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Abstract

Techniques for color-based tracking of faces or hands often assume a static skin model yet skin color, as measured by a
camera, can change when lighting changes. Therefore, for robust skin pixel detection, an adaptive skin color model must be
employed. We demonstrate a chromaticity-based constraint to select training pixels in a scene for updating a dynamic skin
color model under changing illumination conditions. The method makes use of the ‘skin locus’ of a camera, that is, the area in
chromaticity space where skin chromaticity under various lighting and camera calibration conditions is observed. Skin color
models derived from the technique are compared with that derived by a common spatial constraint and is shown to be more
consistent with manually extracted ground truth skin model per frame even as localization errors increase. The technique is
applied to color-based face tracking in indoor and outdoor videos and is shown to succeed more often than other color model
adaptation techniques. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Color-based face detection and tracking techniques begin
with skin color modeling. Color is usually the first cue sought
for locating face candidates in video because skin color is
distinct. After locating skin pixel candidates, non-face blobs
can be eliminated by using texture, shape or motion cues.
Face candidates may then be used to recognize a person or to
code the area of interest (the face) with better quality while
increasing the compression on the non-essential part (back-
ground) as in Ref. [1]. Very often a static skin color model
is learned offline or in the first few frames of a sequence.
However, skin color, as measured by a camera, may change
as illumination condition changes. If the illumination condi-
tion is static but non-uniform, movement of the subject can
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likewise cause the captured skin color to change. Therefore,
face detection that uses a static skin color model is certain
to fail in unconstrained imaging conditions.

One solution may be to correct image colors first—a body
of work in color science related to color constancy [2,3].
Generally, these algorithms rely on a priori conditions such
as: (a) that the average color in the scene must be gray (i.e.,
there are equal amounts of red, green and blue in the scene),
(b) that the illumination must be slowly and smoothly vary-
ing in time or space, and (c) except for the Retinex algorithm
[4,5], that the illumination change must be global. Violations
in any of these conditions result in poor color correction.

In real-life cases we are not always in control of the
illumination. The lighting variation can be local as, for
instance, when a person is indoors and near a window,
part of the face may be illuminated by daylight while part
may be illuminated by room lighting. Since faces are 3D
objects, inter-reflections, shadowing, occlusions and sharp
color edges occur on face images. Color constancy algo-
rithms are primarily designed to please the human eye and
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may not always be appropriate for machine vision appli-
cations [6]. Therefore, dynamically adapting the skin color
model is a more suitable approach than color correction if
the intended face detector or tracker is to be used in uncon-
strained illumination conditions.

Only a few papers attempt to use dynamically adapting
skin color models. In Refs. [7,8], skin color distribution
is modeled as a single Gaussian cluster or a Gaussian
mixture. Model update is achieved by recursively adapt-
ing the mean, covariance and prior probabilities of each
Gaussian cluster using color from a subimage within the
tracker bounding box. In Ref. [9], Yoo argued that since
the face is generally oval in shape pixels from an oval
region on the face tracking result may be taken as train-
ing pixels. In each case, the selection of training pixels
relies on geometric constraints. A limitation of such a
constraint is that if the training region includes non-skin
pixels, the color model can adapt to non-skin color. Track-
ing failures need to be detected to halt adaptation, for
example, by measuring the log-likelihood error, as in
Ref. [8].

In this paper we propose to use the knowledge of the range
of skin color under the normalized color coordinates (NCC)
as a criteria for selecting training pixels when updating the
skin model. This paper summarizes the results of previous
work wherein we have demonstrated the applicability of the
technique [10-12]. Since the technique uses a chromatic
constraint, its main advantage over geometric constraints is
that pixels outside the set of possible skin colors are ex-
cluded in the updating process. In NCC-space, the range of
skin colors under light sources of varying correlated color
temperature follows the curvature of the Planckian locus and
we call it the ‘skin locus’ after Storring [13]. The skin locus
can be obtained either by measurements or by simulation if
camera sensitivities, skin reflectance and illuminant spectral
power distribution are given [13,14]. Once known, it may
be used to select skin pixels from a localized face candidate
to update the skin color model.

The effectivity of the technique is assessed by comparing
it with adaptive skin color modeling which uses geometric
constraints, in two aspects: (1) closeness of the computed
model with respect to ground truth, and (2) success of a
color-based face tracker employing the adapted skin color
model.

The rest of the paper is organized as follows: Section 2
discusses the skin locus, ratio histogram and adaptive his-
togram backprojection. Model error measures, tracking ex-
periments and results are presented in Section 3. The paper
ends with conclusions and recommendations in Section 4.

