
COMMUNICATIONS OF THE ACM October 2004/Vol. 47, No. 10 83

O
pen source software (OSS), a term
first coined in 1998 [3], has spurred
many products in its short history,
most notably the Linux operating

system, the Apache server, and the so-called
killer-apps such as BIND and Sendmail.

But what really defines software as OSS?
The answer is not as simple as it may seem.
Generally, OSS is a software product distrib-
uted by license, which conforms to the
Open Source Definition [11], the best
known of which are GNU General Public
License (GPL) and Berkeley Software Distrib-
ution (BSD). Unlike the traditional closed
source software (CSS), OSS can be freely used,
modified, and redistributed. Its source code is
also freely accessible. Today, it is common to
find CSS projects evolve into OSS in order to
obtain its benefits. Occasionally, OSS projects
become CSS, but usually for different reasons.
An extensive explanation and analysis of OSS
development can be found in [3].

Open Source Software
Development Should Strive

for EVEN GREATER
CODE MAINTAINABILITY

A study of almost six million lines of code tracks how freely
accessible source code holds up against time and multiple iterations.

By Ioannis Samoladas, Ioannis Stamelos, Lefteris Angelis ,
and Apostolos Oikonomou

I L L U S T R A T I O N B Y P E T E R H O E Y

84 October 2004/Vol. 47, No. 10 COMMUNICATIONS OF THE ACM

An OSS project begins simply. A single
developer or group of developers writes
the first version of the software and make
it freely available over the Net, inviting

other developers to participate and contribute pieces
of code. The evolution of the product being devel-
oped is normally coordinated by its creators. Among
the responsibilities of the coordinators is configura-
tion management, release scheduling, deciding
which code contributions will be accepted, and
other management activities. We should note that
sometimes this group of coordinators has a great
deal of power (strong control on code submission,
issuing of clearly defined specifications), which
makes the process look like a traditional one. It can
be said that the vitality and the success of the proj-
ects depend strongly on the coordination of the
process.

OSS development emphasizes the maintainability
of the software released. Making software available
on the Internet allows developers around the world
to contribute code, adding new functionality (paral-
lel development), improving the present one, and
submitting bug fixes to the current release (parallel
debugging). The coordinators of the project ulti-
mately decide the contributions and bug fixes to
accept, incorporating them into the main code and
final product release. Indeed, the same process of
code contribution and bug fixing is continued in
this circular manner.

This type of development has both advantages
and disadvantages. In various cases OSS seems to
have solved many of the problems of traditional
software engineering methods, since it has been pos-
sible to produce reliable, high quality, and low-cost
software in a brief amount of time. The existence of
a large pool of testers and developers facilitates
debugging and the true peer review of the code
results in better code. The availability of the source
code allows someone to make modifications to meet
his or her own needs, while the lack of black boxes
is important for someone to inspect the code for its
correctness and to assure dependability issues. How-
ever, very few empirical studies have been available
to support or reject these claims [8, 10].

The disadvantages of OSS development include
absence of complete documentation or technical
support. Moreover, there is strong evidence that
projects with clear and widely accepted specifica-
tions, such as operating systems and system appli-
cations, are well suited for the OSS development
model. However, it is still questionable whether sys-
tems like ERP could be developed successfully as
OSS projects. (For more on the advantages and dis-

advantages of OSS development, see [3, 5].)
A ready interpretation of the OSS development

process is that of a perpetual maintenance task.
Developing an OSS system implies a series of fre-
quent maintenance efforts for debugging existing
functionality and adding new ones to the system.
These two forms of maintenance are known as cor-
rective and perfective maintenance, respectively.

Since it is still difficult to monitor the open
source process, it is reasonable to measure and assess
the resulting product, that is, the delivered code.
The purpose of this article is to report and discuss
the results of a case study examining the maintain-
ability of the source code delivered by open source
development. To this end, we measured the source
code of five OSS projects, which in several cases
involved development in CSS fashion. We have
assessed the results according to a maintainability
index derived from analysis of industrial CSS sys-
tems. We contend maintainability is the core quality
issue in OSS development.

