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7.4 Adaptive Quadrature
The composite quadrature rules necessitate the use of equally spaced points. Typically,
a small step size h was used uniformly across the entire interval of integration to ensure
the overall accuracy. This does not take into account that some portions of the curve
may have large functional variations that require more attention than other portions of
the curve. It is useful to introduce a method that adjusts the step size to be smaller
over portions of the curve where a larger functional variation occurs. This technique is
called adaptive quadrature. The method is based on Simpson’s rule.

Simpson’s rule uses two subintervals over [ak, bk]:
(1) S(ak, bk) = h

3
( f (ak)+ 4 f (ck)+ f (bk)),

where ck = 1
2 (ak + bk) is the center of [ak, bk] and h = (bk − ak)/2. Furthermore, if

f ∈ C4[ak, bk], then there exists a value d1 ∈ [ak, bk] so that

(2)
∫ bk

ak

f (x) dx = S(ak, bk)− h5 f (4)(d1)

90
.
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Refinement

A composite Simpson rule using four subintervals of [ak, bk] can be performed by
bisecting this interval into two equal subintervals [ak1, bk1] and [ak2, bk2] and applying
formula (1) recursively over each piece. Only two additional evaluations of f (x) are
needed, and the result is

S(ak1, bk1)+ S(ak2, bk2) = h

6
( f (ak1)+ 4 f (ck1)+ f (bk1))

+ h

6
( f (ak2)+ 4 f (ck2)+ f (bk2)),

(3)

where ak1 = ak , bk1 = ak2 = ck , bk2 = bk , ck1 is the midpoint of [ak1, bk1], and ck2 is
the midpoint of [ak2, bk2]. In formula (3) the step size is h/2, which accounts for the
factors h/6 on the right side of the equation. Furthermore, if f ∈ C4[a, b], there exists
a value d2 ∈ [ak, bk] so that

(4)
∫ bk

ak

f (x) dx = S(ak1, bk1)+ S(ak2, bk2)− h5

16

f (4)(d2)

90
.

Assume that f (4)(d1) ≈ f (4)(d2); then the right sides of equations (2) and (4) are
used to obtain the relation

(5) S(ak, bk)− h5 f (4)(d2)

90
≈ S(ak1, bk1)+ S(ak2, bk2)− h5

16

f (4)(d2)

90
,

which can be written as

(6) −h5 f (4)(d2)

90
≈ 16

15
(S(ak1, bk1)+ S(ak2, bk2)− S(ak, bk)).

Then (6) is substituted in (4) to obtain the error estimate:∣∣∣∣∫ bk

ak

f (x) dx − S(ak1, bk1)− S(ak2, bk2)

∣∣∣∣
≈ 1

15
|S(ak1, bk1)+ S(ak2, bk2)− S(ak, bk)| .

(7)

Because of the assumption f (4)(d1) ≈ f (4)(d2), the fraction 1
15 is replaced with 1

10 on
the right side of (7) when implementing the method. This justifies the following test.

Accuracy Test

Assume that the tolerance εk > 0 is specified for the interval [ak, bk]. If

(8)
1

10
|S(ak1, bk1)+ S(ak2, bk2)− S(ak, bk)| < εk,
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we infer that

(9)

∣∣∣∣∫ bk

ak

f (x) dx − S(ak1, bk1)− S(ak2, bk2)

∣∣∣∣ < εk .

Thus the composite Simpson rule (3) is used to approximate the integral

(10)
∫ bk

ak

f (x) dx ≈ S(ak1, bk1)+ S(ak2, bk2),

and the error bound for this approximation over [ak, bk] is εk .
Adaptive quadrature is implemented by applying Simpson’s rules (1) and (3). Start

with {[a0, b0], ε0}, where ε0 is the tolerance for numerical quadrature over [a0, b0].
The interval is refined into subintervals labeled [a01, b01] and [a02, b02]. If the accu-
racy test (8) is passed, quadrature formula (3) is applied to [a0, b0] and we are done. If
the test in (8) fails, the two subintervals are relabeled [a1, b1] and [a2, b2], over which
we use the tolerances ε1 = 1

2ε0 and ε2 = 1
2ε0, respectively. Thus we have two in-

tervals with their associated tolerances to consider for further refinement and testing:
{[a1, b1], ε1} and {[a2, b2], ε2}, where ε1 + ε2 = ε0. If adaptive quadrature must be
continued, the smaller intervals must be refined and tested, each with its own associated
tolerance.