2. Method
2.1. Skin locus

Measurements of skin reflectances, light spectral power
distribution and camera channel sensitivities allow the com-

putation of ideal color camera red, green and blue (RGB)
output for different skin types [14]. In this study we convert
RGB to NCC, r, g, and I where, I =(R+ G + B), r =R/I,
g = G/I. Normalizing with intensity, /, reduces brightness
dependence in the chromaticity coordinates » and g. Note
that b = B/I is no longer unique since b =1 — r — ¢. Thus,
two values, r and g, are sufficient to represent chromatic-
ity. Hence, the chromaticity coordinates of NCC are called
rg-space. One may use either (g,b) or (r,b) as chromatic-
ity components as well. We have chosen to use (7, g) since
sensitivity of most cameras in blue are small and may there-
fore be noisy. Actual measurements have shown that dark,
yellowish and pale skin have almost the same chromaticity
[15]. Storring [13] has also shown that for a color camera
white balanced for one illuminant, the chromaticity of skin
follows a curve similar to the Planckian locus when it is
imaged under light sources of different correlated color tem-
peratures. Storring termed the set of points in chromaticity
space which belong to the range of skin color as the skin
locus.

NCC is not the only color space that separates pixel bright-
ness and chromaticity but it has a useful property which we
will exploit. If two colors are mixed in different brightness
proportions, the range of color they can produce together
are the colors in rg-space which lie in the line joining the
chromaticity points of the two colors. This property is use-
ful in modeling skin color because in real situations, more
than one light source may be shining on the face at a time.
In Fig. la, the left side of the face is near a window and
is illuminated by daylight while the right side is mostly il-
luminated by fluorescent light. The chromaticities of pixels
on the face straddling the two light sources (e.g. pixels from
the forehead to the chin) are along the line joining the chro-
maticities of each side of the face, as shown in Fig. 1b. If the
person moves her head such that, at times, her face is fully
illuminated by one light source, it can be surmised that her
skin color distribution will move across the chromaticity re-
gion in Fig. 1b. Fig. 1b already shows part of the skin locus
of the camera used. Even under only two light sources, other
skin colors may appear due to the mixing of these lights on
the skin. Therefore, if a skin model was derived from one
lighting condition, it may be adjusted to the current skin col-
ors by selecting pixels for training which are known to be
instances of skin color under other light sources. Knowing
the range of possible skin colors enables us to reject those
pixels whose colors do not possibly belong to skin.

2.2. Adaptive histogram backprojection

We propose to use the skin locus as a filter that allows
only feasible skin colored pixels in the update of a skin
color model for a certain camera. We modify histogram
backprojection [16] by adding color histogram adaptation
and apply it in color-based face tracking.

An initial estimate of the skin color model, a 2-D his-
togram S(r, g), is obtained from cut-out skin regions in the
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Fig. 1. Chromaticity plots of pixels in different parts of the face: (1) illuminated by daylight, (2) forehead illuminated both by daylight and

fluorescent light, (3) cheek illuminated by fluorescent light.

face in the first frame and normalized such that the maxi-
mum value is one. The next frame to be segmented is trans-
formed into rg-space and each pixel p; with chromaticity
(71, g1) is assigned the value of the histogram at S(7;, g;) (the
chromaticity of a pixel defines its corresponding skin his-
togram value). A high concentration of values over a prede-
fined threshold in the histogram-backprojected image may
then be considered as the likely vicinity of the target.

A variation is to use a ratio histogram R(r, g), which is
S(r,g) divided by the whole image histogram, I(7, g), in
order to penalize colors which are part of the model but
are also present in the background and thereby increase the
contrast between skin and background pixels. We use ratio
histograms for skin modeling in our experiments. A para-
metric model for skin color (e.g. Gaussian fitting) tends to
smoothen the actual distribution and requires a distance met-
ric (e.g. Mahalanobis) to assign probability of skin color.
With ratio histogram and histogram backprojection, no fit-
ting is necessary because the histogram itself is used as the
model, and probabilities are assigned by simple table lookup,
thus leading to faster labeling.

Further processing may then be performed on the back-
projected image. Let a tracking algorithm take as input the
backprojected image and deliver as output the bounding box
around the face. If illumination conditions cause the mea-
sured skin color to change then the current model will only
produce few lighted pixels in the face region unless the skin
model is updated. We propose to do adaptation by deter-
mining pixels in the bounding box that fall under the skin
locus and to use these pixels to compute the current ratio his-
togram. This way the skin pixels are chosen automatically.