Source Code Measurement
A well-known conjecture in modern software engi-
neering is that external quality characteristics are
correlated to internal quality characteristics. The
measurement of source code provides useful infor-
mation for the assessment of its quality, predicting
to some extent the external system quality character-
istics, such as maintainability, reliability, extensibil-
ity, and portability.

Measurements may be used to obtain a picture of
the quality both of a single component and of an
entire program. Typical software metrics are the size
of the code (measured in lines of code, number of
statements, and so on) and the code complexity (mea-
sured through complexity figures such as the cyclo-
matic complexity). Setting an acceptable range for
each metric considered assesses code quality, in which
every measured value should fall in. A set of such
ranges along with a number of efficient program-
writing rules defines a programming standard, that is,
any comparison to these values can lead to a repre-
sentative view of the quality of the tested programs.
Software organizations interested in software develop-
ment set their own standards. An example is the NSA
standard [1], which is derived from the analysis of 25
million lines of software written for NSA.

In our analysis we used a set of measurement pro-
grams available in the Debian GNU/Linux release,
and a number of Perl scripts for managing measure-
ment results. The metrics considered are among the
most widely reported and used in the literature and
are listed here:

• Number of lines of code (LOC) measures the
physical size of the program code, excluding
blank lines and comments.

• Percentage of lines of comments with respect to
the number of lines of code (PerCM) describes
the self-descriptiveness of the code.

• Halstead Volume (V). Halstead [4] defined four
metrics that can be measured from a program’s
source code: n1 (the number of distinct opera-
tors), n2 (the number of distinct operands), N1
(the total number of operators) and N2 (the total
number of operands). Based on them, he defined
program vocabulary n (given by n = n1 + n2) and
program length N (given by N = N1 + N2).
Finally, he defined Volume, a composite metric
given by the formula V = N * (LOG2 n). Halstead
Volume provides an alternative measure for the
size of a program.

• Cyclomatic Complexity V(g). Proposed by
McCabe [7], this metric counts the number of
independent paths in the control flow graph of a
program component. Its value depends on the
number of branches caused by conditional state-
ments (if-then-else). It measures the structural
complexity of the component.

It would be quite difficult to reach a consensus
about the metric ranges that OSS code should respect
in order to define an OSS-specific programming
standard. In this study, rather than comparing with a
predefined standard, we preferred to directly compare
maintainability measures of open source with those
obtained for closed source software, or simply to
observe the trend of these measures and derive con-
jectures about improvement or deterioration of code
quality. Because it may be difficult to obtain a single
picture about maintainability from many measures
derived from many different metrics, we preferred to
use a different approach in our study based on the
composite metric, Maintainability Index (MI), cho-
sen by SEI [6] as the most suitable tool for measur-
ing the maintainability of systems with high-quality
requirements. We chose MI because we believe that
OSS should conform to such standards in order to
compete with CSS. Moreover, various OSS projects,
including some we studied, are often part of large
scale, critical applications. MI following this formula:

MI = 171–5.2ln(avgV) – 0.23avgV(g) –
16.2ln(avgLOC)+50sin(√2.4avgPerCM)

where avgV stands for “average Halstead Volume per
module” and avgV(g), avgLOC, and avgPerCM are
defined in a similar way.

MI measures maintainability
by taking the size, the complex-
ity, and the self-descriptiveness of the code into
account. MI may change because of new code added
to the existing source code due to bug fixing or other
corrective actions. However, since MI is based on
average values, it is relatively independent of the
absolute size of these changes and may be used to

compare systems of different
size. The coefficients of the for-
mula for MI have been calibrated by Oman [9] on
various software systems maintained by Hewlett-
Packard, and MI proponents verified this form of the
MI equation generally fits other industrial-sized soft-
ware systems [12]. High MI values indicate
high maintainability.

Measuring and Assessing
Open Source Code
We examined five active and popular OSS projects for
this study; for a total of 5,856,873 LOCs. Table 1 pro-
vides typical project information (application type, total
release code size) and a brief verbal description of the
project’s evolution. We do not provide the actual names
of the projects in order to adhere to standard software
engineering ethics [2], therefore a mnemonic code is
assigned to each project.

