing Futures
	14.10 Multiplexing

	14.10.1 A typical client-server pattern
	14.10.2 Teardown: shutdown the server by signaling a channel
	14.11 Limiting the number of requests processed concurrently
	14.12 Chaining goroutines
	14.13 Parallelizing a computation over a number of cores
	14.14 Parallelizing a computation over a large amount of data
	14.15 The leaky bucket algorithm
	14.16 Benchmarking goroutines.
	14.17 Concurrent acces to objects by using a channel.

	Chapter 15—Networking, templating and web-applications
	15.1 A tcp-server 	
	15.2 A simple webserver	
	15.3 Polling websites and reading in a web page	
	15.4 Writing a simple web application
	15.5 Making a web application robust
	15.6 Writing a web application with templates
	15.7 Exploring the template package

	15.7.1. Field substitution: {{.FieldName}}
	15.7.2. Validation of the templates
	15.7.3 If-else
	15.7.4 Dot and with-end
	15.7.5 Template variables $
	15.7.6 Range-end
	15.7.7 Predefined template functions
	15.8 An elaborated webserver with different functions

	(works only on Unix because calls /bin/date)
	15.9 Remote procedure calls with rpc
	15.10 Channels over a network with netchan
	15.11 Communication with websocket
	15.12 Sending mails with smtp

	PART 4
	APPLYING GO
	Chapter 16—Common Go Pitfalls or Mistakes
	16.1 Hiding (shadowing) a variable by misusing short declaration.
	16.2 Misusing strings.
	16.3 Using defer for closing a file in the wrong scope.
	16.4 Confusing new() and make()
	16.5 No need to pass a pointer to a slice to a function
	16.6 Using pointers to interface types
	16.7 Misusing pointers with value types
	16.8 Misusing goroutines and channels
	16.9 Using closures with goroutines
	16.10 Bad error handling

	16.10.1 Don’t use booleans:
	16.10.2 Don’t clutter your code with error-checking:

	Chapter 17—Go Language Patterns
	17.1 The comma, ok pattern
	17.2 The defer pattern
	17.3 The visibility pattern
	17.4 The operator pattern and interface

	17.4.1 Implement the operators as functions
	17.4.2 Implement the operators as methods
	17.4.3 Using an interface

	Chapter 18—Useful Code Snippets—Performance Advice
	18.1 Strings
	18.2 Arrays and slices
	18.3 Maps
	18.4 Structs
	18.5 Interfaces
	18.6 Functions
	18.7 Files
	18.8 Goroutines and channels
	18.9 Networking and web applications
	18.9.1. Templating:
	18.10 General
	18.11 Performance best practices and advice

	Chapter 19—Building a complete application
	19.1 Introduction
	19.2 Introducing Project UrlShortener
	19.3 Data structure
	19.4 Our user interface: a web server frontend
	19.5 Persistent storage: gob
	19.6 Using goroutines for performance
	19.7 Using json for storage
	19.8 Multiprocessing on many machines
	19.9 Using a ProxyStore
	19.10 Summary and enhancements

	Chapter 20—Go in Google App Engine
	20.1 What is Google App Engine ?
	20.2 Go in the cloud
	20.3 Installation of the Go App Engine SDK: the development environment for Go
	20.3.1. Installation
	20.3.2. Checking and testing
	20.4 Building your own Hello world app

	20.4.1 Map structure—Creating a simple http-handler
	20.4.2 Creating the configuration file app.yaml
	20.4.3 Iterative development
	20.4.4. Integrating with the GoClipse IDE
	20.5 Using the Users service and exploring its API
	20.6 Handling forms
	20.7 Using the datastore
	20.8 Uploading to the cloud

	Chapter 21—Real World Uses of Go
	21.1 Heroku—a highly available consistent data store in Go.
	21.2 MROffice—a VOIP system for call centers in Go.
	21.3 Atlassian—a virtual machine cluster management system.
	21.4 Camlistore—a content addressable storage system.
	21.5 Other usages of the Go language.

	APPENDICES
	(A)	CODE REFERENCE
	(B)	CUTE GO QUOTES.
	GO QUOTES: TRUE BUT NOT SO CUTE.

	(C)	LIST OF CODE EXAMPLES (Listings)
	(E)	References in the text to Go—packages
	(F)	References in the text to Go—tools
	(G)	Answers to Questions
	(H)	ANSWERS TO EXERCISES
	(I)	BIBLIOGRAPHY (Resources and References)

	Index