For adaptive modeling, the two-dimensional ratio his-
togram of skin R,(7,g) is calculated from each frame. The

color of the target (skin) may change rapidly due to vary-
ing lighting conditions. Thus, to provide a smooth transition
of R; between frames, a moving average (MA) is used to
calculate a resultant ratio histogram R;,

~ (1 — )R, + R,
R, = 1
"7 max((1 — )R, + oaR_1)’ W

where we set o = 0.5. The subscript ¢ denotes the frame in-
dex. The denominator in Eq. (1) serves to scale the resulting
2-d histogram such that its maximum element is 1. In ad-
dition, using MA reduces noise in backprojected images of
low-quality cameras. Due to noise, the color information of
pixels may change even if there is no actual change in scene
or illumination over the frame. This causes error if color
information and ratio histogram from only the previous
frame is used to label pixels in the current frame. Note that
Eq. (1) is not recursive since the successive frames use
R; not I~{,.

Fig. 2 summarizes the adaptive histogram backprojection
algorithm we employed. In the first frame of video, skin re-
gions are manually selected and their colors converted into
r—¢g chromaticities. An initial estimate of the skin color ratio
histogram is computed by passing the converted pixels into
the skin locus filter to eliminate non-skin colors. The next
frame to be processed is transformed into »—¢g space and his-
togram backprojected using the current skin color histogram.
The outcome is a graylevel image, with pixel values equal
to the frequency values of their r—g coordinates in the skin
color model. Morphological operations are performed to en-
hance the face blobs and a bounding box is place around the
largest blob. When overlaid on the image, the bounding box
frames the face. Adaptation starts on the succeeding frames.
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Fig. 2. Flow of adaptive histogram backprojection using the skin locus as chromatic filter.

The pixels from the computed bounding box are screened
by the skin locus filter. Using only skin-like pixels from
the bounding box, a new skin color histogram is computed
and averaged with the previous model. The next frame is
backprojected with this new model and the bounding box
plus adaptation process begins anew with the succeeding
frames.

The cost of using color information from several previous
frames with moving average is that the confidence level of
ratio information is reduced by a function of number of
frames used in MA. This means that even if ratio information
of one color is high it is possible that the color does not
belong to the target anymore. This may occur sometimes
for example when there are too rapid changes in lighting
conditions. These characteristics of MA must be balanced
and suitable number of previous frames must be selected for
MA histogram calculations.

In principle, any color space may be employed for the
skin model. The advantage of NCC over other spaces is
its speed of computation and the straightforward mixing of
chromaticities. Once the skin locus is found, its boundaries
may be modeled by functions of, at least, second order
[17].

Matas [18] presented a similar idea: possible changes in
a color patch are limited to a region in chromaticity space.
In our case, we calibrated the camera under four different
simulated illuminants and have three illumination changes
for each calibration. This allows us a wider operation range
where it is possible to adapt to the color change. In Ref. [18],
a clustering algorithm is used to find cluster representatives
in the chromaticity space for both object and background.
Our method is simpler because we only have to define the
cluster boundaries and the knowledge of background is not
needed. Finally, our work is different in that our approach

is a low-level operation, i.e. filtering, while Matas performs
a high-level operation, recognition.

3. Experiments
3.1. Creation of skin locus

Faces were imaged in darkroom using four simulated
illuminants (2300K horizon daylight, 2856K incandescent
A, TL84 fluorescent and D65 daylight). Calibrating the
camera for each light source and capturing the image of a
face under each light source in turn results in 16 different
combinations of current lighting and camera calibration con-
ditions (four calibrations and four illuminants) [14]. Skin
color measurements were done for Caucasian and Asian
subjects.

When the » and g chromaticities of skin regions from
all 16 conditions are plotted in rg-space, skin color oc-
cupy a downward opening crescent which is similar to
the trend of the Planckian locus. Fig. 3 shows the skin
locus of a USB Nogatech 1CCD webcamera used in the
experiments. The skin locus is thickest in calibrated con-
ditions (when current illuminant is the same as reference
illuminant for white balancing) and thinnest when current
color temperature is far from that of the calibrated case.
(For comparison of the skin locus of different cameras, see
Ref. [17].)