In the second step we first consider {[a1, b1], ε1} and refine the interval [a1, b1] into
[a11, b11] and [a12, b12]. If they pass the accuracy test (8) with the tolerance ε1, quadra-
ture formula (3) is applied to [a1, b1] and accuracy has been achieved over this interval.
If they fail the test in (8) with the tolerance ε1, each subinterval [a11, b11] and [a12, b12]
must be refined and tested in the third step with the reduced tolerance 1

2ε1. Moreover,
the second step involves looking at {[a2, b2], ε2} and refining [a2, b2] into [a21, b21]
and [a22, b22]. If they pass the accuracy test (8) with tolerance ε2, quadrature formula
(3) is applied to [a2, b2] and accuracy is achieved over this interval. If they fail the test
in (8) with the tolerance ε2, each subinterval [a21, b21] and [a22, b22] must be refined
and tested in the third step with the reduced tolerance 1

2ε2. Therefore, the second step
produces either three or four intervals, which we relabel consecutively. The three inter-
vals would be relabeled to produce {{[a1, b1], ε1}, {[a2, b2], ε2}, {[a3, b3], ε3}}, where
ε1 + ε2 + ε3 = ε0. In the case of four intervals, we would obtain {{[a1, b1], ε1},
{[a2, b2], ε2}, {[a3, b3], ε3}, {[a4, b4], ε4}}, where ε1 + ε2 + ε3 + ε4 = ε0.

If adaptive quadrature must be continued, the smaller intervals must be tested,
each with its own associated tolerance. The error term in (4) shows that each time a
refinement is made over a smaller subinterval there is a reduction of error by about
a factor of 1

16 . Thus the process will terminate after a finite number of steps. The
bookkeeping for implementing the method includes a sentinel variable which indicates
if a particular subinterval has passed its accuracy test. To avoid unnecessary additional
evaluations of f (x), the function values can be included in a data list corresponding to
each subinterval. The details are shown in Program 7.6.
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Table 7.8 Adaptive Quadrature Computations for f (x) = 13(x − x2)e−3x/2

ak bk S(ak1, bk1)+ S(ak2, bk2)

Error bound on
the left side of (8)

Tolerance εk
for [ak , bk ]

0.0 0.0625 0.02287184840 0.00000001522 0.00000015625
0.0625 0.125 0.05948686456 0.00000001316 0.00000015625
0.125 0.1875 0.08434213630 0.00000001137 0.00000015625
0.1875 0.25 0.09969871532 0.00000000981 0.00000015625
0.25 0.375 0.21672136781 0.00000025055 0.0000003125
0.375 0.5 0.20646391592 0.00000018402 0.0000003125
0.5 0.625 0.17150617231 0.00000013381 0.0000003125
0.625 0.75 0.12433363793 0.00000009611 0.0000003125
0.75 0.875 0.07324515141 0.00000006799 0.0000003125
0.875 1.0 0.02352883215 0.00000004718 0.0000003125
1.0 1.125 −0.02166038952 0.00000003192 0.0000003125
1.125 1.25 −0.06065079384 0.00000002084 0.0000003125
1.25 1.5 −0.21080823822 0.00000031714 0.000000625
1.5 2.0 −0.60550965007 0.00000003195 0.00000125
2.0 2.25 −0.31985720175 0.00000008106 0.000000625
2.25 2.5 −0.30061749228 0.00000008301 0.000000625
2.5 2.75 −0.27009962412 0.00000007071 0.000000625
2.75 3.0 −0.23474721177 0.00000005447 0.000000625
3.0 3.5 −0.36389799695 0.00000103699 0.00000125
3.5 4.0 −0.24313827772 0.00000041708 0.00000125

Totals −1.54878823413 0.00000296809 0.00001

Example 7.16. Use adaptive quadrature to numerically approximate the value of the
definite integral

∫ 4
0 13(x − x2)e−3x/2 dx with the starting tolerance ε0 = 0.00001.

Implementation of the method revealed that 20 subintervals are needed. Table 7.8 lists
each interval [ak, bk], composite Simpson rule S(ak1, bk1)+S(ak2, bk2), the error bound for
this approximation, and the associated tolerance εk . The approximate value of the integral
is obtained by summing the Simpson rule approximations to get

(11)
∫ 4

0
13(x − x2)e−3x/2 dx ≈ −1.54878823413.

The true value of the integral is∫ 4

0
13(x − x2)e−3x/2 dx = 4108e−6 − 52

27

= −1.5487883725279481333.

(12)

Therefore, the error for adaptive quadrature is

(13) | − 1.54878837253− (−1.54878823413)| = 0.00000013840,
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Figure 7.9 The subintervals of [0, 4] used in adaptive
quadrature.

which is smaller than the specified tolerance ε0 = 0.00001. The adaptive method involves
20 subintervals of [0, 4], and 81 function evaluations were used. Figure 7.9 shows the graph
of y = f (x) and these 20 subintervals. The intervals are smaller where a larger functional
variation occurs near the origin.

In the refinement and testing process in the adaptive method, the first four intervals of
width 0.25 were bisected into eight subintervals of width 0.03125. If this uniform spacing
is continued throughout the interval [0, 4], M = 128 subintervals are required for the com-
posite Simpson rule, which yields the approximation −1.54878844029, which is in error
by the amount 0.00000006776. Although the composite Simpson method contains half the
error of the adaptive quadrature method, 176 more function evaluations are required. This
gain of accuracy is negligible; hence there is a considerable saving of computing effort with
the adaptive method. �
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