For each project, we measured a number of major
releases, obtaining a history of the evolution of the
source-code quality. We present here only the results
regarding maintainability index (Figures 1, 2, and 3),

COMMUNICATIONS OF THE ACM October 2004/Vol. 47, No. 10 85

0
1 2 3 4 5 6

successive versions

OSS PrA vs. CSS PrA

MI

7 8 9 10 11 12 13

10

20

30

40

50

60

70

80

OSS PrA

CSS PrA

Figure 1. MI figures for
project PrA.

0
1 2 3 4 5 6

successive versions

PrB

MI

7 8 9 10 11

10
20
30
40
50
60
70
80

Figure 2. MI figures for
project PrB.

since they allow fast analysis
of the projects.

Project PrA was produced
originally as an OSS prod-
uct. Eventually, the steering
group decided to exploit the
system commercially and
initiated a project of the
close source type (denoted
as CSSPrA). However, the
original OSS system
(OSSPrA) continued to
evolve. The two projects
developed essentially the
same functionality in the period we performed our
study. This fact produced an interesting situation that
allows us to make a direct comparison between an
OSS and a CSS project developing the same object.
Figure 1 provides very interesting measurement
results: it seems that while maintainability deteriorates
in both projects, the OSS version does significantly
better than its CSS counterpart.

Project PrB was originally a
CSS project. Eventually
the company developing
the system rendered its

source code free, giving birth to an
OSS project. Project PrB provides
a situation in which a CSS object
evolves in OSS fashion. Figure 2
gives an idea of what happened to
the maintainability of the system
across the subsequent initial
releases. As a result of the project’s
fairly early development stage,
maintainability of new versions
does not show significant differ-
ences with respect to the first
release, which is, in fact, the CSS
release. Further analysis and monitoring of this appli-
cation is needed in order to keep track of its main-
tainability status. Nonetheless, it can be said this case
showed that switching from CSS to OSS did not dete-
riorate maintainability.

Projects PrC and PrE are typical OSS projects:
they were initiated as OSS projects and continued to
evolve as such. PrD was initially an academia project
that evolved to an OSS project (only the OSS releases
were considered). Figure 3 provides the maintain-
ability history of these projects in a single diagram:
maintainability drops gradually in all three cases.
Only PrE managed to improve maintainability for a
limited number of releases. It seems these projects

behave as would any
CSS project.

Code Quality
Needs
Monitoring and
Improvement
Although only provi-
sionary conclusions
may be drawn from
such results, it is our
opinion the results of

this study may be interpreted as follows:
1. Using tools such as MI derived for measuring

CSS quality, OSS code quality appears to be at least
equal and sometimes better than the quality of CSS
code implementing the same functionality. This may
be due to the motivation of skilled OSS programmers
to compete with skilled CSS programmers. High moti-
vation may be considered an important advantage of
OSS compared to CSS.

2. OSS projects may need careful individual analysis

because of abrupt changes between subsequent releases
due to decisions made by OSS project coordinators.
Such changes have a strong impact on OSS software
configuration. Structural code analysis may also pro-
vide very interesting feedback at the individual module
or component level: according to Pareto’s Law,1 a small
percentage of the software will be responsible for the
majority of the problems, so it is reasonable to expect
that 20% of components will produce about 80% of
the maintainability problems. The risk-prone compo-
nents may be identified through the analysis tools we
described here.

3. OSS code quality seems to suffer from the very
same problems that have been observed in CSS projects.
Maintainability deterioration over time is a typical phe-

86 October 2004/Vol. 47, No. 10 COMMUNICATIONS OF THE ACM

0
1 2 3 4 5 6

successive versions

PrC vs. PrD vs. PrE

MI

7 8 9 10 11 12 13 14

10

20

30

40

60

70

80

50

PrC
PrD
PrE

Figure 3. MI figures for
projects PrC, PrD, PrE.