A simple membership function to the skin locus is a
pair of quadratic functions defining the upper and lower
bound of the cluster. For each r, the maximum and mini-
mum g was used to estimate the upper and lower quadratic
functions. Using least-squares estimation, the upper bound
quadratic coefficients are found to be a, = —1.3767,
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Fig. 3. Skin locus of Nogatech camera in rg-space.

b, = 1.0743, ¢, = 0.1452; the lower bound coefficients are
ay; = —0.776, by = 0.5601, ¢; = 0.1766. For some cameras,
the skin locus may partially or wholly include the white
point (r = g = 0.33). To prevent grayish and whitish pixels
from being labeled as skin, a circle with radius 0.02 is drawn
around the white point and pixels falling within the circle are
excluded from skin membership. Pixels with chromaticity
(r,g) are then given skin locus membership value S(7,g)
where

1, (9 <gu) AND (g > gs) AND (W, > 0.0004),

S =
0, otherwise,

(2)

where g, = a,? + bur + cu, ga = aar* + bar + cq and
W= —033) + (g — 033)%

To capture realistic situations of skin color change,
movies of different persons in varying indoor and outdoor
lighting conditions were taken (frame rate: 30 fps, frame
size: 160 x 120). Volunteers were asked to walk along
selected routes while carrying a laptop upon which a color
camera was attached [19]. In the movie NOMOVI, the
camera had been white balanced under fluorescent light.
A Caucasian volunteer starts near a window and walks to
a corridor with fluorescent lighting and then to a window
again. In NOMOV?2, an Asian volunteer moves in front
of a window before turning to the corridor. In NOMOV4,
with the camera white balanced for Horizon daylight, a
Caucasian volunteer walks from a room out into a corridor.
An outdoor movie is shown in NOMOV6 where there was
only skylight and direct sunlight. The Caucasian volunteer
moves from the Sun to the shade and back to the Sun
again.

Uy

Fig. 4. Displacement of oval search regions to simulate face local-
ization error.

3.2. Agreement of adapted and ground truth skin color
model

To compare our chromatic constraint (the skin locus) for
selecting training pixels with an existing spatial constraint
(elliptical region) we measure how well skin color models
derived from each constraint closely resemble the ground
truth skin color model.

The ground truth skin color model Ry, was computed from
pixels within manually defined face regions in each frame. It
should be noted that we included the eyes, mouth, eyebrows
and nose in the calculation. The skin color model for our
chromatic constraint R; was computed from all pixels in the
ground truth face bounding box whose chromaticities fall
within the skin locus. For the spatial constraint all pixels
within an ellipse inside the bounding box where used to
compute the skin model R..

To simulate errors in face localization we displaced the
center of the ground truth bounding box in increments of
10% from the original center in top, bottom, left and right di-
rections, from 0% to 100%. We then computed the skin color
models from both constraints using the displaced bounding
boxes as new search regions. Fig. 4 illustrates the displace-
ment for the ellipse.

The mean model error D for a movie at certain displace-
ment distance was calculated using following formula:

F o4

1
Do = Frgemms 2 2 R~ R @)
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Fig. 5. Histogram error with locus and elliptical constraint for 3 movies, from left to right, NOMOV1, NOMOV2 and NOMOV4.

where Ry, is the ground truth skin ratio histogram and R,
is the ratio histogram of the constraint used (R; or R.), | - |
denotes Euclidean distance, dir is direction of displacement
(total number is 4 for up, down, left and right), f is frame
index, F is the total number of frames, BINS is the total
number of bins in rg-space, (we set it to 64 x 64 = 4096),
and the subscript ep is the percentage center-to-center dis-
placement from ground truth bounding box.

Fig. 5 shows the average histogram error D for spatial and
chromatic constraints for 3 movies. In general, histogram
errors from the spatial constraint increases with increasing
displacement, which is not surprising. As the percentage dis-
placement of the bounding box increases, less and less of
skin falls within the ellipse. Comparing D for both geomet-
ric and skin locus constraint, histogram errors from the skin
locus constraint are quite stable over the range of displace-
ment as shown by their smaller slope. This implies that a
tracking routine that uses the skin locus constraint to update
the skin color model will more likely recover from localiza-
tion mistakes than that which uses only a spatial constraint.

Another observation from Fig. 5 is that for small displace-
ments the spatial constraint appears better than chromaticity
constraint in following the ground truth skin model. This is
expected because the skin locus will generally exclude pix-
els from the eyes and lips whereas the ground truth skin
color model was computed with these features included. If
the eyes, mouth, etc. were removed from the ground truth
skin model D would be lesser for chromatic constraint than
geometric constraint even during small displacements.

3.3. Tracking success

To test the technique on actual video, a color-based face
tracking algorithm was implemented that makes use of adap-
tive histogram backprojection as described in Section 2.2.
Fig. 6 shows the result of the tracking algorithm for every
50th frame of NOMOV1 when the skin model is learned

from the first frame and fixed (adaptation turned off). The fa-
cial skin color in Fig. 6 first appears bluish and pinkish, then
as the volunteer proceeds to the corridor, the color becomes
normal skin tone. He passes through dimly lit sections be-
fore he approaches another window whereupon his face ap-
pears pinkish again. Around the face candidate, the tracking
algorithm draws a white box and, for the next frame, limits
the search within a slightly larger bounding box (shown in
magenta in Fig. 6). The tracker fails in the middle of the
sequence, where the skin has normal color, and only recov-
ers towards the end when the skin once again appears pink-
ish as in the initial condition. In comparison, Fig. 7 shows
the result of the tracking when the skin model is adapted.
With adaptation using the skin locus, the tracking algorithm
recovers well enough to track the face throughout the se-
quence.

To quantitatively assess the goodness of our localization
we introduce an overlap measure 4 given by

g AaNA] )
VIAG X AL

where Ay, is the ground truth bounding box with |A4| as its
area in number of pixels, and A, is the computed bounding
box with |A,| its area. The numerator is the area of the over-
lap of the two bounding boxes. When the area of the ground
truth bounding box and the computed bounding box are the
same and completely overlap, 4 equals 1. This quality mea-
sure requires that ground truth is available and for movies to
be tested ground truth was extracted manually. In addition to
A, an error counter is included which increments if no skin
cluster is found, and resets to zero when tracking resumes.

Fig. 8 compares the graph of 4 for the sequence of Fig. 6
when skin color histogram is fixed, no skin locus is employed
(top graph), and of Fig. 5 when histogram is adapted with
the skin locus constraint (bottom graph). Error count here
has been normalized to one. Failure from frames 300 to 770
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Fig. 6. Tracking results on movie NOMOV1 with fixed skin color model. White bounding box locates the face. Magenta bounding box is

search region.

Fig. 7. Tracking results on movie NOMOV1 with adaptive skin color modeling using skin locus constraint. White bounding box locates the

face. Magenta bounding box is search region.

is clearly shown when a fixed histogram is used. On the
other hand, 4 is consistently high for the adapted histogram
case with only a small range of frames (from 420 to 450)
having positive errorcount which was due to the face losing
color while passing through a dark region along the corridor.

Finally, we compared tracking performance of a skin
color model adapted using the skin locus constraint with that
adapted using a geometric (ellipse) constraint. Fig. 9 shows

the result of a tracking algorithm for every 50th frame of
NOMOV6 where ellipse constraint was used in skin color
update. The figure also shows how skin color can change
drastically if the subject merely moves from sunlight to the
shadows. Without the skin locus, the tracker failed because
it adapted to background colors when the person moved
to the shadows. Fig. 10 shows the tracking result if the
skin locus is used. The skin locus constraint clearly helps
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Fig. 8. Tracking success in NOMOV1 measured by overlap 4.

Fig. 9. Tracking result on movie NOMOV6 with elliptical constraint for adaptation. White bounding box locates the face. Magenta bounding

box is search region.

the tracking routine cope with the changing illumination

condition [19].

4. Conclusions

This paper addresses the issue of how to select pix-
els for training when a skin color model is to be up-

dated, an important procedure in applications such as
color-based face tracking under uncontrolled illumination
conditions. The proposed technique makes use of the skin
locus, which is the range of skin color in chromaticity space,
to choose pixels for training from a tracking bounding box.

Our results prove that the skin locus is an effective fil-
ter for selecting skin pixels in changing illumination condi-
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Fig. 10. Tracking result on movie NOMOV6 with skin locus for adaptation. White bounding box locates the face. Magenta bounding box

is search region.

tions. We have shown that skin color models generated from
the skin locus constraint are robust to localization errors.
Color-based tracking experiments demonstrate that adapted
skin color models using chromatic constraint succeeds over
a fixed model or an adaptive model applying elliptical con-
straint.

It must be emphasized that the skin locus is camera spe-
cific. This technique is suited for a dedicated camera and not
for arbitrary sequences from the web. The skin locus may
be found in two ways, either by taking images of faces un-
der different illumination conditions, or by calculating the
RGB values of the camera given the color signal of skin and
illuminant.

As with most face detection techniques, skin color is not
enough to locate the face. Other cues such as shape, texture,
and motion may still be needed to refine face localization.
Once the face is positively detected, our technique may be
used to lock the tracker on the face even under changing
light.
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