Project
Mnemonic

Code

OSSPrA

CSSPrA

PrB

PrC

PrD

PrE

Application
Type

Operating system
application

Operating system
application

Operating system
application

Programming language

Database
management system

Internet application

Total Code
Size

(KLOCs)

343

994

860

1050

1411

1198

No. of
releases

measured

13

13

10

11

8

14

Project
Evolution

Path

OSS project that gave birth to a CSS
project while still evolving as OSS

CSS project initiated from an OSS
project and evolved as a commercial
counterpart of OSSPrA

CSS project that opened its code and
was transformed to an OSS project

Pure OSS project

Academia project that gave birth to
an OSS project

Pure OSS project

Table 1. The top five
open source projects in

the study and their
salient characteristics

1Pareto’s Law, frequently used in software engineering, states that 80% of the benefit
can often be obtained with 20% of the work; however the remaining 20% benefit
takes 80% of the work.

nomenon and produces legacy CSS systems. It is rea-
sonable to expect similar behavior from the OSS
projects as they age: the OSS approach will produce
legacy systems in much the same way CSS has done.
As a consequence, appropriate reengineering actions
may be necessary for OSS systems too. In other
words, preventive maintenance may be the third
type of maintenance that must be taken into account
by OSS proponents.

More empirical analysis is needed to consolidate
the findings of this study. We will continue moni-
toring the quality of these projects and we will
extend our analysis to other OSS projects that pre-
sent interesting characteristics and allow comparison
with CSS development. However, it is important to
integrate the structural view of OSS quality with the
view of OSS system users’ perceived quality.

References
1. Drake, T. Measuring software quality: A case study. IEEE Computer 29,

11 (1996), 78–87.
2. El-Emam. Ethics and open source. Empirical Software Engineering 4, 6

(2001), 291–292.
3. Feller, J., and Fitzgerald, B. Understanding Open Source Software Develop-

ment. Addison Wesley, Reading, PA, 2002.
4. Halstead, M. H. Elements of Software Science. Elsevier, North-Holland,

1975.
5. IEEE Software 16, 1 (Jan/Feb 1999).
6. Maintainability index technique for measuring program maintainability.

Software Technology Review, SEI;
www.sei.cmu.edu/str/descriptions/mitmpm_body.html.

7. McCabe, T. A complexity measure. IEEE Trans. on Software Engineering
2, 4 (1976), 308–320.

8. Mockus A., Fielding R., and Herbsleb J. Two case studies of open source
software development: Apache and Mozilla. ACM Trans. Software Eng.
and Meth. 11, 3, (2002), 309–346.

9. Oman, P. and Hagemeister, J. Constructing and testing of polynomials
predicting software maintainability. J. Systems and Software 24, 3 (1994),
251–266.

10. Schach S.R., Jin B., Wright D.R., Heller D.Z., and Offutt A.J. Maintain-
ability of the Linux kernel. In IEE Proceedings—Software Engineering 149,
1 (2002), 18–24.

11. The Open Source Initiative. Open source definition, version 1.9;
www.opensource.org/docs/definition.php.

12. Welker, Kurt D. and Oman, P.W. Software maintainability metrics mod-
els in practice. Crosstalk, Journal of Defense Software Eng. 8, 11 (1995),
19–23.

Ioannis Samoladas (ioansam@csd.auth.gr) is a Ph.D.
candidate in the Department of Informatics at Aristotle University of
Thessaloniki, Thessaloniki, Greece.
Ioannis Stamelos (stamelos@csd.auth.gr) is an assistant
professor in the Department of Informatics at Aristotle University of
Thessaloniki, Thessaloniki, Greece.
Lefteris Angelis (lef@csd.auth.gr) is a lecturer in the Department of
Informatics at Aristotle University of Thessaloniki, Thessaloniki, Greece.
Apostolos Oikonomou is pursuing a Masters of Science degree in
information systems at the Imperial University, London, U.K.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

© 2004 ACM 0001-0782/04/1000 $5.00

c

COMMUNICATIONS OF THE ACM October 2004/Vol. 47, No. 10 87

